ÇコÄɾî¿ë ¿¬ÇÕ ÇнÀ ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® º¸°í¼­ : ¿ëµµº°, ¹èÆ÷ ¸ðµåº°, ÃÖÁ¾ ¿ëµµº°, Áö¿ªº° ºÎ¹® ¿¹Ãø(2025-2030³â)
Federated Learning In Healthcare Market Size, Share & Trends Analysis Report By Application, By Deployment Mode (On-premise, Cloud-based), By End-use, By Region, And Segment Forecasts, 2025 - 2030
»óǰÄÚµå : 1728070
¸®¼­Ä¡»ç : Grand View Research, Inc.
¹ßÇàÀÏ : 2025³â 04¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,950 £Ü 6,894,000
Unprintable PDF & Excel (Single User License) help
º¸°í¼­ PDF ¹× ¿¢¼¿À» 1Àθ¸ »ç¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, Àμâ´Â ºÒ°¡´ÉÇÕ´Ï´Ù.
US $ 5,950 £Ü 8,287,000
Printable PDF & Excel (5-User License) help
º¸°í¼­ PDF ¹× ¿¢¼¿À» µ¿ÀÏ ±â¾÷ ³» µ¿ÀÏ ºÎ¼­¿¡¼­ ÃÖ´ë 5¸í±îÁö »ç¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, Àμâ´Â °¡´ÉÇÕ´Ï´Ù.
US $ 7,950 £Ü 11,072,000
Printable PDF & Excel (Enterprise License) help
º¸°í¼­ ±¸¸Å ±â¾÷ ¹× ±× ÀÚȸ»ç, °ü°è»ç°¡ »ç¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀ̸ç, PDF ¹× ¿¢¼¿ ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

½ÃÀå ±Ô¸ð¿Í µ¿Çâ

¼¼°èÀÇ ÇコÄɾî¿ë ¿¬ÇÕ ÇнÀ ½ÃÀå ±Ô¸ð´Â 2024³â¿¡ 2,883¸¸ ´Þ·¯¿¡ ´ÞÇßÀ¸¸ç 2025-2030³â¿¡ °ÉÃÄ 16.0%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ¿£Áö´Ï¾î¸µ ÅëÇÕÀº ¾ÈÀüÇϰí Çù·ÂÀûÀÎ AI ¸ðµ¨ °³¹ßÀ» À§ÇÑ °­·ÂÇÑ µµ±¸·Î¼­ °Ç°­ °ü¸® ºÎ¹®¿¡¼­ Å« °ü½ÉÀ» ²ø°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅ͸¦ °øÀ¯ÇÏÁö ¾Ê°íµµ AI ¸ðµ¨À» ±³À°ÇÒ ¼ö ÀÖÀ¸¸ç, °³ÀÎÁ¤º¸ º¸È£¸¦ º¸ÀåÇÕ´Ï´Ù.

¿¬ÇÕ ÇнÀ°ú ºí·ÏüÀÎÀ» °áÇÕÇÏ¿© ÀÇ·á±â°üÀº AI ¸ðµ¨ °³¹ßÀ» À§ÇÑ ºÐ»êÈ­µÈ ¾ÈÀüÇÑ ÀÎÇÁ¶ó¸¦ È®¸³ÇÒ ¼ö ÀÖ½À´Ï´Ù. ½ÇÇè½ÇÀÌ °¡¼ÓÈ­µÇ¾î ȯÀÚÀÇ ±â¹ÐÀ» º¸È£Çϸ鼭 ´Ù¾çÇÑ µ¥ÀÌÅͼ¼Æ®¿¡¼­ ÀλçÀÌÆ®¸¦ °øÀ¯ÇÒ ¼ö ÀÖ°Ô ÇØ ÁÝ´Ï´Ù.

ÇコÄɾî¿ë ¿¬ÇÕ ÇнÀÀº ¿©·¯ ±â°ü¿¡ °ÉÄ£ AI ¸ðµ¨À» ±³À°ÇÏ´Â µ¶Æ¯ÇÑ ¹æ¹ýÀ» ¼³¸íÇϰí ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ AI ¸ðµ¨ÀÇ Á¤È®¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î 2024³â 10¿ù, ÇÁ·¹µå ÇØÄ¡½¼ ¾Ï ¼¾ÅÍ, ´Ù³ªÆÛ ¹Ù ¾Ï ½ÇÇè½Ç, ±â³ä ½½·Ð ÄÉÅ͸µ ¾Ï ¼¾ÅÍ, ½Ãµå´Ï Ų¸á Á¾ÇÕ ¾Ï ¼¾ÅÍ, ¾Æ¸¶Á¸ À¥¼­ºñ½º, ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®, ¿£ºñµð¾Æ, µô·ÎÀÌÆ® µî Å×Å© ´ë±â¾÷°úÀÇ Çù¾÷¿¡ ÀÇÇØ '¾Ï AI ¾ó¶óÀ̾ð½º'°¡ ¼³¸³µÇ¾ú½À´Ï´Ù. ±â¹Ð¼ºÀÌ ³ôÀº ȯÀÚ Á¤º¸¸¦ °øÀ¯ÇÏÁö ¾Ê°í ¾ÈÀüÇÏ°í ºÐ»êÈ­µÈ µ¥ÀÌÅÍ ºÐ»êÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ¿¬ÇÕ ÇнÀÀ» ÅëÇØ AI ÁÖµµÀÇ ¾Ï ÀǷḦ ÃßÁøÇÕ´Ï´Ù.

¿ø°ÝÁö¿¡¼­´Â ¿¬ÇÕ ÇнÀÀ» ÅëÇØ °Ç°­ ¸ð´ÏÅ͸µÀ» À§ÇÑ ¿þ¾î·¯ºí ¹× ½º¸¶Æ®Æù µîÀÇ ¿¡Áö µð¹ÙÀ̽º¿¡ Á÷Á¢ AI ¸ðµ¨À» ¹èÆ÷ÇÒ ¼ö ÀÖ°Ô µÇ¾î ÀÖ½À´Ï´Ù. °°Àº °Ç°­ ÁöÇ¥¸¦ µð¹ÙÀ̽º¿¡¼­ Á÷Á¢ ½Ç½Ã°£À¸·Î ºÐ¼®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ºÁúȯ °ü¸®¿Í ÃæºÐÇÑ ¼­ºñ½º¸¦ ¹ÞÁö ¾Ê´Â Áö¿ª¿¡¼­ÀÇ ¿¹¹æ ÇコÄɾîÀÇ Á¦°ø¿¡ ƯÈ÷ À¯ÀÍÇÕ´Ï´Ù. ±Ã±ØÀûÀ¸·Î´Â Áß¾Ó ÁýÁßÇüÀÇ ÀÎÇÁ¶ó¿¡ÀÇ ÀÇÁ¸À» ÁÙÀÌ´Â °Í°ú µ¿½Ã¿¡, AI¸¦ Ȱ¿ëÇÑ ÇコÄɾÀÇ Á¢±Ù¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.

°Ç°­ °ü¸® ±â°üÀº ȯÀÚ °ü¸®¸¦ °­È­Çϱâ À§ÇØ AI ±¸µ¿ ±â¼úÀ» ½Å¼ÓÇÏ°Ô µµÀÔÇϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅ͸¦ ·ÎÄ÷ΠÀ¯ÁöÇÒ ¼ö ÀÖ´Â ¿¬ÇÕ ÇнÀÀº º¸¾ÈÀ» À¯ÁöÇϸ鼭 Çõ½ÅÀ» ÃËÁøÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, 2024³â 12¿ù µ¶ÀÏÀÇ ÀÇ·á ±â¼ú ±â¾÷ÀÎ Áö¸à½º Çï½Ã´Ï¾î½º´Â ¿£ºñµð¾Æ¿Í Çù·ÂÇÏ¿© ÀÇ·á¿ë À̹Ì¡ Ç÷§Æû¿¡ MONAI Deploy¸¦ ÅëÇÕÇß½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ÇコÄɾî¿ë ¿¬ÇÕ ÇнÀ ½ÃÀå º¯¼ö, µ¿Çâ, ¹üÀ§

Á¦4Àå ÇコÄɾî¿ë ¿¬ÇÕ ÇнÀ ½ÃÀå : ¿ëµµÀÇ ÃßÁ¤°ú ¿¹Ãø

Á¦5Àå ÇコÄɾî¿ë ¿¬ÇÕ ÇнÀ ½ÃÀå : ¹èÆ÷ ¸ðµåÀÇ ÃßÁ¤°ú ¿¹Ãø

Á¦6Àå ÇコÄɾî¿ë ¿¬ÇÕ ÇнÀ ½ÃÀå : ÃÖÁ¾ ¿ëµµÀÇ Àü¸ÁÀÇ ÃßÁ¤°ú ¿¹Ãø

Á¦7Àå ÇコÄɾî¿ë ¿¬ÇÕ ÇнÀ ½ÃÀå : Áö¿ªº°, ÃßÁ¤¡¤µ¿Ç⠺м®

Á¦8Àå °æÀï ±¸µµ

KTH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Market Size & Trends:

The global federated learning in healthcare market size was estimated at USD 28.83 million in 2024 and is projected to grow at a CAGR of 16.0% from 2025 to 2030. The integration of federated learning with blockchain technology is gaining significant prominence in the healthcare sector as a powerful tool for secure and collaborative AI model development. Federated learning allows multiple healthcare institutions to train AI models on their data without directly sharing sensitive patient information, ensuring privacy is maintained. Blockchain technology adds another layer of security by providing an immutable ledger that tracks all interactions within the federated learning system. This ensures that data exchanges and model updates are transparent, auditable, and tamper-proof, which protects against unauthorized access or manipulation.

Combining federated learning with blockchain allows healthcare institutions to establish a decentralized and secure infrastructure for AI model development. Blockchain verifies and tracks model updates, increasing trust in the AI systems' outputs and decisions. This integration promotes greater collaboration across institutions, enabling the sharing of insights from diverse datasets while safeguarding patient confidentiality. Moreover, the combination of these technologies enhances the accountability of AI systems, making it easier to trace and audit model training and data handling processes.

In healthcare, federated learning offers a unique method for training AI models across multiple institutions. This approach enables each institution to keep its data secure and private without sharing sensitive patient information. The model is trained locally at each institution, and only model updates are shared, not the actual data. Collaborating in this way allows institutions to pool their expertise and data diversity, which in turn improves the accuracy of AI models. Ultimately, federated learning provides a way to enhance healthcare solutions while maintaining strict patient confidentiality. For instance, in October 2024, The Cancer AI Alliance is formed through collaboration between Fred Hutchinson Cancer Center, Dana-Farber Cancer Institute, Memorial Sloan Kettering Cancer Center, Sidney Kimmel Comprehensive Cancer Center, and tech giants such as Amazon Web Services, Inc., Microsoft Corporation, NVIDIA Corporation, and Deloitte to advance AI-driven cancer care, to advance AI-driven cancer care through federated learning, which allows secure, decentralized data collaboration without sharing sensitive patient information.

In remote areas, federated learning is enabling the deployment of AI models directly on edge devices such as wearables and smartphones for health monitoring. These devices can process local data without requiring continuous internet access, making them ideal for low-connectivity environments. Instead of sending raw data, only model updates are shared with central servers, ensuring data privacy. This approach allows for real-time analysis of health metrics, such as heart rate or glucose levels, directly on the device. Federated learning allows models to continually improve with data from multiple devices without compromising user privacy. This is particularly beneficial for managing chronic conditions or providing preventative healthcare in underserved regions. Ultimately, it reduces the reliance on centralized infrastructure while enhancing the accessibility of AI-powered healthcare.

Healthcare institutions are rapidly adopting AI-driven technologies to enhance patient care. Federated learning offers a secure method for training AI models across multiple institutions without sharing sensitive data. This decentralized approach ensures that patient privacy is maintained while enabling collaboration. Allowing data to remain local, federated learning fosters innovation while maintaining security. It also enables AI models to be trained on diverse datasets, improving their accuracy and applicability across various healthcare settings. For instance, in December 2024, Siemens Healthineers, a healthcare technology company in Germany, collaborated with NVIDIA Corporation to integrate MONAI Deploy into their medical imaging platforms. This collaboration aims to accelerate the deployment of AI-driven solutions in clinical settings, making it easier for healthcare institutions to implement advanced AI technologies in medical imaging workflows.

Global Federated Learning In Healthcare Market Report Segmentation

This report forecasts revenue growth at the global, regional, and country levels and provides an analysis of the latest industry trends and opportunities in each of the sub-segments from 2018 to 2030. For this study, Grand View Research has segmented the global federated learning in healthcare market report based on application, deployment mode, end-use, and region:

Table of Contents

Chapter 1. Methodology and Scope

Chapter 2. Executive Summary

Chapter 3. Federated Learning in Healthcare Market Variables, Trends & Scope

Chapter 4. Federated Learning in Healthcare Market: Application Estimates & Forecasts

Chapter 5. Federated Learning in Healthcare Market: Deployment Mode Estimates & Forecasts

Chapter 6. Federated Learning in Healthcare Market: End Use Outlook Estimates & Forecasts

Chapter 7. Federated Learning in Healthcare Market: Regional Estimates & Trend Analysis

Chapter 8. Competitive Landscape

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â