¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® º¸°í¼­ : Á¶Á÷ ±Ô¸ðº°, µ¥ÀÌÅÍ À¯Çüº°, Àü°³ ¹æ½Äº°, ¾÷¹« ±â´Éº°, ¿ëµµº°, Áö¿ªº° Àü¸Á ¹× ¿¹Ãø(2024-2031³â)
Global Data Migration Market Size, Share & Trends Analysis Report By Organization Size, By Data Type, By Deployment Type, By Business Function, By Application, By Regional Outlook and Forecast, 2024 - 2031
»óǰÄÚµå : 1709751
¸®¼­Ä¡»ç : KBV Research
¹ßÇàÀÏ : 2025³â 03¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 368 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,600 £Ü 5,067,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,320 £Ü 6,080,000
PDF (Multi User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ 10¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,048 £Ü 8,512,000
PDF (Corporate User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è µ¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ µ¿¾È 12.0%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2031³â±îÁö 317¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

KBV Cardinal matrixÀÇ ºÐ¼®¿¡ µû¸£¸é, Microsoft CorporationÀº µ¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ½ÃÀåÀÇ ¼±±¸ÀÚÀ̸ç, 2022³â 12¿ù, Microsoft CorporationÀº ¼¼°è ±ÝÀ¶ ½ÃÀå µ¥ÀÌÅÍ ¹× ÀÎÇÁ¶ó Á¦°ø¾÷üÀÎ LSEG¿Í Á¦ÈÞÇÏ¿© Azure ¹× AI¸¦ Æ÷ÇÔÇÑ Microsoft Cloud¸¦ Ȱ¿ëÇÏ¿© LSEGÀÇ µ¥ÀÌÅÍ ÀÎÇÁ¶ó¸¦ °­È­Çß½À´Ï´Ù. À̹ø Á¦ÈÞ¸¦ ÅëÇØ LSEG´Â À繫 ºÐ¼® °³¼±, Teams¸¦ ÅëÇÑ ¿öÅ©ÇÃ·Î¿ì °£¼ÒÈ­, »õ·Î¿î Ŭ¶ó¿ìµå ±â¹Ý ¼­ºñ½º °³¹ßÀ» ÃËÁøÇÒ ¼ö ÀÖ°Ô µÆ½À´Ï´Ù. µ¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ½ÃÀåÀÇ ÁÖ¿ä Çõ½Å°¡ÀÔ´Ï´Ù.

½ÃÀå ¼ºÀå¿äÀÎ

SAP S/4HANA, Salesforce, Microsoft 365¿Í °°Àº Ŭ¶ó¿ìµå ±â¹Ý ¿£ÅÍÇÁ¶óÀÌÁî ¼Ö·ç¼ÇÀ» µµÀÔÇÏ´Â Á¶Á÷Àº Áß´ÜÀ» ÃÖ¼ÒÈ­Çϸ鼭 È¿À²ÀûÀÌ°í ½Ç½Ã°£ÀûÀÎ µ¥ÀÌÅÍ ¸¶À̱׷¹À̼ÇÀ» ½ÇÇöÇØ¾ß ÇÕ´Ï´Ù. ÀÚµ¿È­µÈ Ŭ¶ó¿ìµå ¸¶À̱׷¹ÀÌ¼Ç Åø, AI¸¦ Ȱ¿ëÇÑ µ¥ÀÌÅÍ ÅëÇÕ ¼Ö·ç¼Ç, ±×¸®°í ÀÚ°¡ º¹±¸Çü Ŭ¶ó¿ìµå ¾ÆÅ°ÅØÃ³´Â µ¥ÀÌÅÍ ¹«°á¼º°ú ÄÄÇöóÀ̾𽺸¦ À¯ÁöÇϸ鼭 ¿øÈ°ÇÑ ¸¶À̱׷¹À̼ÇÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. µû¶ó¼­ Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ ÁøÈ­¿¡ µû¶ó µ¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â ´õ¿í Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°­·ÂÇÑ ¸¶À̱׷¹ÀÌ¼Ç Àü·«À» ½ÇÇàÇÏÁö ¸øÇÏ´Â ±â¾÷Àº µ¥ÀÌÅÍ »çÀÏ·ÎÈ­, ÄÄÇöóÀ̾𽺠¹®Á¦, ¿î¿µ ºñÈ¿À²¼º µîÀÇ À§Çè¿¡ Á÷¸éÇÏ°Ô µË´Ï´Ù. µ¥ÀÌÅÍ ¸¶À̱׷¹À̼ÇÀÇ ¹Ì·¡´Â AI ±â¹Ý ¼Ö·ç¼ÇÀ¸·Î µ¥ÀÌÅÍ ¸ÅÇÎ, °ËÁõ, °Å¹ö³Í½º, ÀÚµ¿È­, Áö´ÉÈ­, º¸¾ÈÀÌ °­È­µÈ µ¥ÀÌÅÍ ¸¶À̱׷¹À̼ÇÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ãֽе¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ±â¼ú¿¡ Àû±ØÀûÀ¸·Î ÅõÀÚÇÏ´Â Á¶Á÷Àº ÁøÈ­ÇÏ´Â µðÁöÅРȯ°æ¿¡¼­ ¿øÈ°ÇÑ µ¥ÀÌÅÍ ¾×¼¼½º, º¸¾È ¹× ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» º¸ÀåÇÔÀ¸·Î½á °æÀï ¿ìÀ§¸¦ È®º¸ÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µû¶ó¼­ µðÁöÅÐ ÀüȯÀÌ °¡¼ÓÈ­µÇ´Â °¡¿îµ¥, µ¥ÀÌÅÍ ¸¶À̱׷¹À̼ÇÀº Çõ½Å°ú È¿À²¼ºÀ» ÃßÁøÇÏ´Â µ¥ ÀÖ¾î ¿©ÀüÈ÷ Áß¿äÇÑ ¿ä¼Ò·Î ÀÛ¿ëÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

½ÃÀå ¾ïÁ¦¿äÀÎ

±â¾÷Àº ¿øÈ°ÇÏ°í ¾ÈÀüÇÑ µ¥ÀÌÅÍ ¸¶À̱׷¹À̼ÇÀ» À§ÇØ Àü¿ë µµ±¸¿Í ¼ÒÇÁÆ®¿þ¾î°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸¿¡´Â ETL(ÃßÃâ, º¯È¯, ·Îµå) ¼Ö·ç¼Ç, ¹é¾÷ ¹× º¹±¸ ¼ÒÇÁÆ®¿þ¾î, ¹«°á¼ºÀ» À¯ÁöÇϸ鼭 µ¥ÀÌÅÍ Àü¼ÛÀ» ¿ëÀÌÇÏ°Ô ÇÏ´Â ½Ç½Ã°£ µ¿±âÈ­ µµ±¸ µîÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ¼ÒÇÁÆ®¿þ¾îÀÇ ¶óÀ̼±½º ºñ¿ëÀº ƯÈ÷ ¹Î°¨ÇÑ µ¥ÀÌÅͳª ±¸Á¶È­µÈ µ¥ÀÌÅ͸¦ ´Ù·ç´Â Á¶Á÷¿¡ À־´Â ³ôÀº ºñ¿ëÀÌ ¼Ò¿äµÉ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ½ºÅ丮Áö, Ŭ¶ó¿ìµå ¼­ºñ½º¿Í °ü·ÃµÈ ³ôÀº ºñ¿ëÀº ¸¹Àº Á¶Á÷¿¡ Å« À庮ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ À¯Çü Àü¸Á

µ¥ÀÌÅÍ À¯Çü¿¡ µû¶ó ½ÃÀåÀº °í°´ µ¥ÀÌÅÍ, À繫 µ¥ÀÌÅÍ, Á¦Ç° µ¥ÀÌÅÍ, °ø±Þ¾÷ü µ¥ÀÌÅÍ, ÄÄÇöóÀ̾𽺠µ¥ÀÌÅÍ·Î ºÐ·ùµË´Ï´Ù. À繫 µ¥ÀÌÅÍ ºÎ¹®Àº 2023³â ½ÃÀå ¼öÀÍÀÇ 23%¸¦ Â÷ÁöÇß½À´Ï´Ù. ±â¾÷µéÀÌ Å¬¶ó¿ìµå ±â¹Ý ȸ°è, µðÁöÅÐ °áÁ¦ »ýŰè, ±ÔÁ¦ º¸°í ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇÔ¿¡ µû¶ó Á¤È®ÇÏ°í ¾ÈÀüÇϸç ÄÄÇöóÀ̾𽺸¦ ÁؼöÇÏ´Â À繫 µ¥ÀÌÅÍ ¸¶À̱׷¹À̼ǿ¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, GDPR, SOX, PCI-DSS¿Í °°Àº ¾ö°ÝÇÑ ÄÄÇöóÀ̾𽺠¿ä±¸ »çÇ×À¸·Î ÀÎÇØ Á¶Á÷Àº À繫 ±â·Ï ¸¶À̱׷¹À̼ǿ¡¼­ µ¥ÀÌÅÍ º¸¾È°ú Á¤ÇÕ¼ºÀ» È®º¸ÇØ¾ß ÇÕ´Ï´Ù. µ¥ÀÌÅÍ º¸¾È°ú ¹«°á¼ºÀ» ÃÖ¿ì¼± °úÁ¦·Î »ï°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºí·ÏüÀÎ ±â¼ú, AI¸¦ Ȱ¿ëÇÑ À繫 ºÐ¼®, ½Ç½Ã°£ Æ®·£Àè¼Ç ó¸®, ½Ç½Ã°£ Æ®·£Àè¼Ç ó¸®ÀÇ ºÎ»óÀ¸·Î ¿À·ù ¾ø´Â È¿À²ÀûÀÎ À繫 µ¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¾÷¹« ±â´É Àü¸Á

¾÷¹« ±â´É¿¡ µû¶ó ½ÃÀåÀº ¿µ¾÷ ¹× ¸¶ÄÉÆÃ, À繫, ¿î¿µ, ÀÎ»ç ¹× ±âŸ·Î ºÐ·ùµË´Ï´Ù. ¿î¿µ ºÎ¹®Àº 2023³â ½ÃÀåÀÇ 20%ÀÇ ¼öÀÍ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ERP(Enterprise Resource Planning) ½Ã½ºÅÛ, IoT¸¦ Ȱ¿ëÇÑ ÀÚ»ê ÃßÀû, AI¸¦ Ȱ¿ëÇÑ ¿¹Áöº¸ÀüÀ¸·Î ÀüȯÇÔ¿¡ µû¶ó ¿î¿µ ºÎ¹®ÀÇ ¿øÈ°ÇÑ µ¥ÀÌÅÍ ¸¶À̱׷¹À̼ǿ¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀº ½Ç½Ã°£ ºÐ¼®, ·Îº¸Æ½ ÇÁ·Î¼¼½º ÀÚµ¿È­(RPA), AI¸¦ Ȱ¿ëÇÑ ¼ö¿ä ¿¹ÃøÀ» µµÀÔÇÏ¿© ¿î¿µÀÇ È¿À²¼º°ú ºñ¿ë Àý°¨À» ²ÒÇϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ¸¶À̱׷¹À̼ÇÀº ¿øÈ°ÇÑ µðÁöÅÐ ÀüȯÀ» ½ÇÇöÇϰí, ±â¾÷Àº ±âÁ¸ ¿î¿µ µ¥ÀÌÅ͸¦ ÃÖ½ÅÀÇ È®À强°ú º¸¾ÈÀ» °®Ãá Ç÷§ÆûÀ¸·Î ÀÌÀüÇÒ ¼ö ÀÖ½À´Ï´Ù.

Á¶Á÷ ±Ô¸ð Àü¸Á

Á¶Á÷ ±Ô¸ðº°·Î º¸¸é ½ÃÀåÀº Áß¼Ò±â¾÷°ú ´ë±â¾÷À¸·Î ¾çºÐµÇ¾î ÀÖ½À´Ï´Ù. ´ë±â¾÷ ºÎ¹®Àº 2023³â 59%ÀÇ ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ´ëÇü ÀºÇà, ÇコÄɾî, ¼Ò¸Å, Á¦Á¶, Åë½Å ±â¾÷µéÀº µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤, °í°´ ºÐ¼®, ±×¸®°í ÅëÇÕ ±â°£°è ½Ã½ºÅÛ(ERP)¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, ¿øÈ°ÇÑ µ¥ÀÌÅÍ ¸¶À̱׷¹À̼ÇÀÌ ÇʼöÀûÀÔ´Ï´Ù. ¼¼°è »ç¾÷ È®Àå ¹× ±¹°æ °£ µ¥ÀÌÅÍ °ü¸®ÀÇ Çʿ伺ÀÌ ÀÖ´Â ´ë±â¾÷Àº ÄÄÇöóÀ̾ð½º, º¸¾È ¹× µ¥ÀÌÅÍ °Å¹ö³Í½º ¹®Á¦¿¡ Á÷¸éÇØ ÀÖÀ¸¸ç, À̸¦ À§ÇØ °í±Þ ¸¶À̱׷¹ÀÌ¼Ç ¼Ö·ç¼Ç¿¡ ÅõÀÚÇØ¾ß ÇÕ´Ï´Ù.

Àü°³ À¯Çü Àü¸Á

Àü°³ ¹æ½Ä¿¡ µû¶ó ½ÃÀåÀº Ŭ¶ó¿ìµå¿Í ¿ÂÇÁ·¹¹Ì½º·Î ±¸ºÐµË´Ï´Ù. Ŭ¶ó¿ìµå ºÎ¹®Àº 2023³â ½ÃÀå ¸ÅÃâÀÇ 62%¸¦ Â÷ÁöÇß½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ ¸¶À̱׷¹À̼ÇÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â ¿ø°Ý ±Ù¹« ¹× ºÐ»ê ¿î¿µÀ¸·ÎÀÇ ÀüȯÀÔ´Ï´Ù. Á¶Á÷ÀÌ Å¬¶ó¿ìµå ³×ÀÌÆ¼ºê ¾ÖÇø®ÄÉÀ̼Ç, SaaS ¼Ö·ç¼Ç, AI ±â¹Ý ºÐ¼®À» µµÀÔÇÔ¿¡ µû¶ó Ŭ¶ó¿ìµå ȯ°æÀ¸·ÎÀÇ ¿øÈ°ÇÑ µ¥ÀÌÅÍ ¸¶À̱׷¹À̼ǿ¡ ´ëÇÑ ¿ä±¸°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ Áß¼Ò±â¾÷Àº ºñ¿ë È¿À²¼º, µµÀÔ ¿ëÀ̼º, IT ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÀÇÁ¸µµ °¨¼Ò µîÀÇ ÀÌÀ¯·Î Ŭ¶ó¿ìµå ÀüȯÀ» Àû±ØÀûÀ¸·Î ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

¿ëµµ Àü¸Á

¿ëµµº°·Î ½ÃÀåÀº BFSI, ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼, ÇコÄɾî, Á¦Á¶, ¼Ò¸Å, Åë½Å ¹× IT, ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ±âŸ·Î ºÐ·ùµÇ¸ç, BFSI ºÎ¹®Àº BFSI ³â Àüü ½ÃÀå ¸ÅÃâ Á¡À¯À²ÀÇ 24%¸¦ Â÷ÁöÇß½À´Ï´Ù. ±ÝÀ¶±â°üÀº °í°´ ±â·Ï, °Å·¡ ³»¿ª, ¸®½ºÅ© Æò°¡ µî ¹æ´ëÇÑ ¾çÀÇ ±â¹Ð Á¤º¸¸¦ °ü¸®Çϰí Àֱ⠶§¹®¿¡ ¾ÈÀüÇϰí È¿À²ÀûÀÎ µ¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ¼Ö·ç¼ÇÀÇ µµÀÔÀÌ ÇʼöÀûÀÔ´Ï´Ù. ¸ð¹ÙÀÏ ¹ðÅ·, AI¸¦ Ȱ¿ëÇÑ ºÎÁ¤ÇàÀ§ ŽÁö, Ŭ¶ó¿ìµå ±â¹Ý ±ÝÀ¶ Ç÷§ÆûÀÇ ºÎ»óÀ¸·Î ±âÁ¸ ÀºÇà ½Ã½ºÅÛÀ» ÃֽŠŬ¶ó¿ìµå ³×ÀÌÆ¼ºê ¾ÆÅ°ÅØÃ³·Î ÀüÈ¯ÇØ¾ß ÇÒ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù.

Áö¿ª Àü¸Á

Áö¿ªº°·Î´Â ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«·Î ½ÃÀåÀ» ºÐ¼®Çß½À´Ï´Ù. ºÏ¹Ì ºÎ¹®Àº 2023³â ½ÃÀåÀÇ 40%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ÀÌ Áö¿ª¿¡´Â ÁÖ¿ä Ŭ¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷ü(AWS, Microsoft Azure, Google Cloud), IT ±â¾÷, ±ÝÀ¶±â°üÀÌ ÀÖÀ¸¸ç, ÀÌµé ¸ðµÎ IT ÀÎÇÁ¶ó Çö´ëÈ­¸¦ À§ÇÑ ´ë±Ô¸ð µ¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ¼Ö·ç¼ÇÀ» ÇÊ¿ä·Î Çϰí ÀÖ½À´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â µðÁöÅÐ ÀüȯÀ» ¼±µµÇϰí ÀÖÀ¸¸ç, BFSI, ÇコÄɾî, Åë½Å, ¼Ò¸Å¾÷ µîÀÇ ±â¾÷µéÀÌ Å¬¶ó¿ìµå ¸¶À̱׷¹À̼Ç, ºòµ¥ÀÌÅÍ ºÐ¼®, AI¸¦ Ȱ¿ëÇÑ ÀÚµ¿È­¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¹üÀ§¿Í Á¶»ç ¹æ¹ý

Á¦2Àå ½ÃÀå ¿ä¶÷

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå °æÀï ºÐ¼® - ¼¼°è

Á¦5Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

Á¦6Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ½ÃÀå : µ¥ÀÌÅÍ À¯Çüº°

Á¦7Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ½ÃÀå : Àü°³ ¹æ½Äº°

Á¦8Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ½ÃÀå : ¾÷¹« ±â´Éº°

Á¦9Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ½ÃÀå : ¿ëµµº°

Á¦10Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ½ÃÀå : Áö¿ªº°

Á¦11Àå ±â¾÷ °³¿ä

Á¦12Àå µ¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ½ÃÀå ¼º°ø Çʼö Á¶°Ç

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Global Data Migration Market size is expected to reach $31.71 billion by 2031, rising at a market growth of 12.0% CAGR during the forecast period.

Businesses are increasingly migrating product catalogs, inventory databases, and manufacturing data to cloud-based and AI-powered platforms to enhance supply chain visibility, automation, and product innovation. The retail, automotive, and manufacturing sectors have particularly benefited from product data migration, allowing seamless integration with ERP systems, digital marketplaces, and IoT-enabled manufacturing processes. Hence, the product data segment acquired 1/5th revenue share in the market in 2023. The need for real-time inventory updates, cross-platform product synchronization, and data-driven insights is expected to drive continued investments in this segment.

The major strategies followed by the market participants are Partnerships as the key developmental strategy to keep pace with the changing demands of end users. For instance, In January, 2025, SAP SE announced the partnership with SNP SE, an IT service management company focusing on RISE with SAP transformations and data migration for SAP S/4HANA Public Cloud. Leveraging its Bluefield methodology and Kyano platform, SNP accelerates cloud migrations, minimizes risks, and enables efficient, data-driven SAP transitions for global enterprises, enhancing customer success and business agility. Additionally, In September, 2024, Oracle Corporation partnered with AWS, a cloud computing company to integrate Oracle Autonomous Database and Exadata Database Service within AWS. This offers customers seamless database management, enhanced flexibility, and simplified migration, with zero-ETL integration, unified support, and access to advanced AWS services, improving enterprise agility and innovation.

Based on the Analysis presented in the KBV Cardinal matrix; Microsoft Corporation is the forerunner in the Data Migration Market. In December, 2022, Microsoft Corporation teamed up with LSEG, a global provider of financial markets data and infrastructure to enhance LSEG's data infrastructure using Microsoft Cloud, including Azure and AI. This collaboration will improve financial analytics, streamline workflows with Teams, and develop new cloud-based services. Companies such as Amazon Web Services, Inc., Oracle Corporation, and IBM Corporation are some of the key innovators in Data Migration Market.

Market Growth Factors

Organizations adopting cloud-based enterprise solutions like SAP S/4HANA, Salesforce, and Microsoft 365 must ensure efficient, real-time data migration with minimal disruption. Automated cloud migration tools, AI-powered data integration solutions, and self-healing cloud architectures facilitate smooth transitions while maintaining data integrity and compliance. Hence, the demand for data migration solutions will grow as cloud computing evolves.

Companies that fail to implement robust migration strategies risk data silos, compliance issues, and operational inefficiencies. The future of data migration is expected to be more automated, intelligent, and secure, with AI-driven solutions enhancing data mapping, validation, and governance. Organizations proactively investing in modern data migration technologies will gain a competitive edge, ensuring seamless data accessibility, security, and real-time decision-making in the evolving digital landscape. Thus, as digital transformation accelerates, data migration will remain a fundamental driver of innovation and efficiency.

Market Restraining Factors

Businesses require specialized tools and software to ensure seamless and secure data migration. These tools include ETL (Extract, Transform, Load) solutions, backup and recovery software, and real-time synchronization tools that facilitate data transfer while maintaining integrity. Licensing fees for such software can be costly, especially for organizations handling highly sensitive or structured data. Hence, the high costs associated with hardware, software, storage, and cloud services can be a significant barrier for many organizations.

Data Type Outlook

Based on data type, the market is classified into customer data, financial data, product data, supplier data, and compliance data. The financial data segment procured 23% revenue share in the market in 2023. The need for accurate, secure, and compliant financial data migration has grown as companies shift to cloud-based accounting, digital payment ecosystems, and regulatory reporting solutions. With strict compliance mandates such as GDPR, SOX, and PCI-DSS, organizations prioritize data security and integrity when migrating financial records. Additionally, the rise in blockchain technology, AI-driven financial analytics, and real-time transaction processing have increased demand for error-free and efficient financial data migration services.

Business Function Outlook

On the basis of business function, the market is divided into sales & marketing, finance, operations, human resource, and others. The operations segment witnessed 20% revenue share in the market in 2023. The shift toward cloud-based enterprise resource planning (ERP) systems, IoT-enabled asset tracking, and AI-driven predictive maintenance has driven the demand for seamless data migration in operations. Organizations adopt real-time analytics, robotic process automation (RPA), and AI-driven demand forecasting to streamline operations and reduce costs. Data migration ensures smooth digital transformation, allowing businesses to move legacy operational data to modern, scalable, and secure platforms.

Organization Size Outlook

By organization size, the market is bifurcated into small & medium enterprises and large enterprises. The large enterprises segment garnered 59% revenue share in the market in 2023. Large banking, healthcare, retail, manufacturing, and telecommunications organizations rely heavily on data-driven decision-making, customer analytics, and enterprise resource planning (ERP) systems, which require seamless data migration. With global operations and cross-border data management needs, large enterprises face compliance, security, and data governance challenges, making them invest in advanced migration solutions.

Deployment Type Outlook

Based on deployment type, the market is segmented into cloud and on-premise. The cloud segment recorded 62% revenue share in the market in 2023. One of the key drivers for cloud-based data migration is the shift to remote work and distributed operations. As organizations embrace cloud-native applications, SaaS solutions, and AI-powered analytics, the need for seamless data migration to cloud environments has surged. Small and medium enterprises (SMEs), particularly, have embraced cloud migration due to its cost-efficiency, ease of deployment, and reduced IT infrastructure dependencies.

Application Outlook

On the basis of application, the market is classified into BFSI, energy & utilities, healthcare, manufacturing, retail, telecom & IT, media & entertainment, and others. The BFSI segment witnessed 24% revenue share in the market in 2023. Financial institutions oversee extensive volumes of sensitive information, encompassing customer records, transaction histories, and risk assessments, thereby necessitating the implementation of secure and efficient data migration solutions. The rise of mobile banking, AI-driven fraud detection, and cloud-based financial platforms has further increased the need to migrate legacy banking systems to modern, cloud-native architectures.

Regional Outlook

Region-wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The North America segment recorded 40% revenue share in the market in 2023. The region is home to major cloud service providers (AWS, Microsoft Azure, Google Cloud), IT enterprises, and financial institutions, all of which require large-scale data migration solutions to modernize their IT infrastructure. The U.S. and Canada lead digital transformation efforts, with businesses across BFSI, healthcare, telecom, and retail sectors investing in cloud migration, big data analytics, and AI-powered automation.

Recent Strategies Deployed in the Market

List of Key Companies Profiled

Global Data Migration Market Report Segmentation

By Organization Size

By Data Type

By Deployment Type

By Business Function

By Application

By Geography

Table of Contents

Chapter 1. Market Scope & Methodology

Chapter 2. Market at a Glance

Chapter 3. Market Overview

Chapter 4. Competition Analysis - Global

Chapter 5. Global Data Migration Market by Organization Size

Chapter 6. Global Data Migration Market by Data Type

Chapter 7. Global Data Migration Market by Deployment Type

Chapter 8. Global Data Migration Market by Business Function

Chapter 9. Global Data Migration Market by Application

Chapter 10. Global Data Migration Market by Region

Chapter 11. Company Profiles

Chapter 12. Winning Imperatives of Data Migration Market

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â