¼¼°èÀÇ ¿§Áö AI Ĩ ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® : ±â´Éº°, Ĩ¼Âº°, µð¹ÙÀ̽ºº°, Áö¿ªº° Àü¸Á°ú ¿¹Ãø(2024-2031³â)
Global Edge Artificial Intelligence Chips Market Size, Share & Trends Analysis Report By Function, By Chipset (CPU, ASIC, GPU, and Other Chipset), By Device (Consumer Devices and Enterprise Devices), By Regional Outlook and Forecast, 2024 - 2031
»óǰÄÚµå : 1621170
¸®¼­Ä¡»ç : KBV Research
¹ßÇàÀÏ : 2024³â 12¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 243 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,600 £Ü 5,232,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,320 £Ü 6,278,000
PDF (Multi User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ 10¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,048 £Ü 8,790,000
PDF (Corporate User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¿§Áö AI Ĩ ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ Áß 33.2%ÀÇ CAGR·Î ½ÃÀå ¼ºÀåÇϸç, 2031³â±îÁö 1,489¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.

KBV Cardinal matrix¿¡ Á¦½ÃµÈ ºÐ¼®¿¡ µû¸£¸é AppleÀº ¿§Áö AI Ĩ ½ÃÀåÀÇ ¼±±¸ÀÚÀÔ´Ï´Ù. Amazon Web Services, NVIDIA, IBM µîÀÇ ±â¾÷Àº ¿§Áö AI Ĩ ½ÃÀåÀÇ ÁÖ¿ä À̳뺣ÀÌÅÍÀÇ ÀϺÎÀÔ´Ï´Ù. 2021³â 8¿ù, IBMÀº Hot Chips¿¡¼­ ±â¾÷ ¿öÅ©·Îµå¿¡¼­ ½Ç½Ã°£ AI ±â¹Ý »ç±â ¹æÁö¸¦ À§ÇØ ¼³°èµÈ Telum ÇÁ·Î¼¼¼­¸¦ ¹ßÇ¥Çß½À´Ï´Ù. ¿ÂĨ AI °¡¼ÓÈ­¸¦ ÅëÇØ ÀºÇà ¹× º¸Çè°ú °°Àº ºÎ¹® Àü¹Ý¿¡ °ÉÃÄ ´õ ºü¸£°í È®Àå °¡´ÉÇÑ »ç±â ¹æÁö¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ÅÚ·³Àº ±â¾÷ÀÌ »ç±â °¨Áö¿¡¼­ ¿¹¹æÀ¸·Î ÀüȯÇÏ¿© È¿À²¼ºÀ» °³¼±Çϰí Áö¿¬ ½Ã°£À» ÁÙÀÌ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù.

½ÃÀå ¼ºÀå ¿äÀÎ

»ê¾÷ ÀÚµ¿È­ ºÐ¾ß¿¡¼­´Â ¿§Áö AI ĨÀ» µµÀÔÇÏ¿© Á¦Á¶ °øÁ¤À» ÃÖÀûÈ­Çϰí, ¿¹Áöº¸ÀüÀ» °­È­Çϸç, ¿î¿µ È¿À²À» °³¼±Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ä¨Àº °øÀå ÇöÀå¿¡¼­ µ¥ÀÌÅ͸¦ ·ÎÄ÷Πó¸®ÇÏ¿© ½Ç½Ã°£ ÀÇ»ç°áÁ¤°ú ÀÌ»ó ¡ÈÄ¿¡ ´ëÇÑ Áï°¢ÀûÀÎ ´ëÀÀÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­ÇÏ°í »ý»ê ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿§Áö¿¡ AI¸¦ ÅëÇÕÇÏ¸é º¹ÀâÇÑ ÀÛ¾÷À» Á¤¹ÐÇϰí ÀûÀÀ·Â ÀÖ°Ô ¼öÇàÇÒ ¼ö ÀÖ´Â ½º¸¶Æ® ·Îº¿°ú ÀÚÀ² ½Ã½ºÅÛÀÇ °³¹ßµµ ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ Àü ¼¼°è¿¡¼­ ÀΰøÁö´ÉÀÇ È®´ë´Â ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

5G ³×Æ®¿öÅ©ÀÇ È®ÀåÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ »õ·Î¿î IoT ¿ëµµÀÇ °³¹ß ¹× ¹èÆ÷¸¦ Áö¿øÇÕ´Ï´Ù. ¿¹¸¦ µé¾î ¿§Áö AI ĨÀº ÀÇ·á ºÐ¾ß¿¡¼­ 5G ¿¬°áÀ» Ȱ¿ëÇÏ¿© ¿ø°Ý ¸ð´ÏÅ͸µ ¹× ¿ø°ÝÀÇ·á ¼­ºñ½º¸¦ °¡´ÉÇÏ°Ô Çϰí, ½Ç½Ã°£ °Ç°­ µ¥ÀÌÅÍ ºÐ¼®À» Á¦°øÇÏ¿© ȯÀÚ °á°ú¸¦ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦Á¶ ºÐ¾ß¿¡¼­ 5G Áö¿ø ¿§Áö AI ĨÀº ±â°èÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µ°ú ¿¹Ãø À¯Áöº¸¼ö¸¦ ¿ëÀÌÇÏ°Ô ÇÏ¿© ´Ù¿îŸÀÓ°ú ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖÀ¸¸ç, 5G ³×Æ®¿öÅ©°¡ Àü ¼¼°è¿¡¼­ È®´ëµÊ¿¡ µû¶ó ¿§Áö AI ĨÀÇ Ã¤ÅÃÀÌ ÃËÁøµÇ¾î ¿©·¯ ºÐ¾ß¿¡¼­ »õ·Î¿î ±âȸ¿Í ¿ëµµ¸¦ âÃâÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »õ·Î¿î ±âȸ¿Í ¿ëµµ°¡ ¿­¸± °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. µû¶ó¼­ 5G ³×Æ®¿öÅ©¿Í ¿¬°áÀÇ ¼¼°è ¼ºÀåÀº ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀÔ´Ï´Ù.

½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ

¿§Áö AI ĨÀÇ Á¦ÇÑµÈ ½ºÅ丮Áö ±â´ÉÀº ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ »ý¼ºÇϰí ó¸®ÇØ¾ß ÇÏ´Â ¿ëµµ¿¡¼­ ¹®Á¦°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ·ÎÄÿ¡ ÀúÀåÇÏ°í °ü¸®ÇÏ´Â °ÍÀº ºñÇö½ÇÀûÀ̸ç, Áß¾Ó ÁýÁᫎ ½ºÅ丮Áö ½Ã½ºÅÛÀ¸·Î µ¥ÀÌÅ͸¦ ÀÚÁÖ Àü¼ÛÇØ¾ß ÇÕ´Ï´Ù. ÀÌ´Â ¿§Áö ÄÄÇ»ÆÃÀÇ È¿À²¼º¿¡ ¿µÇâÀ» ¹ÌÄ¡°í, Áö¼ÓÀûÀÎ µ¥ÀÌÅÍ °¡¿ë¼º°ú ½Ç½Ã°£ 󸮰¡ Áß¿äÇÑ ½Ã³ª¸®¿À¿¡¼­ È¿À²¼ºÀÌ ¶³¾îÁú ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇѰ踦 ±Øº¹Çϱâ À§Çؼ­´Â ¿§Áö AI Ĩ ¼³°èÀÇ Áö¼ÓÀûÀÎ ¹ßÀü°ú ó¸® ´É·Â°ú ÀúÀå ¿ë·®À» Çâ»ó½ÃŰ´Â Çõ½ÅÀûÀÎ ¼Ö·ç¼ÇÀÇ °³¹ßÀÌ ÇÊ¿äÇÕ´Ï´Ù. °á·ÐÀûÀ¸·Î, Á¦ÇÑµÈ Ã³¸® ´É·Â°ú ÀúÀå ±â´ÉÀº ½ÃÀå ¼ºÀåÀ» ÀúÇØÇϰí ÀÖ½À´Ï´Ù.

±â´É Àü¸Á

±â´Éº°·Î ½ÃÀåÀº ÈÆ·Ã°ú Ãß·ÐÀ¸·Î ³ª´¹´Ï´Ù. Ãß·Ð ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 64%ÀÇ ¸ÅÃâ Á¡À¯À²À» ±â·ÏÇß½À´Ï´Ù. Ãß·ÐÀº ¿§Áö µð¹ÙÀ̽º¿¡¼­ »çÀü ÈÆ·ÃµÈ AI ¸ðµ¨À» ½ÇÇàÇÏ¿© ½Ç½Ã°£ ÀÇ»ç°áÁ¤ ¹× ¿¹ÃøÀ» ¼öÇàÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. Ãß·Ð ºÎ¹®Àº ÀÚÀ²ÁÖÇàÂ÷, »ê¾÷ ÀÚµ¿È­, ½º¸¶Æ® ½ÃƼ µîÀÇ ¿ëµµ¿¡¼­ ½Ç½Ã°£ ÀúÁö¿¬ 󸮿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Ãß·Ð ºÎ¹®ÀÌ ¿ìÀ§¸¦ Á¡Çϰí ÀÖ½À´Ï´Ù. Ã߷п¡ ÃÖÀûÈ­µÈ ¿§Áö AI ĨÀº µ¥ÀÌÅ͸¦ ·ÎÄÿ¡¼­ ó¸®ÇÒ ¼ö ÀÖÀ¸¸ç, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í º¸´Ù ºü¸£°í È¿À²ÀûÀÎ ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

Ĩ¼Â Àü¸Á

Ĩ¼Âº°·Î ½ÃÀåÀº CPU, GPU, ASIC, ±âŸ·Î ±¸ºÐµÇ¸ç, GPU ºÎ¹®Àº 2023³â 12%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, GPU´Â AI ¹× ¸Ó½Å·¯´× ¿ëµµ¿¡ ÇʼöÀûÀÎ º´·Ä ó¸® ÀÛ¾÷¿¡ ƯÈ÷ ÀûÇÕÇϸç, ´Ù¼öÀÇ ¿¬»êÀ» µ¿½Ã¿¡ ¼öÇàÇϹǷΠµ¥ÀÌÅÍ Áý¾àÀûÀÎ ¿§Áö AI ¿ëµµ¿¡ ¸Å¿ì È¿°úÀûÀÔ´Ï´Ù. µ¿½Ã¿¡ ¼ö¸¹Àº °è»êÀ» ¼öÇàÇÒ ¼ö ÀÖÀ¸¹Ç·Î À̹ÌÁö ¹× ºñµð¿À ó¸®, ÀÚ¿¬ ¾ð¾î ó¸®, ½Ç½Ã°£ ºÐ¼®°ú °°Àº µ¥ÀÌÅÍ Áý¾àÀûÀÎ ¿§Áö AI ¿ëµµ¿¡ ¸Å¿ì È¿°úÀûÀ̸ç, AI ±â¹Ý ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¸¦ À§ÇÑ ¿§Áö ÄÄÇ»ÆÃÀÇ Ã¤Åà Áõ°¡¿Í ÇÔ²² ¼ºÀåÇϰí ÀÖÀ¸¸ç, GPU ½ÃÀå Á¡À¯À² È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

µð¹ÙÀ̽º Àü¸Á

±â±âº°·Î º¸¸é ½ÃÀåÀº ¼ÒºñÀÚ ±â±â¿Í ±â¾÷¿ë ±â±â·Î ³ª´µ¸ç, 2023³â ¼ÒºñÀÚ ±â±â ºÎ¹®ÀÌ 79% ½ÃÀå Á¡À¯À²À» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§´Â ÁÖ·Î ½º¸¶Æ®Æù, ¿þ¾î·¯ºí, ½º¸¶Æ® ½ºÇÇÄ¿, ȨÀÚµ¿È­ ½Ã½ºÅÛ µî ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°¿¡ AI ±â¼úÀÌ Á¡Á¡ ´õ ¸¹ÀÌ ÅëÇյǰí Àֱ⠶§¹®À¸·Î ºÐ¼®µË´Ï´Ù. ¼ÒºñÀÚ ±â±â´Â À½¼º ÀνÄ, ¾ó±¼ ÀνÄ, ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¿Í °°Àº ÀÛ¾÷¿¡ AI ĨÀÌ ÇÊ¿äÇϸç, ½º¸¶Æ® ±â´ÉÀ» ÅëÇØ »ç¿ëÀÚ °æÇèÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. º¸´Ù ½º¸¶Æ®ÇÏ°í °³ÀÎÈ­µÈ µð¹ÙÀ̽º¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡¿Í AI ±â¹Ý ¿ëµµÀÇ Ã¤Åà Áõ°¡´Â ÀÌ ºÎ¹®¿¡¼­ ¿§Áö AI Ĩ¿¡ ´ëÇÑ ¼ö¿ä¸¦ Å©°Ô Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

Áö¿ª Àü¸Á

Áö¿ªº°·Î ½ÃÀåÀº ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«·Î ºÐ¼®µÇ¾ú½À´Ï´Ù. ºÏ¹Ì´Â 2023³â ½ÃÀå¿¡¼­ 35%ÀÇ ¸ÅÃâ Á¡À¯À²À» ±â·ÏÇß½À´Ï´Ù. ÀÌ´Â ÁÖ¿ä ±â¼ú ±â¾÷, ¿¬±¸ ±â°üÀÇ °­·ÂÇÑ Á¸Àç¿Í Áö¿ª³» AI ¹× ¿¡Áö ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ³ôÀº ¼öÁØÀÇ ÅõÀÚ¿¡ ±âÀÎÇÏ´Â °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. °¡ÀüÁ¦Ç°, ÀÚµ¿Â÷ ¿ëµµ, ±â¾÷ ±â±â¿¡¼­ ¿§Áö AI ĨÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀå ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºÏ¹ÌÀÇ Ã·´Ü ÀÎÇÁ¶ó, ¼÷·ÃµÈ ÀηÂ, AI ±â¼ú Çõ½ÅÀ¸·Î ÀÎÇØ ÀÌ Áö¿ªÀº ½ÃÀå¿¡¼­ ¿ìÀ§¸¦ Á¡Çϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¹üÀ§¿Í Á¶»ç ¹æ¹ý

Á¦2Àå ½ÃÀå °³°ü

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå °æÀï ºÐ¼® : ¼¼°è

Á¦5Àå ¼¼°èÀÇ ¿§Áö AI Ĩ ½ÃÀå : ±â´Éº°

Á¦6Àå ¼¼°èÀÇ ¿§Áö AI Ĩ ½ÃÀå : Ĩ¼Âº°

Á¦7Àå ¼¼°èÀÇ ¿§Áö AI Ĩ ½ÃÀå : µð¹ÙÀ̽ºº°

Á¦8Àå ¼¼°èÀÇ ¿§Áö AI Ĩ ½ÃÀå : Áö¿ªº°

Á¦9Àå ±â¾÷ °³¿ä

Á¦10Àå ¿§Áö AI Ĩ ½ÃÀåÀÇ ¼º°ø Çʼö Á¶°Ç

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Global Edge Artificial Intelligence Chips Market size is expected to reach $148.96 billion by 2031, rising at a market growth of 33.2% CAGR during the forecast period.

The rapid digital transformation in countries like China, Japan, and South Korea, coupled with the increasing demand for AI-powered applications in sectors such as manufacturing, automotive, and consumer electronics, has led to significant growth in the market. Therefore, the Asia Pacific region generated 28% revenue share in the market in 2023. The region's large population base, expanding middle class, and rising disposable incomes have also boosted demand for consumer devices equipped with edge AI chips. Moreover, the growing focus on smart cities and Industry 4.0 initiatives in Asia Pacific has supported the growth of edge AI chip applications, making it a key contributor to the market's overall revenue share.

The major strategies followed by the market participants are Product Launches as the key developmental strategy to keep pace with the changing demands of end users. For instance, In October, 2024, Advanced Micro Devices Inc. unveiled the MI325x AI chip, competing with Nvidia's Blackwell series in the AI hardware market. It offers improved processing power, energy efficiency, and compatibility with open-source frameworks. Built on a 3nm process, the MI325x features RDNA4 architecture for enhanced deep learning performance. In October, 2024, Qualcomm Incorporated unveiled the Snapdragon 8 Elite Mobile Platform, the world's fastest mobile system-on-a-chip, featuring the second-gen Qualcomm Oryon CPU, Adreno GPU, and Hexagon NPU. These innovations enable game-changing performance, multi-modal generative AI, and enhanced camera, gaming, and browsing experiences while prioritizing user privacy and power efficiency.

Based on the Analysis presented in the KBV Cardinal matrix; Apple, Inc. is the forerunners in the Edge Artificial Intelligence Chips Market. Companies such as Amazon Web Services, Inc., NVIDIA Corporation and IBM Corporation are some of the key innovators in Edge Artificial Intelligence Chips Market. In August, 2021, IBM Corporation unveiled its Telum Processor at Hot Chips, designed for real-time AI-driven fraud prevention in enterprise workloads. With on-chip AI acceleration, it enables faster, scalable fraud prevention across sectors like banking and insurance. Telum aims to move businesses from detecting fraud to preventing it, improving efficiency and reducing latency.

Market Growth Factors

In industrial automation, edge AI chips are deployed to optimize manufacturing processes, enhance predictive maintenance, and improve operational efficiency. By processing data locally on the factory floor, these chips enable real-time decision-making and immediate response to anomalies, minimizing downtime and reducing production costs. Integrating AI at the edge also facilitates the development of smart robots and autonomous systems that can perform complex tasks with high precision and adaptability. Therefore, the expansion of artificial intelligence worldwide drives the market's growth.

The expansion of 5G networks supports the development and deployment of new IoT applications across various industries. For example, edge AI chips can leverage 5G connectivity in healthcare to enable remote monitoring and telemedicine services, providing real-time health data analysis and improving patient outcomes. In manufacturing, 5G-enabled edge AI chips can facilitate real-time monitoring and predictive maintenance of machinery, reducing downtime and operational costs. As 5G networks expand globally, they will drive the adoption of edge AI chips, unlocking new opportunities and applications across multiple sectors. Hence, the growth of 5G networks and connectivity globally propels the market's growth.

Market Restraining Factors

The limited storage capabilities of edge AI chips can pose challenges for applications that generate and process large datasets. Storing and managing substantial amounts of data locally can be impractical, necessitating frequent data transfer to centralized storage systems. This can impact the efficiency of edge computing and reduce its effectiveness in scenarios where continuous data availability and real-time processing are critical. Addressing these limitations requires ongoing advancements in edge AI chip design and the development of innovative solutions to enhance their processing power and storage capacities. In conclusion, limited processing power and storage capabilities impede the market's growth.

Function Outlook

On the basis of function, the market is segmented into training and inference. The inference segment recorded 64% revenue share in the market in 2023. Inference refers to running pre-trained AI models on edge devices to make real-time decisions or predictions. The increasing demand for real-time, low-latency processing in applications such as autonomous vehicles, industrial automation, and smart cities has driven the dominance of the inference segment. Edge AI chips optimized for inference can process data locally, reducing the reliance on cloud computing and enabling faster, more efficient decision-making.

Chipset Outlook

Based on chipset, the market is divided into CPU, GPU, ASIC, and others. The GPU segment held 12% revenue share in the market in 2023. GPUs are particularly well-suited for parallel processing tasks, essential for AI and machine learning applications. Their ability to perform numerous calculations simultaneously makes them highly effective for data-intensive edge AI applications, such as image and video processing, natural language processing, and real-time analytics. The rising demand for AI-powered applications, coupled with the increasing adoption of edge computing for real-time data processing, has contributed to the growing share of GPUs in the market.

Device Outlook

By device, the market is divided into consumer devices and enterprise devices. In 2023, the consumer devices segment registered 79% revenue share in the market. This dominance is primarily driven by the growing integration of AI technologies into consumer electronics such as smartphones, wearables, smart speakers, and home automation systems. Consumer devices require AI chips for tasks like voice recognition, facial recognition, and real-time data processing, enhancing user experiences through smart capabilities. The increasing consumer demand for smarter, more personalized devices and the growing adoption of AI-powered applications have significantly fueled the demand for edge AI chips in this segment.

Regional Outlook

Region-wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The North America region witnessed 35% revenue share in the market in 2023. This can be attributed to the strong presence of major technology companies, research institutions, and high levels of investment in AI and edge computing within the region. The increasing adoption of edge AI chips in consumer electronics, automotive applications, and enterprise devices has driven significant market demand. Additionally, North America's advanced infrastructure, skilled workforce, and innovation in AI technologies have further contributed to the region's dominant position in the market.

Recent Strategies Deployed in the Market

List of Key Companies Profiled

Global Edge Artificial Intelligence Chips Market Report Segmentation

By Function

By Chipset

By Device

By Geography

Table of Contents

Chapter 1. Market Scope & Methodology

Chapter 2. Market at a Glance

Chapter 3. Market Overview

Chapter 4. Competition Analysis - Global

Chapter 5. Global Edge Artificial Intelligence Chips Market by Function

Chapter 6. Global Edge Artificial Intelligence Chips Market by Chipset

Chapter 7. Global Edge Artificial Intelligence Chips Market by Device

Chapter 8. Global Edge Artificial Intelligence Chips Market by Region

Chapter 9. Company Profiles

Chapter 10. Winning Imperatives of Edge Artificial Intelligence Chips Market

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â