¼¼°èÀÇ Àθ޸𸮠ºÐ¼® ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® : Àü°³º°, Á¶Á÷ ±Ô¸ðº°, »ê¾÷º°, ¿ëµµº°, Áö¿ªº° Àü¸Á ¹× ¿¹Ãø(2024-2031³â)
Global In-Memory Analytics Market Size, Share & Trends Analysis Report By Deployment (Cloud, and On-Premises), By Organization Size (Large Enterprises, and SMEs), By Vertical, By Application, By Regional Outlook and Forecast, 2024 - 2031
»óǰÄÚµå : 1599376
¸®¼­Ä¡»ç : KBV Research
¹ßÇàÀÏ : 2024³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 319 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,600 £Ü 5,057,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,320 £Ü 6,069,000
PDF (Multi User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ 10¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,048 £Ü 8,496,000
PDF (Corporate User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è Àθ޸𸮠ºÐ¼® ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ µ¿¾È 18.9%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2031³â±îÁö 96¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

KBV Cardinal matrix¿¡ Á¦½ÃµÈ ºÐ¼®¿¡ µû¸£¸é, Microsoft Corporation°ú Google LLC´Â Àθ޸𸮠ºÐ¼® ½ÃÀåÀÇ ¼±±¸ÀÚÀÔ´Ï´Ù. 2023³â 5¿ù Google Cloud´Â Informatica¿ÍÀÇ ÆÄÆ®³Ê½ÊÀ» °­È­ÇÏ¿© InformaticaÀÇ Áö´ÉÇü ¸¶½ºÅÍ µ¥ÀÌÅÍ °ü¸®(MDM) SaaS¸¦ Google Cloud¿¡ ÅëÇÕÇß½À´Ï´Ù. ÀÌ ¼Ö·ç¼ÇÀº ±â¾÷¿¡ ÅëÇյǰí Á¤È®ÇÑ µ¥ÀÌÅÍ È¯°æÀ» Á¦°øÇÏ¿© ÀÇ»ç°áÁ¤ ¹× ¿î¿µ È¿À²¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. Amazon Web Services, Inc., Oracle Corporation ¹× IBM Corporation°ú °°Àº ȸ»ç´Â Àθ޸𸮠ºÐ¼® ½ÃÀåÀÇ ÁÖ¿ä Çõ½Å ±â¾÷ Áß ÀϺÎÀÔ´Ï´Ù.

½ÃÀå ¼ºÀå¿äÀÎ

Àθ޸𸮠ºÐ¼®Àº ¼ö½Ê¾ï °³ÀÇ Ä¿³ØÆ¼µå µð¹ÙÀ̽º¿¡¼­ ´ë·®ÀÇ µ¥ÀÌÅÍ ½ºÆ®¸²À» »ý¼ºÇÏ´Â IoT ¾ÖÇø®ÄÉÀ̼ǿ¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Á¦Á¶¾÷ÀÇ °æ¿ì, ÀåºñÀÇ ¼º´ÉÀ» ¸ð´ÏÅ͸µÇÏ´Â »ê¾÷¿ë IoT ¼¾¼­¿¡¼­ ¸ÅÀÏ ¾à 1ÆäŸ¹ÙÀÌÆ®ÀÇ µ¥ÀÌÅͰ¡ »ý¼ºµË´Ï´Ù. Àθ޸𸮠ºÐ¼®À» ÅëÇØ Á¦Á¶¾÷ü´Â ÀÌ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®Çϰí ÀáÀçÀûÀÎ ¹®Á¦¸¦ ÆÄ¾ÇÇÏ¿© ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ´Ù¿îŸÀÓÀ» ¹æÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦³Ê·² ÀÏ·ºÆ®¸¯(General Electric)°ú °°Àº ±â¾÷µéÀº Àθ޸𸮠¼Ö·ç¼ÇÀ» Ȱ¿ëÇÏ¿© »ý»ê ¶óÀÎÀ» ÃÖÀûÈ­ÇÏ°í ¿î¿µ È¿À²¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. µû¶ó¼­ ÀÌ·¯ÇÑ °³¹ßÀº ½ÃÀå È®´ë¿¡ µµ¿òÀÌ µÉ °ÍÀÔ´Ï´Ù.

Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾îÀÇ ÅëÇÕÀÌ °³¼±µÇ¸é¼­ Àθ޸𸮠ºÐ¼® Ç÷§ÆûÀÇ ¼º´ÉÀÌ ÃÖÀûÈ­µÇ¾ú½À´Ï´Ù. ¿¹¸¦ µé¾î, º´·Ä ó¸® ¹× ºÐ»ê ÄÄÇ»ÆÃ ÇÁ·¹ÀÓ¿öÅ©ÀÇ ¹ßÀüÀ¸·Î º¹ÀâÇÑ ºÐ¼® ¿öÅ©·Îµå¸¦ Àü·Ê ¾ø´Â ¼Óµµ¿Í Á¤È®µµ·Î ó¸®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀ» ÅëÇØ Á¶Á÷Àº ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ Áï°¢ÀûÀ¸·Î ó¸®ÇÏ¿© º¸´Ù Çö¸íÇÑ ÀÇ»ç°áÁ¤À» ³»¸®°í Àü¹ÝÀûÀÎ ¿î¿µ È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ Çõ½ÅÀº ´Ù¾çÇÑ ¿µ¿ª¿¡¼­ Àθ޸𸮠ºÐ¼®ÀÇ ¹üÀ§¿Í ¿µÇâ·ÂÀ» ´õ¿í È®´ëÇÒ °ÍÀÔ´Ï´Ù.

½ÃÀå ¾ïÁ¦¿äÀÎ

·¹°Å½Ã ½Ã½ºÅÛÀº Á¾Á¾ °æÁ÷µÈ ¾ÆÅ°ÅØÃ³¿Í Á¦ÇÑµÈ À¯¿¬¼ºÀ¸·Î ÀÎÇØ Àθ޸𸮠ºÐ¼®ÀÇ ½Ç½Ã°£ ó¸® ±â´ÉÀ» ¼ö¿ëÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦´Â ±âÁ¸ ½Ã½ºÅÛ°ú »õ·Î¿î ½Ã½ºÅÛ °£ÀÇ °Å¸®¸¦ Á¼Èú ¼ö Àִ ǥÁØÈ­µÈ ÅëÇÕ ÇÁ·¹ÀÓ¿öÅ©°¡ Á¸ÀçÇÏÁö ¾Ê±â ¶§¹®¿¡ ´õ¿í ¾ÇÈ­µÇ¾î ÇÁ·ÎÁ§Æ® ÀÏÁ¤°ú ºñ¿ëÀ» ´õ¿í ¿¬Àå½ÃŰ´Â ¸ÂÃãÇü ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. ·¹°Å½Ã ½Ã½ºÅÛ¿¡ ÀÇÁ¸ÇÏ´Â Á¶Á÷ÀÇ °æ¿ì, Àθ޸𸮠ºÐ¼® ±¸ÇöÀº Á¾Á¾ ÀÎÇÁ¶ó Çö´ëÈ­¿Í ±×¿¡ µû¸¥ À§Çè ¹× ºñ¿ë ºÎ´ã »çÀÌÀÇ ÀýÃæ¾ÈÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ÀÌ·¯ÇÑ º¹À⼺Àº ·¹°Å½Ã ½Ã½ºÅÛÀÌ ³Î¸® ÆÛÁ® ÀÖ´Â »ê¾÷¿¡¼­ Àθ޸𸮠ºÐ¼®ÀÇ Ã¤Å÷üÀ» ¶³¾î¶ß¸®´Â ¿äÀÎÀÌ µË´Ï´Ù.

Àü°³ Àü¸Á

Àü°³¸¦ ±âÁØÀ¸·Î ½ÃÀåÀº Ŭ¶ó¿ìµå¿Í ¿ÂÇÁ·¹¹Ì½º·Î ³ª´¹´Ï´Ù. ¿ÂÇÁ·¹¹Ì½º ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 43%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ÀÇ·á, ±ÝÀ¶ ¹× Á¤ºÎ¿Í °°ÀÌ ±ÔÁ¦°¡ ¾ö°ÝÇÑ »ê¾÷¿¡¼­´Â µ¥ÀÌÅÍ ÁÖ±ÇÀ» º¸ÀåÇÏ°í ¾ö°ÝÇÑ ±ÔÁ¤ Áؼö ±âÁØÀ» ÃæÁ·Çϱâ À§ÇØ ¿Â ÇÁ·¹¹Ì½º ¼Ö·ç¼ÇÀ» ¼±ÅÃÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¸ÂÃãÇü ÀÎÇÁ¶ó, ÃÖ¼ÒÇÑÀÇ ´ë±â ½Ã°£, ºÐ¼® ¿öÅ©Ç÷ο쿡 ´ëÇÑ ¿ÏÀüÇÑ Á¦¾î°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ¿ÂÇÁ·¹¹Ì½º ±¸ÃàÀº °íÀ¯ÇÑ ¿î¿µ ¿ä±¸»çÇ×ÀÌ ÀÖ´Â ±â¾÷¿¡°Ô ¸Å·ÂÀûÀÔ´Ï´Ù.

Á¶Á÷ ±Ô¸ð Àü¸Á

Á¶Á÷ ±Ô¸ð¿¡ µû¶ó ½ÃÀåÀº ´ë±â¾÷°ú Áß¼Ò±â¾÷À¸·Î ºÐ·ùµË´Ï´Ù. ´ë±â¾÷ ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 72%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ´ë±â¾÷Àº ½ÇÇà °¡´ÉÇÑ ÀλçÀÌÆ®¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» °³¼±ÇÏ°í °æÀï ¿ìÀ§¸¦ À¯ÁöÇϱâ À§ÇØ ½Ç½Ã°£ ºÐ¼®À» ¿ì¼±½ÃÇϰí ÀÖ½À´Ï´Ù. °í¼Ó ÀÎÇÁ¶ó¿Í ¼÷·ÃµÈ Àü¹®°¡¿¡ ÅõÀÚÇÒ ¼ö Àֱ⠶§¹®¿¡ Àθ޸𸮠ºÐ¼®À» äÅÃÇÏ´Â °æÇâÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºñÁî´Ï½º ÇÁ·Î¼¼½º¸¦ ÃÖÀûÈ­Çϰí, ¼ÒºñÀÚ °æÇèÀ» °³¼±Çϰí, ¿î¿µÀ» °£¼ÒÈ­Çϱâ À§ÇÑ °í±Þ ºÐ¼®ÀÇ Çʿ伺ÀÌ ÀÌ ºÐ¾ßÀÇ Àθ޸𸮠ºÐ¼® äÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

»ê¾÷ Àü¸Á

»ê¾÷º°·Î´Â BFSI, ¼Ò¸Å ¹× E-Commerce, Á¦Á¶, Á¤ºÎ ¹× ¹æÀ§, ÇコÄɾî, Åë½Å ¹× ITES, ±âŸ·Î ½ÃÀåÀÌ ³ª´¹´Ï´Ù. ¼Ò¸Å ¹× E-Commerce ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 21%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. Àθ޸𸮠ºÐ¼®Àº ±â¾÷ÀÌ ±¸¸Å ÇൿÀ» ºÐ¼®Çϰí, Ãß¼¼¸¦ ÃßÀûÇϰí, °³ÀÎÈ­ µÈ ±ÇÀå »çÇ×À» Á¦°øÇÏ¿© °í°´ ¸¸Á·µµ¿Í Ãæ¼ºµµ¸¦ Çâ»ó½ÃŰ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¿Â¶óÀÎ ¼îÇÎÀÇ ±ÞÁõ, µ¿Àû °¡°Ý Ã¥Á¤ ¿ä±¸ »çÇ× ¹× ¿È´Ïä³Î ¼Ò¸Å Àü·«À¸·Î ÀÎÇØ ½Ç½Ã°£ ºÐ¼®Àº ÀÌ ºÐ¾ß¿¡¼­ Çʼö ºÒ°¡°áÇÑ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù. ¼Ò¸Å¾÷ü¿Í E-Commerce Ç÷§ÆûÀº °æÀïÀÌ Ä¡¿­ÇÑ ½ÃÀå¿¡¼­ ¹Îø¼º°ú ´ëÀÀ·ÂÀ» À¯ÁöÇϱâ À§ÇØ Àθ޸𸮠ºÐ¼®À» äÅÃÇϰí ÀÖ½À´Ï´Ù.

¿ëµµ Àü¸Á

¿ëµµ¿¡ µû¶ó ½ÃÀåÀº ¿î¿µ ÃÖÀûÈ­, ¸¶ÄÉÆÃ °ü¸®, ½Ç½Ã°£ ºÐ¼® ¹× ÀÇ»ç°áÁ¤, °í°´ °æÇè °ü¸®, µðÀÚÀÎ ¹× Çõ½Å, ±âŸ·Î ºÐ·ùµË´Ï´Ù. ¿î¿µ ÃÖÀûÈ­ ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 26%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ¾÷°è Àü¹ÝÀÇ Á¶Á÷Àº Àθ޸𸮠ºÐ¼®À» Ȱ¿ëÇÏ¿© ¿î¿µÀ» °£¼ÒÈ­ÇÏ°í º´¸ñÇö»óÀ» ÆÄ¾ÇÇÏ¸ç ¸®¼Ò½º »ç¿ë·üÀ» ÃÖÀûÈ­Çϰí, IoT ÀåÄ¡ ¹× ¿£ÅÍÇÁ¶óÀÌÁî ½Ã½ºÅÛ°ú °°Àº ´Ù¾çÇÑ ¼Ò½ºÀÇ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖ´Â ±â´ÉÀ» ÅëÇØ ±â¾÷Àº »çÀü Á¶Á¤À» ¼öÇàÇÏ°í ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Áö¿ª Àü¸Á

Áö¿ªº°·Î ½ÃÀåÀº ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«·Î ºÐ¼®µÇ¾ú½À´Ï´Ù. ºÏ¹Ì ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 38%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. Àθ޸𸮠ºÐ¼® ½ÃÀåÀº ÇöÀç ºÏ¹Ì ºÎ¹®ÀÌ ÁÖµµÇϰí ÀÖÀ¸¸ç, ÁÖ·Î ÇコÄɾî, BFSI, IT ¹× Åë½Å°ú °°Àº »ê¾÷¿¡¼­ °í±Þ ºÐ¼® ¼Ö·ç¼ÇÀÌ ³Î¸® äÅõǰí ÀÖ´Â °ÍÀÌ ¿øµ¿·ÂÀÔ´Ï´Ù. ÀÌ Áö¿ªÀÇ ¼º¼÷ÇÑ ±â¼ú ÀÎÇÁ¶ó¿Í µðÁöÅÐ Çõ½Å ¹× Çõ½Å¿¡ ´ëÇÑ ÁýÁßÀûÀÎ ³ë·ÂÀº Àθ޸𸮠ºÐ¼® µµÀÔ¿¡ ÀûÇÕÇÑ È¯°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¹üÀ§¿Í Á¶»ç ¹æ¹ý

Á¦2Àå ½ÃÀå ¿ä¶÷

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå °æÀï ºÐ¼® - ¼¼°è

Á¦5Àå ¼¼°èÀÇ Àθ޸𸮠ºÐ¼® ½ÃÀå : Àü°³º°

Á¦6Àå ¼¼°èÀÇ Àθ޸𸮠ºÐ¼® ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

Á¦7Àå ¼¼°èÀÇ Àθ޸𸮠ºÐ¼® ½ÃÀå : ¾÷°èº°

Á¦8Àå ¼¼°èÀÇ Àθ޸𸮠ºÐ¼® ½ÃÀå : ¿ëµµº°

Á¦9Àå ¼¼°èÀÇ Àθ޸𸮠ºÐ¼® ½ÃÀå : Áö¿ªº°

Á¦10Àå ±â¾÷ °³¿ä

Á¦11Àå Àθ޸𸮠ºÐ¼® ½ÃÀå ¼º°ø Çʼö Á¶°Ç

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Global In-Memory Analytics Market size is expected to reach $9.6 billion by 2031, rising at a market growth of 18.9% CAGR during the forecast period.

The use of in-memory analytics gives manufacturers the ability to improve the efficiency of their supply chains, anticipate the failure of their equipment, and optimize their manufacturing processes. This is accomplished by analyzing data collected in real-time from sensors and linked devices. Thus, the manufacturing segment procured 18% revenue share in the market in 2023. The increasing focus on reducing downtime, minimizing costs, and enhancing product quality drives the demand for advanced analytics solutions in manufacturing. Additionally, integrating in-memory analytics with IoT platforms further enhances its value proposition for manufacturers.

The major strategies followed by the market participants are Partnerships as the key developmental strategy to keep pace with the changing demands of end users. For instance, In June, 2024, IBM Corporation partnered with Telefonica Tech, a Spanish technology services provider, to deploy SHARK.X, an open, hybrid, and multi-cloud platform designed to enhance AI, data management, and analytics capabilities for businesses. Additionally, In May, 2023, SAP SE collaborated with Intel, an American technology company, to boost the scalability and security of SAP software in the cloud using 4th Gen Intel(R) Xeon(R) processors. This collaboration aims to improve processing speeds, reduce CPU power usage, and enhance scalability for SAP customers globally.

Based on the Analysis presented in the KBV Cardinal matrix; Microsoft Corporation and Google LLC are the forerunners in the In-Memory Analytics Market. In May, 2023, Google Cloud strengthened its partnership with Informatica, integrating Informatica's Intelligent Master Data Management (MDM) SaaS on Google Cloud. This solution offers businesses a unified, accurate data environment for enhanced decision-making and operational efficiency. Companies such as Amazon Web Services, Inc., Oracle Corporation, IBM Corporation are some of the key innovators in In-Memory Analytics Market.

Market Growth Factors

Iin-memory analytics supports the growing demand for IoT applications, which generate massive data streams from billions of connected devices. For instance, the manufacturing sector produces an estimated 1 petabyte of data daily from industrial IoT sensors monitoring equipment performance. In-memory analytics allows manufacturers to process this data in real-time, identifying potential issues and preventing costly downtime. Companies like General Electric leverage in-memory solutions to optimize production lines and enhance operational efficiency. Hence, these developments will aid in the expansion of the market.

Hardware and software integration improvements have optimized the performance of in-memory analytics platforms. For example, advancements in parallel processing and distributed computing frameworks have enabled the handling of complex analytical workloads with unprecedented speed and accuracy. These innovations allow organizations to process massive datasets instantaneously, driving smarter decision-making and enhancing overall operational efficiency. Thus, as technology evolves, these innovations will further expand the scope and impact of in-memory analytics across various domains.

Market Restraining Factors

legacy systems often have rigid architectures and limited flexibility, making it challenging to accommodate the real-time processing capabilities of in-memory analytics. This challenge can be further exacerbated by the absence of standardized integration frameworks for bridging the distance between old and new systems, necessitating customized solutions that further extend project timelines and costs. For organizations dependent on legacy systems, implementing in-memory analytics often becomes a trade-off between modernizing their infrastructure and bearing the associated risks and costs. Thus, this complexity is a deterrent, slowing the adoption rate of in-memory analytics in industries with prevalent legacy systems.

Deployment Outlook

Based on deployment, the market is bifurcated into cloud and on-premises. The on-premises segment procured 43% revenue share in the market in 2023. Strictly regulated industries, such as healthcare, finance, and government, frequently opt for on-premises solutions to guarantee data sovereignty and satisfy rigorous compliance standards. The need for tailored infrastructure, minimal latency, and complete control over analytics workflows makes on-premises deployments appealing to businesses with unique operational needs.

Organization Size Outlook

On the basis of organization size, the market is classified into large enterprises and SMEs. The large enterprises segment acquired 72% revenue share in the market in 2023. Large enterprises prioritize real-time analytics to gain actionable insights, improve decision-making, and maintain a competitive edge. They are more inclined to adopt in-memory analytics because of their capacity to invest in high-speed infrastructure and skilled professionals. Additionally, the adoption of in-memory analytics in this sector is further fueled by the necessity for advanced analytics to optimize business processes, enhance consumer experiences, and streamline operations.

Vertical Outlook

By vertical, the market is divided into BFSI, retail & e-commerce, manufacturing, government & defense, healthcare, telcos & ITES, and others. The retail & e-commerce segment garnered 21% revenue share in the market in 2023. In-memory analytics helps businesses analyze purchasing behaviors, track trends, and deliver personalized recommendations, improving customer satisfaction and loyalty. The surge in online shopping, dynamic pricing requirements, and omnichannel retail strategies have made real-time analytics indispensable for this sector. Retailers and e-commerce platforms are adopting in-memory analytics to stay agile and responsive in an intensely competitive market.

Application Outlook

Based on application, the market is segmented into operational optimization, marketing management, real-time analysis & decision making, customer experience management, design & innovation, and others. The operational optimization segment acquired 26% revenue share in the market in 2023. Organizations across industries leverage in-memory analytics to streamline operations, identify bottlenecks, and optimize resource utilization. The ability to process real-time data from various sources, such as IoT devices and enterprise systems, empowers companies to make proactive adjustments and minimize downtime.

Regional Outlook

Region-wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The North America segment garnered 38% revenue share in the market in 2023. The in-memory analytics market is currently led by the North America segment, which is primarily propelled by the widespread adoption of advanced analytics solutions in industries such as healthcare, BFSI, and IT & telecom. The region's mature technological infrastructure and a strong focus on digital transformation and innovation create a conducive environment for adopting in-memory analytics.

Recent Strategies Deployed in the Market

List of Key Companies Profiled

Global In-Memory Analytics Market Report Segmentation

By Deployment

By Organization Size

By Vertical

By Application

By Geography

Table of Contents

Chapter 1. Market Scope & Methodology

Chapter 2. Market at a Glance

Chapter 3. Market Overview

Chapter 4. Competition Analysis - Global

Chapter 5. Global In-Memory Analytics Market by Deployment

Chapter 6. Global In-Memory Analytics Market by Organization Size

Chapter 7. Global In-Memory Analytics Market by Vertical

Chapter 8. Global In-Memory Analytics Market by Application

Chapter 9. Global In-Memory Analytics Market by Region

Chapter 10. Company Profiles

Chapter 11. Winning Imperatives of In-Memory Analytics Market

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â