분산형 태양에너지 발전 시장 : 계통 연계 방식별, 모듈 재질별, 발판 방식별, 구성부품별, 최종사용자별, 용도별 - 세계 예측(2025-2032년)
Distributed Solar Power Generation Market by Grid Connection, Module Material, Mounting, Component, End User, Application - Global Forecast 2025-2032
상품코드 : 1870829
리서치사 : 360iResearch
발행일 : 2025년 09월
페이지 정보 : 영문 180 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,939 ₩ 5,866,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF 및 Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 4,249 ₩ 6,328,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF 및 Excel 보고서를 동일기업 내 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 5,759 ₩ 8,576,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF 및 Excel 보고서를 동일 기업 내 동일 지역 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 6,969 ₩ 10,378,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

분산형 태양에너지 발전 시장은 2032년까지 CAGR 12.03%로 3,736억 달러 규모로 성장할 것으로 예측되고 있습니다.

주요 시장 통계
기준연도 2024 1,505억 3,000만 달러
추정연도 2025 1,686억 9,000만 달러
예측연도 2032 3,736억 달러
CAGR(%) 12.03%

급격한 변화를 겪고 있는 이해관계자들을 위해 분산형 태양에너지 발전의 동향, 촉진요인, 전략적 의미에 대한 간략한 개요를 제공

분산형 태양에너지 발전은 보완적인 에너지 솔루션에서 강력한 탈탄소화 에너지 시스템의 중심축으로 빠르게 진화하고 있습니다. 이 보고서에서는 분산형 전력의 생산, 관리, 소비 방식을 재정의하는 기술, 정책, 금융, 소비자 행동에 영향을 미치는 광범위한 변화를 개괄적으로 설명합니다. 분산형 태양광을 단순한 지붕 설치 패널이나 독립형 어레이가 아닌, 축전 시스템, 디지털 제어층, 계통 서비스와 연계하여 구체적인 운영 및 경제적 이익을 가져다주는 통합 자산으로 포지셔닝합니다.

기술 혁신, 자금 조달의 진화, 정책 재조정으로 분산형 태양에너지 발전의 정세와 경쟁적 지위를 재구성하는 방식

분산형 태양에너지 발전의 환경은 경쟁력, 투자 판단, 도입 경로를 바꾸는 일련의 변혁적 변화로 재편되고 있습니다. 모듈 효율과 인버터 인텔리전스 기술의 발전으로 보다 유연한 시스템 설계가 가능해졌고, 배터리 화학 및 비용 구조의 개선으로 간헐적이었던 시스템이 안정화 용량과 시간 시프트 서비스를 제공할 수 있는 신뢰할 수 있는 자원으로 변모하고 있습니다. 한편, 분산형 에너지 자원을 통합하는 디지털 플랫폼은 통합화, 동적 디스패치, 그리드 서비스의 수익화를 가능하게 함으로써 새로운 비즈니스 모델 창출을 촉진하고 있습니다.

2025년 시행된 미국 관세 조치가 분산형 태양광 부문에 미치는 누적된 운영, 공급망 및 투자 영향 평가

2025년 발효된 관세 조치의 누적된 영향은 분산형 태양광 부문 전반공급망, 조달 전략, 투자 결정에 영향을 미치고 있습니다. 수입 관세 및 관련 무역 정책은 특정 모듈 카테고리 및 시스템 밸런스 부품의 비용 구조를 변경하여 많은 구매자와 통합업체가 공급업체와의 관계 및 조달 일정을 재검토하는 계기가 되었습니다. 이에 대응하여 여러 기업은 조달처 다변화, 현지 제조 파트너십 추구, 영향을 받는 부품에 대한 의존도를 줄이기 위한 시스템 설계 재구축에 박차를 가하고 있습니다.

그리드 연결, 모듈 재료, 마운팅, 부품, 최종사용자, 응용 경로 등 가치가 축적되는 영역을 명확히 하는 심층 세분화 중심 관점

분산형 태양에너지 발전의 다양한 기회를 파악하기 위해서는 세분화 중심의 접근이 필수적입니다. 기술 구성, 부품 선택, 장착 방식, 최종 용도에 따라 가치 축적 방법이 다르기 때문입니다. 계통연계를 기준으로 분류하면, 하이브리드, Off-grid, 온그리드 시스템은 각각 다른 설계, 제어, 상업적 프레임워크가 필요하며, 하이브리드 구조는 탄력성과 계통참여를 연결합니다. 모듈 재료에 따른 분류는 결정질 실리콘과 박막 기술의 선택으로 나뉩니다. 결정질 실리콘은 단결정과 다결정으로 세분화되며, 박막 옵션에는 비정질 실리콘, CdTe, CIGS가 포함됩니다. 각각 효율성, 온도 특성, 제조 복잡성에서 트레이드오프가 존재합니다. 설치 방식에 따라 설치 환경은 부유식, 지상 설치형, 지붕 설치형으로 구분됩니다. 지상 설치형은 다시 고정식과 추적식으로 구분되며, 토지이용과 발전량 특성에 영향을 미칩니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 분산형 태양에너지 발전 시장 : 계통 연계별

제9장 분산형 태양에너지 발전 시장 : 모듈 재료별

제10장 분산형 태양에너지 발전 시장 : 설치 방식별

제11장 분산형 태양에너지 발전 시장 : 컴포넌트별

제12장 분산형 태양에너지 발전 시장 : 최종사용자별

제13장 분산형 태양에너지 발전 시장 : 용도별

제14장 분산형 태양에너지 발전 시장 : 지역별

제15장 분산형 태양에너지 발전 시장 : 그룹별

제16장 분산형 태양에너지 발전 시장 : 국가별

제17장 경쟁 구도

KSA
영문 목차

영문목차

The Distributed Solar Power Generation Market is projected to grow by USD 373.60 billion at a CAGR of 12.03% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 150.53 billion
Estimated Year [2025] USD 168.69 billion
Forecast Year [2032] USD 373.60 billion
CAGR (%) 12.03%

A concise contextual overview of distributed solar power generation dynamics, drivers, and strategic implications for stakeholders navigating rapid change

Distributed solar power generation is rapidly evolving from a complementary energy solution into a central pillar of resilient, decarbonized energy systems. This introduction frames the pervasive shifts affecting technology, policy, finance, and consumer behavior that are collectively redefining how electricity is produced, managed, and consumed at the distributed level. It situates distributed solar not simply as rooftop panels and standalone arrays, but as integrated assets that interact with storage, digital control layers, and grid services to deliver tangible operational and economic benefits.

Furthermore, the introduction outlines the principal stakeholder perspectives that converge on distributed solar: asset owners seeking predictable returns, utilities pursuing grid stability and demand-side flexibility, regulators focused on reliability and equitable access, and communities prioritizing resilience and local job creation. By establishing this context, the subsequent analysis is oriented toward decision-makers who require clarity on how distributed solar fits into broader energy transition strategies and corporate decarbonization commitments. Transitioning from broad context to operational considerations, the report emphasizes system-level integration, regulatory alignment, and the interplay between decentralized generation and centralized grid planning as foundational themes.

How technological innovation, financing evolution, and policy realignment are reshaping the distributed solar generation landscape and competitive positioning

The distributed solar landscape is being reshaped by a constellation of transformative shifts that alter competitive dynamics, investment calculus, and deployment pathways. Technological advances in module efficiency and inverter intelligence are enabling more flexible system designs, while improvements in battery chemistry and cost structures are turning once-intermittent systems into reliable resources that can provide firming capacity and time-shifting services. Meanwhile, digital platforms that orchestrate distributed energy resources are catalyzing new business models by enabling aggregation, dynamic dispatch, and monetization of grid services.

Concurrently, financing innovation is lowering barriers for broader adoption. Pay-as-you-go architectures, green bonds, and performance-linked contracting are unlocking projects across diverse end users, from commercial and industrial rooftops to rural electrification initiatives. Policy realignment is another critical shift; regulators and system operators are increasingly accommodating distributed resources through revised interconnection standards, incentive structures that emphasize value stacking, and programs that target resilience and equitable access. Together, these transitions create a layered opportunity space where technology, finance, and policy interact, demanding that incumbents and newcomers alike adopt more integrative strategies to capture long-term value.

Assessing the cumulative operational, supply chain, and investment repercussions of United States tariff measures enacted in 2025 on the distributed solar sector

The cumulative effects of tariff measures enacted in 2025 have reverberated through supply chains, sourcing strategies, and investment decisions across the distributed solar sector. Import duties and related trade policies altered cost structures for certain categories of modules and balance-of-system components, prompting many buyers and integrators to reassess supplier relationships and procurement timelines. In response, several firms accelerated efforts to diversify sourcing, pursue local manufacturing partnerships, or re-engineer system designs to mitigate exposure to affected components.

As a result, procurement cycles lengthened in some cases while alternative logistics pathways emerged, including increased use of intermediary markets and regional hubs. These operational adjustments were accompanied by contractual renegotiations where developers sought more flexible supply terms and manufacturers emphasized vertical integration to insulate operations from trade volatility. From a capital perspective, the tariff environment elevated the importance of contractual clarity and supply chain resilience in investor due diligence, influencing how projects are underwritten and how counterparties allocate risk. Looking ahead, while policy measures may continue to evolve, the principal lesson is the strategic premium placed on supply diversification, nearshoring, and modular flexibility to preserve deployment agility under shifting trade regimes.

Deep segmentation-led perspectives revealing where value accrues across grid connection, module material, mounting, components, end-user, and application pathways

A segmentation-led approach is essential for decoding the heterogeneous opportunities within distributed solar, because value accrues differently across technical configurations, component choices, mounting approaches, and end-use applications. Based on Grid Connection, systems classified as Hybrid, Off-Grid, and On-Grid require distinct design, control, and commercial frameworks, with hybrid architectures bridging resilience and grid participation. Based on Module Material, choices split between Crystalline Silicon and Thin-Film technologies; crystalline silicon is further differentiated into Monocrystalline and Polycrystalline variants, while thin-film options include Amorphous Silicon, CdTe, and CIGS, each presenting trade-offs in efficiency, temperature performance, and manufacturing complexity. Based on Mounting, deployment environments are categorized as Floating, Ground-Mounted, and Rooftop, with ground-mounted installations further differentiated by Fixed and Tracking solutions that influence land use and yield profiles.

Based on Component, the ecosystem spans Balance Of System elements, Inverters, Modules, and Mounting Structures, and within inverters there is a split between Micro and String topologies that affects granularity of control and resilience. Based on End User, commercial and industrial customers present different load profiles and financing appetites compared to residential users, resulting in divergent channel strategies and value propositions. Based on Application, use cases such as Rural Electrification, Street Lighting, Telecom, and Water Pumping demonstrate how distributed technology adapts to specific service needs and non-grid contexts. Together, these segmentation dimensions inform product roadmaps, channel development, and regulatory engagement strategies, enabling suppliers and developers to prioritize where to concentrate product innovation and customer acquisition efforts.

Regional strategic intelligence highlighting demand drivers, infrastructure readiness, regulatory divergence, and deployment pathways across key global regions

Regional dynamics shape deployment rhythms and operational priorities, and understanding geographic nuance is critical to crafting resilient go-to-market approaches. The Americas exhibit a diverse spectrum of demand drivers, from resilience-focused microgrids in rural and island territories to commercial rooftop adoption in urban centers; policy incentives and state-level programs often dictate deployment velocity and technology preferences. Europe, Middle East & Africa display contrasting patterns where regulatory frameworks in parts of Europe emphasize integration and grid services, while Middle Eastern markets prioritize utility-scale and resilience landscaping, and African markets rely heavily on distributed solutions for electrification and essential services. Asia-Pacific is characterized by rapid technology adoption, strong manufacturing bases for module production, and an increasing emphasis on integrating storage and digital control to meet urbanization and energy security goals.

Transitioning between these regions requires adaptive strategies. For example, product offerings that prioritize ease of installation and low maintenance are more relevant in locales with constrained technical capacity, while regions with sophisticated grid codes may demand advanced inverter functionalities and grid-forming capabilities. Moreover, factors such as trade policy, local content requirements, and financing availability vary significantly across these regions, shaping how developers structure partnerships and deploy capital. Consequently, firms advancing in distributed solar must align technical specifications, commercial models, and policy engagement to the particular regulatory and deployment context present in each region.

Competitive and strategic intelligence on leading actors, technology adopters, integrators, and emergent players shaping distributed solar ecosystems

Competitive dynamics in distributed solar are being influenced by a mix of established manufacturers, agile technology start-ups, integrators, and vertically integrated energy firms. Market participants that combine product innovation with strong service delivery models and financing capabilities are gaining traction. Technology differentiation is emerging around high-efficiency modules, advanced inverters with grid services capability, and integrated battery-inverter solutions that simplify installation and reduce lifecycle risk. At the same time, a cohort of systems integrators and platform providers is consolidating value by offering end-to-end services that bundle procurement, financing, installation, and ongoing asset management.

New entrants are challenging incumbents by focusing on niche applications-such as telecom powering, agricultural irrigation, or remote electrification-where specialized product features and tailored commercial models create defensible positions. Strategic partnerships between module manufacturers, inverter suppliers, and local installers are becoming more common as a pragmatic path to accelerate market entry and comply with regional regulatory requirements. Importantly, intellectual property and manufacturing scale remain competitive advantages for established players, while speed-to-market, customer experience, and agility in business model innovation are key differentiators for emerging firms seeking rapid growth.

Clear, prioritized strategic actions for industry leaders to accelerate adoption, mitigate policy risk, and capture resilience-driven growth opportunities

Industry leaders must pursue a set of prioritized, actionable moves that strengthen resilience, accelerate adoption, and create differentiated value propositions. First, integrate supply-chain resilience into core strategy by diversifying suppliers, pursuing nearshoring, and building contractual flexibilities to absorb policy shocks without halting deployment. Second, invest in modular, interoperable system architectures that allow for incremental upgrades and service-based monetization, thereby extending asset lifecycles and enabling new revenue streams. Third, expand financing options through partnerships with capital providers and by tailoring payment solutions to the risk profiles of commercial, industrial, and residential customers.

In parallel, firms should deepen engagement with regulators and system operators to shape interconnection standards and compensation mechanisms that recognize the system value of distributed resources. Operationally, scale digital capabilities for remote monitoring, predictive maintenance, and aggregation to unlock participation in ancillary service markets. Finally, prioritize workforce development and local partnerships to ensure that installation, maintenance, and customer service capacities grow alongside deployments. Taken together, these actions will help organizations manage near-term disruptions while positioning them to benefit from structural shifts toward decentralized, resilient energy systems.

Methodological rigor and evidence synthesis approach used to compile the distributed solar analysis including data sources, validation, and triangulation protocols

The research synthesis underpinning this analysis was developed through a multi-modal methodology designed to ensure robustness and transparency. Primary inputs comprised structured interviews with industry professionals across development, manufacturing, finance, and regulation, complemented by technical reviews of product specifications and standards documentation. Secondary sources included peer-reviewed literature, regulatory filings, and public policy statements that provided context on system integration and interconnection approaches. Data validation was achieved through cross-checking vendor specifications, procurement announcements, and supply-chain disclosures to reconcile discrepancies and identify consistent trends.

Analytical protocols emphasized triangulation across qualitative and quantitative evidence, scenario-based sensitivity testing for supply-chain responses, and comparative regional analysis to surface contextual differences. Where assumptions were necessary, they were explicitly documented and stress-tested against alternative plausible scenarios to assess directional robustness. The methodology also prioritized transparency in limitations and potential data gaps, noting where evolving policy or emerging technologies could alter trajectories. This structured approach ensures that conclusions are supported by convergent evidence while remaining adaptable to new information as the distributed solar environment continues to evolve.

Synthesis of strategic implications and the operational roadmap advising executives on investment, partnerships, and technology choices in distributed solar

The conclusion synthesizes strategic implications derived from the analysis and distills an operational roadmap for executives. Distributed solar is maturing into a strategic asset class that offers resilience, decarbonization, and distributed capacity when paired with storage and intelligent controls. To capture this opportunity, organizations must balance short-term tactical responses-such as supply-chain diversification and revised procurement practices-with longer-term strategic investments in technology integration, digital orchestration, and financing innovation. The most successful actors will be those that align product design, channel strategies, and regulatory engagement to the specific technical and commercial needs of their target segments.

Moreover, the evolving policy and trade landscape underscores the importance of adaptive planning. Companies that institutionalize supply risk management, cultivate local partnerships, and maintain flexible deployment models will be better positioned to sustain project pipelines and investor confidence. Ultimately, distributed solar will continue to proliferate where deployment strategies are responsive to local conditions, technical architectures are interoperable, and commercial models are attuned to the cash-flow characteristics of the end user. This combination of operational discipline and strategic foresight will determine who captures value as industry transformation proceeds.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Distributed Solar Power Generation Market, by Grid Connection

9. Distributed Solar Power Generation Market, by Module Material

10. Distributed Solar Power Generation Market, by Mounting

11. Distributed Solar Power Generation Market, by Component

12. Distributed Solar Power Generation Market, by End User

13. Distributed Solar Power Generation Market, by Application

14. Distributed Solar Power Generation Market, by Region

15. Distributed Solar Power Generation Market, by Group

16. Distributed Solar Power Generation Market, by Country

17. Competitive Landscape

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기