항공기 파생형 가스 터빈 시장 : 용도별, 출력 범위별, 최종사용자별, 연료 유형별, 기술별, 설치 모드별 - 세계 예측(2025-2032년)
Aeroderivative Gas Turbine Market by Application, Power Output Range, End User, Fuel Type, Technology, Installation Mode - Global Forecast 2025-2032
상품코드 : 1870163
리서치사 : 360iResearch
발행일 : 2025년 09월
페이지 정보 : 영문 199 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,939 ₩ 5,854,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF 및 Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 4,249 ₩ 6,314,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF 및 Excel 보고서를 동일기업 내 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 5,759 ₩ 8,559,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF 및 Excel 보고서를 동일 기업 내 동일 지역 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 6,969 ₩ 10,357,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

항공기 파생형 가스 터빈 시장은 2032년까지 CAGR 5.44%로 114억 7,000만 달러 규모로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 75억 달러
추정 연도 2025년 79억 1,000만 달러
예측 연도 2032 114억 7,000만 달러
CAGR(%) 5.44%

항공기 파생 가스 터빈의 종합적인 전략적 도입 : 핵심 기술, 운영상의 이점 및 각 분야에서 급속한 보급을 촉진하는 시장 요인에 초점을 맞출 것입니다.

항공기 파생형 가스 터빈 분야는 고효율 발전과 해양, 석유 및 가스, 상업 및 산업 응용 분야의 신속한 도입 요구사항이 교차하는 중요한 위치를 차지하고 있습니다. 지난 10년간의 기술 개선을 통해 기동 시간 단축, 부분 부하 효율 향상, 기저부하에서 피크 대응, 열병합발전 애플리케이션에 이르기까지 다양한 운영 프로파일에 대응하는 모듈식 구조를 실현해 왔습니다. 동시에 업계 이해관계자들은 규제 상황과 공급 상황의 변화에 대응하고 있으며, 연료의 유연성, 배출가스 성능, 수명주기 내 유지보수성이 경쟁적 차별화를 결정하는 요소로 중요성이 커지고 있습니다.

탈탄소화, 디지털화, 공급망 탄력성 및 진화하는 운영 역할이 항공기 파생 가스 터빈의 도입 및 서비스 모델을 어떻게 재구성하고 있는가?

여러 가지 변혁적 변화가 각 분야에서 항공기 파생 가스 터빈의 사양 수립, 통합 및 지원 방법을 재정의하고 있습니다. 첫째, 탈탄소화 및 배출 감소에 대한 지속적인 강조는 효율적인 천연가스 운전, 혼합 연소 및 저탄소 연료에 빠르게 적응할 수 있는 터빈에 대한 수요를 가속화하고 있습니다. 제조업체와 통합업체들은 연료 유연성과 저NOx 배출을 우선시하는 설계로 이에 대응하고 있습니다. 다음으로, 디지털화 및 상태 모니터링 유지보수의 추진은 경쟁 필수 요건으로 성숙하고 있으며, 첨단 분석 기술, 원격 모니터링, 예지보전 프레임워크가 라이프사이클 서비스에 통합되어 다운타임과 총소유비용을 절감하고 있습니다.

2025년까지 항공기 파생 터빈의 조달 비용, 공급망 탄력성, 도입 전략에 대한 미국 무역 조치가 미치는 종합적인 영향 평가

2025년까지 미국 관세 정책의 누적된 영향은 항공기 파생 가스 터빈 시스템 및 부품의 비용 구조, 공급망 경로 설정, 조달 결정에 중대한 영향을 미치고 있습니다. 업스트림 원자재 및 완제품을 대상으로 한 관세 조치는 원자재 및 특정 수입 하위 조립품의 투입 비용을 상승시키고, 제조업체와 통합업체가 공급업체 구성을 재검토하고 중요한 제조 공정의 현지화를 가속화하도록 유도하고 있습니다. 그 결과, 조달팀은 대체 공급업체 인증 주기가 길어지고, 무역 정책의 변동 위험을 줄이기 위해 고재고 전략이 필요하게 되었습니다.

애플리케이션, 출력 범위, 최종사용자, 연료 옵션, 기술 아키텍처, 설치 모드를 조달 및 운영 선택과 연계하는 상세한 세분화 분석

상세한 세분화 분석을 통해 애플리케이션, 출력 범위, 최종사용자, 연료, 기술, 설치 모드에 따라 서로 다른 수요와 기술 요구 사항을 파악할 수 있습니다. 항공기 파생 유닛은 해상에서 벌크 화물선, 컨테이너선, 유조선, 해군 및 해양 지원선박의 견고한 플랫폼이 필요한 해양 환경, 석유화학 플랜트 및 정유공장의 다운스트림, 압축 스테이션 및 파이프라인의 미드스트림 역할, 해양 및 육상 시추의 업스트림 전개에 걸쳐 석유 및 가스 사업에 활용되고 있습니다.의 미드스티림 역할, 해양 및 육상 시추의 업스트림 개발 등 석유 및 가스 사업 전반에 걸쳐 활용되고 있습니다. 발전 요구사항은 기저부하 의무부터 피크 대응 업무까지 다양하며, 상업용 및 산업용 CHP 설비용으로 구성된 열병합발전 솔루션도 존재합니다.

기술 선정, 애프터마켓 서비스, 도입 전략을 형성하는 지역적 요구와 운영 실태(아메리카, 유럽, 중동 및 아프리카, 아시아태평양)

지역별 동향은 항공기 파생 터빈의 기술 도입, 서비스 네트워크 설계, 규제 준수에 강력한 영향을 미칩니다. 미국 대륙에서는 노후화된 항공기 교체, 가스 인프라 확장, 재생에너지와의 균형을 맞추기 위한 유연한 발전 수요로 인해 산업 및 유틸리티 부문 모두에서 모듈식, 빠른 기동성을 갖춘 항공기 파생 솔루션에 대한 관심이 높아지고 있습니다. 이 지역에서의 자본 배분은 점점 더 많은 라이프사이클 서비스 계약과 연료 소비를 최적화하고 계획되지 않은 정지를 줄이는 디지털 서비스 플랫폼에 초점을 맞추고 있습니다.

신속한 배송, 광범위한 애프터마켓 네트워크, 디지털 라이프사이클 서비스를 결합한 경쟁력 있는 기업 전략으로 장기적인 상업적 우위를 확보합니다.

주요 제조업체와 서비스 제공업체들은 경쟁 우위를 결정하는 여러 전략적 축에 따라 차별화를 시도하고 있습니다. 구체적으로 제품의 모듈성과 신속한 납품 능력, 애프터마켓 서비스 네트워크의 폭과 깊이, 성능 최적화를 위한 디지털 플랫폼, 공급망 전반에 걸친 전략적 파트너십 등을 꼽을 수 있습니다. 원격 모니터링, 예비 부품 물류, 현지 서비스 센터에 투자하는 기업은 장기 유지보수 계약에 우선적으로 접근하고 신속한 대응 시간을 확보하여 자산 소유자의 라이프사이클 비용을 절감할 수 있습니다. 또한, 터빈 OEM과 시스템 통합업체 간의 전략적 협력은 제어 시스템과 배출가스 제어의 통합을 가속화하고 최종사용자의 조달을 간소화하는 번들 솔루션을 실현하고 있습니다.

제조업체, 서비스 제공업체, 자산 소유자가 탄력성을 강화하고, 라이프사이클 비용을 절감하며, 진화하는 시장 기회를 활용할 수 있도록 지원하는 실행 가능한 전략적 이니셔티브

업계 리더들은 단기적인 기회를 포착하고 장기적인 전환을 위한 탄력성을 구축하기 위해 일련의 협력적 노력을 추진해야 합니다. 첫째, 저탄소 연료의 보급과 규제 강화에 따른 제품 경쟁력을 확보하기 위해 연료 유연성과 배출가스 제어 능력에 대한 투자를 우선시해야 합니다. 모듈식 설계 원칙에 따라 엔지니어링 로드맵을 수립하고, 현장 업그레이드를 간소화하며, 공급망 제약 시 부품 교체가 용이하도록 합니다. 다음으로, 가동시간의 측정 가능한 개선과 예지보전 성과를 가져오는 디지털 서비스 제공을 확대하고, 성과지표와 연계된 파일럿 프로그램을 통해 가치를 입증하고 고객 도입을 가속화해야 합니다.

1차 인터뷰, 2차 기술 분석, 공급망 매핑, 시나리오 스트레스 테스트를 결합한 강력한 혼합 연구 기법을 통해 실용적인 인사이트를 얻을 수 있습니다.

이 조사 방법은 여러 증거를 통합하여 엄격하고 재현 가능한 결과를 도출합니다. 1차 조사에서는 OEM 엔지니어링 책임자, 애프터마켓 관리자, 유틸리티 및 산업 자산 소유자, 선박 운영자, 독립 서비스 제공업체를 대상으로 구조화된 인터뷰를 실시하여 기술 성능, 조달 우선순위, 서비스 기대치에 대한 일선 현장의 관점을 수집했습니다. 2차 조사에서는 규제 프레임워크, 기술 표준, 업계 백서, 공급업체 자료를 체계적으로 검토하고, 인터뷰 결과의 맥락화 및 부품 및 하위 시스템 의존 관계 매핑을 수행했습니다.

기술적, 규제적, 상업적 요인을 통합한 간결한 결론으로, 항공기 파생 가스 터빈 이해관계자들이 향후 집중해야 할 전략적 우선순위를 제시합니다.

요약하면, 항공기 파생형 가스 터빈은 선박, 석유 및 가스, 분산형 에너지 시장에서 빠른 시동 능력, 높은 출력 밀도, 연료 유연성을 필요로 하는 애플리케이션에 여전히 중요한 솔루션입니다. 배출가스 제어, 디지털 모니터링, 모듈화 설계의 기술 발전은 운영 유연성과 수명주기 경제성의 균형을 맞춰야 하는 소유주에게 가치 제안을 강화하고 있습니다. 동시에 무역 정책의 변동성과 지역별 규제 차이로 인해 공급업체와 구매자는 리스크를 줄이고 도입 일정을 유지하기 위해 적응형 조달 및 서비스 전략을 채택해야 합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 항공기 파생형 가스 터빈 시장 : 용도별

제9장 항공기 파생형 가스 터빈 시장 : 출력 범위별

제10장 항공기 파생형 가스 터빈 시장 : 최종사용자별

제11장 항공기 파생형 가스 터빈 시장 : 연료 종류별

제12장 항공기 파생형 가스 터빈 시장 : 기술별

제13장 항공기 파생형 가스 터빈 시장 : 설치 방식별

제14장 항공기 파생형 가스 터빈 시장 : 지역별

제15장 항공기 파생형 가스 터빈 시장 : 그룹별

제16장 항공기 파생형 가스 터빈 시장 : 국가별

제17장 경쟁 구도

KSM
영문 목차

영문목차

The Aeroderivative Gas Turbine Market is projected to grow by USD 11.47 billion at a CAGR of 5.44% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 7.50 billion
Estimated Year [2025] USD 7.91 billion
Forecast Year [2032] USD 11.47 billion
CAGR (%) 5.44%

Comprehensive strategic introduction to aeroderivative gas turbines highlighting core technologies, operational advantages, and market forces driving rapid adoption across sectors

The aeroderivative gas turbine sector occupies a pivotal position at the intersection of high-efficiency power generation and rapid deployment requirements across maritime, oil and gas, and commercial-industrial end uses. Technological refinements over the past decade have reduced start-up times, improved part-load efficiency, and enabled modular architectures that match operational profiles ranging from baseload through peaking and combined heat and power applications. Concurrently, industry stakeholders are navigating a shifting regulatory and supply landscape where fuel flexibility, emissions performance, and lifecycle serviceability increasingly determine competitive differentiation.

This introduction frames the critical drivers shaping investment and operational decisions for end users, original equipment manufacturers, and service providers. By examining the interplay among application-specific requirements, output range considerations, end-user procurement patterns, fuel choices, technology configurations, and installation modalities, it establishes the baseline for deeper analysis. As a result, readers will gain a clear orientation to the structural dynamics that inform procurement strategies, retrofit opportunities, and aftermarket service models.

How decarbonization, digitalization, supply chain resilience, and evolving operational roles are reshaping aeroderivative gas turbine deployment and service models

Several transformative shifts are redefining how aeroderivative gas turbines are specified, integrated, and supported across sectors. First, the continued emphasis on decarbonization and emissions reduction has accelerated demand for turbines capable of efficient natural gas operation, co-firing, and rapid adaptation to low-carbon fuels; manufacturers and integrators are responding with designs that prioritize fuel flexibility and lower NOx footprints. Second, the push for digitalization and condition-based maintenance has matured into a competitive imperative, with advanced analytics, remote monitoring, and predictive maintenance frameworks increasingly embedded into lifecycle service offerings to reduce downtime and total cost of ownership.

Moreover, evolving operational models-such as increased reliance on peaking and fast-ramp capabilities to balance variable renewables-have elevated the value proposition of aeroderivative assets for grid stability and ancillary services. Supply chain resilience has also become a core concern: strategic sourcing of critical components, diversification of manufacturing nodes, and vertically integrated service networks are now central to managing lead times and parts obsolescence. Finally, regulatory developments and regional policy incentives are shaping the adoption curve, compelling suppliers and end users to align product roadmaps with localized emissions standards and incentive programs, thereby altering deployment geographies and procurement priorities.

Assessing the aggregated effects of U.S. trade measures on procurement cost, supply chain resilience, and deployment strategies for aeroderivative turbines through 2025

The cumulative impact of U.S. tariff policies through 2025 has materially influenced cost structures, supply chain routing, and sourcing decisions for aeroderivative gas turbine systems and components. Tariff measures that target upstream commodities and finished goods have elevated input costs for raw materials and select imported subassemblies, inducing manufacturers and integrators to reassess supplier footprints and to accelerate localization of critical fabrication. As a consequence, procurement teams face longer qualification cycles for alternate suppliers and higher inventory strategies to mitigate exposure to trade policy volatility.

Beyond direct price effects, tariffs have prompted commercial and contractual adaptations: suppliers increasingly include clauses that allocate trade-related cost escalations between manufacturers and buyers, and modularity in design is being prioritized to allow substitution of regionally sourced components without extensive reengineering. The policy environment has also affected capital deployment decisions, with infrastructure owners placing greater emphasis on lifecycle cost transparency and supply chain traceability when evaluating turnkey solutions. While tariffs have introduced friction, they have also catalyzed strategic responses-such as nearshoring, expanded regional service centers, and strengthened long-term supply agreements-that aim to preserve lead-time certainty and operational continuity for mission-critical aeroderivative applications.

Deep segmentation analysis connecting applications, output ranges, end users, fuel options, technology architectures, and installation modes to procurement and operational choices

A granular segmentation lens reveals differentiated demand and technical requirements across application, output range, end-user, fuel, technology, and installation mode. By application, aeroderivative units serve marine environments-where commercial shipping deploys systems on bulk carriers, container ships, and tankers while naval and offshore support vessels demand ruggedized platforms-alongside oil and gas operations that span downstream uses in petrochemical plants and refineries, midstream roles in compression stations and pipelines, and upstream deployments across offshore and onshore drilling. Power generation requirements vary from baseload obligations to peaking duties, with combined heat and power solutions configured for commercial and industrial CHP installations.

Power output ranges further stratify procurement criteria: units rated below 20 MW favor rapid start profiles and modularity for distributed installations, mid-range 20-40 MW machines balance efficiency and footprint for industrial and utility applications, and options above 40 MW cater to larger baseload or centralized peaking installations. End users present distinct purchasing dynamics: independent power producers prioritize dispatch flexibility and revenue stacking, industrial operators emphasize reliability and integration with heat loads, and utilities require grid compliance and long service intervals. Fuel considerations influence design and operations, with natural gas leading on efficiency and emissions, dual-fuel platforms offering operational resilience, and distillate fuel oil retained for remote or emergency applications. Technology choices between single-shaft and two-shaft configurations affect maintenance regimes and plant integration, while installation mode-land versus offshore-imposes constraints on weight, footprint, environmental protection, and modular transportability. Collectively, these segmentation vectors determine value propositions, aftermarket service needs, and retrofit opportunities across the aeroderivative landscape.

Regional imperatives and operational realities across the Americas, Europe Middle East & Africa, and Asia-Pacific that shape technology selection, aftermarket services, and deployment strategies

Regional dynamics exert powerful influence over technology adoption, service network design, and regulatory compliance for aeroderivative turbines. In the Americas, aging fleet renewal, expanding gas infrastructure, and flexible generation needs to balance renewables have elevated interest in modular, fast-start aeroderivative solutions across both industrial and utility segments. Capital allocation in this region increasingly targets lifecycle service agreements and digital service platforms that reduce unplanned outages and optimize fuel consumption.

Across Europe, Middle East & Africa, the landscape is more heterogeneous: stringent emissions regulations in parts of Europe drive demand for low-NOx and high-efficiency configurations and for combined heat and power solutions in industrial clusters, while Middle Eastern markets emphasize robustness and fuel flexibility amid large oil and gas operations. Africa presents opportunities for decentralized power and industrial uses but also requires tailored service models to address infrastructure constraints. In Asia-Pacific, rapid industrialization, maritime activity, and grid modernization create demand for both high-output and distributed aeroderivative assets; service networks and local manufacturing partnerships are critical to meeting lead-time and localization expectations in this region. Each geography requires a distinct commercial approach informed by policy incentives, fuel availability, and operational reliability requirements.

Competitive company strategies that combine rapid delivery, extensive aftermarket networks, and digital lifecycle services to secure long-term commercial advantage

Leading manufacturers and service providers have differentiated along several strategic axes that determine competitive advantage: product modularity and rapid delivery capability; breadth and depth of aftermarket service networks; digital platforms for performance optimization; and strategic partnerships across the supply chain. Firms that invest in remote monitoring, spare parts logistics, and local service centers gain preferential access to long-term maintenance contracts and faster response times, which in turn reduce lifecycle costs for asset owners. Additionally, strategic collaborations between turbine OEMs and systems integrators have accelerated the integration of control systems and emissions controls, enabling bundled solutions that simplify procurement for end users.

Corporate strategies also reflect capital intensity and risk allocation; companies that offer financing, availability guarantees, and performance-based contracts strengthen customer relationships and open new revenue streams. Furthermore, a subset of players focuses on retrofit kits and conversion packages that enable legacy aeroderivative units to meet current emissions or fuel-flexibility requirements, thereby extending asset life and creating aftermarket revenue. Overall, the competitive landscape rewards firms that combine engineering excellence with agile supply chains, deep service footprints, and data-driven lifecycle support.

Actionable strategic initiatives for manufacturers, service providers, and asset owners to enhance resilience, lower lifecycle costs, and capitalize on evolving market opportunities

Industry leaders should pursue a coordinated set of actions to capture near-term opportunities while building resilience for longer-term transitions. First, prioritize investment in fuel flexibility and emissions control capabilities to ensure product relevance as low-carbon fuels and regulatory stringency increase. Align engineering roadmaps with modular design principles to simplify field upgrades and to facilitate component substitutions when supply chains are constrained. Second, expand digital service offerings that deliver measurable uptime improvements and predictive maintenance outcomes; demonstrate value through pilot programs tied to performance metrics to accelerate customer adoption.

Third, strengthen regional service footprints by establishing local spare parts inventories and certified field teams in key geographies, and supplement these physical capabilities with partnerships that enhance logistics and repair turnarounds. Fourth, revise commercial terms to share risks with buyers through outcome-linked contracts, availability guarantees, and long-term spare parts agreements; these mechanisms improve predictability for both supplier and buyer. Finally, incorporate trade-policy scenario planning into procurement and sourcing strategies, including contingency pathways for component qualification and nearshoring options, to preserve project timelines and cost transparency under shifting tariff regimes. By taking these steps, industry leaders can improve competitiveness while reducing exposure to operational and policy volatility.

Robust mixed-methods research approach combining primary interviews, secondary technical analysis, supply chain mapping, and scenario stress testing for actionable insights

The research methodology integrates multiple evidence streams to produce rigorous, reproducible insights. Primary research comprised structured interviews with OEM engineering leads, aftermarket managers, utility and industrial asset owners, ship operators, and independent service providers to capture firsthand perspectives on technology performance, procurement priorities, and service expectations. Secondary research involved systematic review of regulatory frameworks, technical standards, industry white papers, and supplier literature to contextualize interview findings and to map component and subsystem dependencies.

Analytical techniques included supply chain mapping to identify single points of failure, comparative capability benchmarking across technology configurations, and scenario analysis to evaluate responses to tariff shocks and fuel availability shifts. Data triangulation ensured consistency across sources, and sensitivity checks tested the robustness of qualitative conclusions. Wherever applicable, the methodology emphasized transparency in assumptions, clear documentation of interview sampling and respondent roles, and an iterative validation process with domain experts to refine findings and ensure practical relevance for decision makers.

Concise conclusion that synthesizes technological, regulatory, and commercial drivers to highlight strategic priorities for aeroderivative stakeholders going forward

In summary, aeroderivative gas turbines remain a vital solution for applications that require rapid start capability, high power density, and fuel flexibility across marine, oil and gas, and distributed energy markets. Technological advances in emissions control, digital monitoring, and modular engineering are enhancing the value proposition for owners that must balance operational flexibility with lifecycle economics. At the same time, trade policy volatility and regional regulatory divergence require suppliers and buyers to adopt adaptive procurement and servicing strategies to mitigate risk and preserve deployment timelines.

Looking ahead, the interplay of fuel transitions, grid modernization, and maritime decarbonization will create differentiated pathways for aeroderivative applications; organizations that proactively align product roadmaps, service networks, and commercial models with these structural shifts will secure long-term competitive advantage. Ultimately, strategic investments in fuel flexibility, digital lifecycle services, and regional service capacity will determine which firms lead in delivering reliable, compliant, and cost-effective aeroderivative solutions.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Aeroderivative Gas Turbine Market, by Application

9. Aeroderivative Gas Turbine Market, by Power Output Range

10. Aeroderivative Gas Turbine Market, by End User

11. Aeroderivative Gas Turbine Market, by Fuel Type

12. Aeroderivative Gas Turbine Market, by Technology

13. Aeroderivative Gas Turbine Market, by Installation Mode

14. Aeroderivative Gas Turbine Market, by Region

15. Aeroderivative Gas Turbine Market, by Group

16. Aeroderivative Gas Turbine Market, by Country

17. Competitive Landscape

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기