¼¼°èÀÇ º¹ÇÕ »çÀÌŬ ¿¡¾î·Î´õ¸®¹öƼºê(Aeroderivative) °¡½º Åͺó ½ÃÀå
Combined Cycle Aeroderivative Gas Turbines
»óǰÄÚµå : 1779818
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 292 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,180,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,541,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ º¹ÇÕ »çÀÌŬ ¿¡¾î·Î´õ¸®¹öƼºê °¡½º Åͺó ½ÃÀåÀº 2030³â±îÁö 48¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 36¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â º¹ÇÕ »çÀÌŬ ¿¡¾î·Î´õ¸®¹öƼºê °¡½º ÅÍºó ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 4.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 48¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ 50kW´Â 5.6%ÀÇ CAGRÀ» ±â·ÏÇØ, ºÐ¼® ±â°£ ¸¶Áö¸·±îÁö 23¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù. 50kW-500kW ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 4.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 9¾ï 8,150¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 9.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ º¹ÇÕ »çÀÌŬ ¿¡¾î·Î´õ¸®¹öƼºê °¡½º Åͺó ½ÃÀåÀº 2024³â¿¡ 9¾ï 8,150¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 10¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 9.0%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 2.0%¿Í 3.9%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.9%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ º¹ÇÕ »çÀÌŬ ¿¡¾î·Î´õ¸®¹öƼºê °¡½º Åͺó ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

º¹ÇÕ »çÀÌŬ ¿¡¾î·Î´õ¸®¹öƼºê °¡½º ÅͺóÀ̶õ?

ÄÞ¹ÙÀÎµå »çÀÌŬ ¿¡¾î·Î´õ¸®¹öƼºê °¡½º ÅͺóÀº Ç×°ø¿ë °¡½º Åͺó°ú Áõ±â ÅͺóÀ» º¹ÇÕ »çÀÌŬ ±¸¼ºÀ¸·Î ÅëÇÕÇÑ °íÈ¿À² ¹ßÀü ½Ã½ºÅÛÀÔ´Ï´Ù. ÀÌ ÅͺóÀº ¿ø·¡ Ç×°ø±âÀÇ Á¦Æ® ¿£Áø¿¡¼­ ÆÄ»ýµÈ °ÍÀ¸·Î, ºü¸¥ ½Ãµ¿, ³ôÀº ¿îÀü À¯¿¬¼º, ¿ì¼öÇÑ ¿¬·á È¿À²À» ½ÇÇöÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ÄÞ¹ÙÀÎµå »çÀÌŬÀº Ç×°ø±â Àü¿ë °¡½º ÅͺóÀÌ Àü·ÂÀ» »ý»êÇÏ´Â ÇÑÆí, ±× Æó¿­À» ȸ¼öÇÏ¿© Áõ±â¸¦ ¹ß»ý½Ã۰í, ±× Áõ±â°¡ 2Â÷ Áõ±â ÅͺóÀ» ±¸µ¿ÇÏ¿© Ãß°¡ Àü·ÂÀ» »ý»êÇÏ´Â ¹æ½ÄÀÔ´Ï´Ù. ÀÌ ÀÌÁß ¿¡³ÊÁö ¹ßÀü ÇÁ·Î¼¼½º´Â Àüü È¿À²À» Å©°Ô Çâ»ó½ÃÄÑ Á¾Á¾ 60% ÀÌ»óÀÇ ¼öÁØ¿¡ µµ´ÞÇÏ¿© Çö´ë ¹ßÀü¿¡¼­ °¡Àå È¿°úÀûÀÎ ¼Ö·ç¼Ç Áß Çϳª°¡µÇ¾ú½À´Ï´Ù.

¿¡¾î·Î´õ¸®¹öƼºê °¡½º ÅͺóÀº °¡º±°í ÄÞÆÑÆ®ÇÏ¸ç ½Å¼ÓÇÑ ºÎÇÏ Á¶Á¤ÀÌ °¡´ÉÇϱ⠶§¹®¿¡ °èÅë ¾ÈÁ¤È­, ºÐ»êÇü ¿¡³ÊÁö »ý»ê, Àç»ý¿¡³ÊÁö¿øÀÇ ¹é¾÷ Àü¿ø µî ºü¸¥ ÀÀ´ä ½Ã°£À» ÇÊ¿ä·Î ÇÏ´Â ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, õ¿¬°¡½º, ¾×ȭõ¿¬°¡½º(LNG), ¼ö¼Ò È¥ÇÕ°¡½º µî ´Ù¾çÇÑ ¿¬·á·Î ¿îÀüÇÒ ¼ö ÀÖ¾î Àúź¼Ò ¿¡³ÊÁö ¼Ö·ç¼ÇÀ¸·ÎÀÇ Àüȯ¿¡ ÀÖ¾î ±× ¸Å·ÂÀº ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ½ÃÀåÀÌ Áö¼Ó °¡´ÉÇϰí À¯¿¬ÇÑ ¹ßÀüÀ¸·Î ÀüȯÇÏ´Â °¡¿îµ¥, º¹ÇÕ »çÀÌŬ ¿¡¾î·Î´õ¸®¹öƼºê °¡½º ÅͺóÀº È¿À²¼º Çâ»ó, ¹èÃâ°¡½º °¨¼Ò, °èÅë º¹¿ø·ÂÀ» Áö¿øÇÏ´Â Áß¿äÇÑ ±â¼ú·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº ¾î¶»°Ô °áÇÕ »çÀÌŬ ¿¡¾î·Î´õ¸®¹öƼºê °¡½º ÅͺóÀÇ ¼º´ÉÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

ÃÖ±Ù Ç×°ø ÀüȯÇü °¡½º Åͺó ±â¼úÀÇ ¹ßÀüÀ¸·Î È¿À², ½Å·Ú¼º ¹× ¿î¿µ À¯¿¬¼ºÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. ¼¼¶ó¹Í ±â¹Ý º¹ÇÕÀç·á(CMC) ¹× °í¿Â Çձݰú °°Àº ÷´Ü Àç·áÀÇ ÅëÇÕÀ¸·Î ÅͺóÀÇ ³»±¸¼º°ú ¿­È¿À²ÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ» ÅëÇØ Ç×°ø¿ë ÅͺóÀº ´õ ³ôÀº ¿Âµµ¿¡¼­ ÀÛµ¿ÇÒ ¼ö ÀÖ°í, Àü¹ÝÀûÀÎ ¼º´ÉÀÌ Çâ»óµÇ¸ç, À¯Áöº¸¼ö ºñ¿ëÀÌ Àý°¨µË´Ï´Ù.

¶ÇÇÑ, µðÁöÅÐÈ­¿Í ÀΰøÁö´É(AI)Àº ÅͺóÀÇ ¿îÀü ¹× À¯Áöº¸¼ö ÃÖÀûÈ­¿¡ Å« ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. IoT ¼¾¼­¿Í ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®ÀÌ °¡´ÉÇÑ ¿¹Áöº¸Àü ½Ã½ºÅÛÀº ÀáÀçÀû °íÀåÀ» Á¶±â¿¡ ¹ß°ßÇÏ¿© ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­ÇÏ°í ¿î¿µ È¿À²À» ±Ø´ëÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °Ç½Ä Àú°øÇØ(DLE) ¹× ½À½Ä ¾ÐÃà ±â¼úÀ» äÅÃÇÏ¿© ¿¬¼Ò È¿À²À» ³ôÀ̰í Áú¼Ò»êÈ­¹°(NOx)°ú ÀÌ»êȭź¼Ò(CO2) ¹èÃâ·®À» ÁÙ¿´½À´Ï´Ù. ¶ÇÇÑ, ¼ö¼Ò¿Í ȣȯµÇ´Â Ç×°ø¿ë Àüȯ ÅͺóÀÇ °³¹ßÀº º¸´Ù ģȯ°æÀûÀÎ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ¸·Î ½ÃÀå ÀüȯÀ» °¡¼ÓÈ­Çϰí ÀÖÀ¸¸ç, ¿©·¯ Á¦Á¶¾÷üµéÀÌ Áö¼Ó°¡´É¼ºÀ» ³ôÀ̰í È­¼® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̱â À§ÇØ ¼ö¼Ò ¿¬·á È¥ÇÕÀ» ½ÃÇèÇϰí ÀÖ½À´Ï´Ù.

º¹ÇÕ »çÀÌŬ ¿¡¾î·Î´õ¸®¹öƼºê °¡½º Åͺó ¼ö¿ä¸¦ ÁÖµµÇÏ´Â »ê¾÷°ú ¿ëµµ´Â?

¹ßÀü ºÎ¹®Àº º¹ÇÕ »çÀÌŬ ¿¡¾î·Î´õ¸®¹öƼºê °¡½º ÅͺóÀÇ °¡Àå Å« ¼ö¿äóÀ̸ç, Àü·Â ȸ»ç ¹× µ¶¸³ ¹ßÀü »ç¾÷ÀÚ(IPP)´Â À¯¿¬ÇÏ°í ºÐ»êµÈ ¿¡³ÊÁö »ý»êÀ» À§ÇØ º¹ÇÕ »çÀÌŬ ¿¡¾î·Î´õ¸®¹öƼºê °¡½º Åͺó ½Ã½ºÅÛÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. dz·Â, ž籤 µî º¯µ¿¼ºÀÌ Å« Àç»ý¿¡³ÊÁö°¡ Àü·Â¸Á¿¡ µµÀԵʿ¡ µû¶ó Ç×°ø¿ë °¡½ºÅͺóÀº Àç»ý¿¡³ÊÁö Ãâ·Â º¯µ¿ ½Ã Àü·Â¸ÁÀÇ ¾ÈÁ¤¼ºÀ» º¸ÀåÇÏ°í °í¼Ó ±âµ¿ ¹é¾÷ Àü·ÂÀ» °ø±ÞÇϱâ À§ÇØ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾ÆÀÏ·£µå ¸ðµå¿¡¼­ ÀÛµ¿ÀÌ °¡´ÉÇϱ⠶§¹®¿¡ ¸¶ÀÌÅ©·Î±×¸®µå ¿ëµµ¿¡ ÇʼöÀûÀ̸ç, ¿ø°ÝÁö, »ê¾÷Áö, ±º»ç±âÁöÀÇ ¿¡³ÊÁö ¾Èº¸¸¦ Áö¿øÇÕ´Ï´Ù.

¼®À¯ ¹× °¡½º »ê¾÷µµ Ç×°ø¿ë °¡½º ÅͺóÀÇ ÁÖ¿ä »ç¿ëÀÚÀ̸ç, ƯÈ÷ ÇØ»ó Ç÷§Æû, LNG Ç÷£Æ®, Á¤À¯¼Ò ¹ßÀü¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. °æ·® ¼³°è¿Í ³ôÀº Ãâ·Â´ë Áß·®ºñ·Î °ø°£°ú ¿î¿µÀÇ À¯¿¬¼ºÀÌ Áß¿äÇÑ ÇØ»ó ¼³ºñ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, Á¦Á¶, È­ÇРó¸®, ±¤¾÷ µîÀÇ »ê¾÷ ºÎ¹®¿¡¼­´Â ¿­º´ÇÕ¹ßÀü(CHP) ¿ëµµ·Î Ç×°ø Àüȯ °¡½º ÅͺóÀ» äÅÃÇÏ¿© Àü·Â°ú Æó¿­À» ¸ðµÎ »ê¾÷ °øÁ¤¿¡ Ȱ¿ëÇÔÀ¸·Î½á ¿¡³ÊÁö È¿À²À» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ»êȭź¼Ò °¨Ãà°ú ¿¡³ÊÁö È¿À²À» ¿ì¼±½ÃÇÏ´Â »ê¾÷ÀÌ ´Ã¾î³²¿¡ µû¶ó º¹ÇÕ »çÀÌŬ ¿¡¾î·Îµð¹ÙÀÌºê °¡½º ÅÍºó¿¡ ´ëÇÑ ¼ö¿ä´Â ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

º¹ÇÕ »çÀÌŬ ¿¡¾î·Î´õ¸®¹öƼºê °¡½º Åͺó ½ÃÀåÀÇ ¼ºÀå µ¿·ÂÀº ¹«¾ùÀΰ¡?

º¹ÇÕ »çÀÌŬ ¿¡¾î·Î´õ¸®¹öƼºê °¡½º Åͺó ½ÃÀåÀÇ ¼ºÀåÀº À¯¿¬Çϰí È¿À²ÀûÀÎ ¹ßÀü¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, Åͺó ±â¼úÀÇ ¹ßÀü, Àç»ý¿¡³ÊÁö¿øÀÇ ÅëÇÕ Áõ°¡, ûÁ¤ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ» ÃËÁøÇÏ´Â ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ºÐ»êÇü ¹× ÇÏÀ̺긮µå ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·ÎÀÇ ÀüȯÀº Ç×°ø ÆÄ»ý ÅͺóÀÇ Ã¤Åÿ¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¿¡¾î·Î´õ¸®¹öƼºê ÅͺóÀº °£ÇæÀûÀÎ Àç»ý¿¡³ÊÁöÀÇ ±ÕÇüÀ» ¸ÂÃß±â À§ÇØ ÇʼöÀûÀÎ ±Þ¼Ó ±âµ¿ ±â´É°ú °èÅë ¾ÈÁ¤È­ ¼Ö·ç¼ÇÀ» Á¦°øÇϱ⠶§¹®ÀÔ´Ï´Ù.

¶ÇÇÑ, Żź¼ÒÈ­ ¹× ¹èÃâ·® °¨¼ÒÀÇ ÃßÁøÀ¸·Î Àúź¼Ò °¡½º Åͺó ¹× ¼ö¼Ò ´ëÀÀ °¡½º ÅÍºó¿¡ ´ëÇÑ ÅõÀÚ°¡ È®´ëµÇ¾î °ø±â °¨¼Ó±â ¸ðµ¨ ½ÃÀå ±âȸ°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù. µðÁöÅÐ ¸ð´ÏÅ͸µ, ¿¹Áöº¸Àü, AI¸¦ ÅëÇÑ Åͺó ÃÖÀûÈ­ÀÇ ±â¼ú ¹ßÀüÀ¸·Î ¿î¿µ È¿À²¼º°ú ºñ¿ë È¿À²¼ºÀÌ ´õ¿í Çâ»óµÇ¾î ¹ßÀü »ç¾÷ÀÚ¿Í »ê¾÷ »ç¿ëÀÚ¿¡°Ô ¸Å·ÂÀûÀÎ ÅõÀÚó°¡ µÇ°í ÀÖ½À´Ï´Ù. ½ÅÈï±¹ÀÇ ¾ÈÁ¤ÀûÀÎ Àü·Â »ý»ê¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ûÁ¤ ¿¡³ÊÁö ±â¼ú¿¡ ´ëÇÑ Á¤ºÎÀÇ Àμ¾Æ¼ºêµµ ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ½Ã½ºÅÛÀÌ °è¼Ó ÁøÈ­ÇÏ´Â °¡¿îµ¥, º¹ÇÕ »çÀÌŬ Ç×°ø Àüȯ °¡½º Åͺó ½ÃÀåÀº Áö¼ÓÀûÀ¸·Î ¼ºÀåÇϰí ÀÖÀ¸¸ç, °íÈ¿À² ¹× Àú¹èÃâ °¡½º ¹ßÀüÀÇ ¹Ì·¡¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

¿ë·®(50kW, 50kW-500kW, 500kW-1MW, 1-30MW, 30-70MW, 70MW ÀÌ»ó), ¿ëµµ(¹ßÀü¼Ò, ¼®À¯ ¹× °¡½º, Ç×°ø, ÇÁ·Î¼¼½º Ç÷£Æ®, ÇØ¾ç, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Combined Cycle Aeroderivative Gas Turbines Market to Reach US$4.8 Billion by 2030

The global market for Combined Cycle Aeroderivative Gas Turbines estimated at US$3.6 Billion in the year 2024, is expected to reach US$4.8 Billion by 2030, growing at a CAGR of 4.9% over the analysis period 2024-2030. = 50 kW Capacity, one of the segments analyzed in the report, is expected to record a 5.6% CAGR and reach US$2.3 Billion by the end of the analysis period. Growth in the > 50 kW to 500 kW Capacity segment is estimated at 4.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$981.5 Million While China is Forecast to Grow at 9.0% CAGR

The Combined Cycle Aeroderivative Gas Turbines market in the U.S. is estimated at US$981.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.0 Billion by the year 2030 trailing a CAGR of 9.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.0% and 3.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.9% CAGR.

Global Combined Cycle Aeroderivative Gas Turbines Market - Key Trends & Drivers Summarized

What Are Combined Cycle Aeroderivative Gas Turbines and Why Are They Gaining Traction?

Combined cycle aeroderivative gas turbines are high-efficiency power generation systems that integrate aeroderivative gas turbines with steam turbines in a combined cycle configuration. These turbines, originally derived from aircraft jet engines, are designed for fast start-up, high operational flexibility, and superior fuel efficiency. In a combined cycle setup, the aeroderivative gas turbine produces electricity while its waste heat is captured to generate steam, which then drives a secondary steam turbine to produce additional power. This dual-energy generation process significantly enhances overall efficiency, often reaching levels above 60%, making it one of the most effective solutions for modern power generation.

Aeroderivative gas turbines are lightweight, compact, and capable of rapid load adjustments, making them ideal for applications requiring fast response times, such as grid stabilization, distributed energy production, and backup power for renewable energy sources. Their ability to operate on multiple fuels, including natural gas, liquefied natural gas (LNG), and hydrogen blends, further increases their attractiveness in the transition toward low-carbon energy solutions. As energy markets shift toward sustainable and flexible power generation, combined cycle aeroderivative gas turbines are emerging as a key technology for improving efficiency, reducing emissions, and supporting grid resilience.

How Are Technological Advancements Enhancing Combined Cycle Aeroderivative Gas Turbine Performance?

Recent advancements in aeroderivative gas turbine technology have significantly improved their efficiency, reliability, and operational flexibility. The integration of advanced materials, such as ceramic matrix composites (CMCs) and high-temperature alloys, has increased turbine durability and thermal efficiency. These innovations allow aeroderivative turbines to operate at higher temperatures, improving overall performance and reducing maintenance costs.

Additionally, digitalization and artificial intelligence (AI) are playing a major role in optimizing turbine operation and maintenance. Predictive maintenance systems, enabled by IoT sensors and real-time data analytics, allow for early detection of potential failures, minimizing downtime and maximizing operational efficiency. The adoption of dry low-emission (DLE) and wet compression technologies has also enhanced combustion efficiency, reducing nitrogen oxide (NOx) and carbon dioxide (CO2) emissions. Moreover, the development of hydrogen-compatible aeroderivative turbines is accelerating the market’s transition toward greener energy solutions, with several manufacturers testing hydrogen fuel blends to improve sustainability and reduce dependence on fossil fuels.

Which Industries and Applications Are Driving the Demand for Combined Cycle Aeroderivative Gas Turbines?

The power generation sector is the largest consumer of combined cycle aeroderivative gas turbines, with utilities and independent power producers (IPPs) deploying these systems for flexible and decentralized energy production. As grids incorporate more variable renewable energy sources, such as wind and solar, aeroderivative gas turbines are being used to provide fast-start backup power, ensuring grid stability during fluctuations in renewable energy output. Additionally, their ability to operate in island mode makes them crucial for microgrid applications, supporting energy security in remote locations, industrial sites, and military bases.

The oil and gas industry is another major user of aeroderivative gas turbines, particularly for offshore platforms, LNG plants, and refinery power generation. Their lightweight design and high power-to-weight ratio make them well-suited for offshore installations, where space and operational flexibility are critical. Moreover, industrial sectors such as manufacturing, chemical processing, and mining are adopting aeroderivative gas turbines for combined heat and power (CHP) applications, improving energy efficiency by utilizing both electricity and waste heat for industrial processes. As industries increasingly prioritize carbon reduction and energy efficiency, the demand for combined cycle aeroderivative gas turbines is expected to grow across multiple sectors.

What Is Driving the Growth of the Combined Cycle Aeroderivative Gas Turbines Market?

The growth in the combined cycle aeroderivative gas turbines market is driven by several factors, including increasing demand for flexible and efficient power generation, advancements in turbine technology, rising integration of renewable energy sources, and stringent environmental regulations promoting cleaner energy solutions. The transition toward decentralized and hybrid energy systems has fueled the adoption of aeroderivative turbines, as they provide rapid-start capabilities and grid stability solutions essential for balancing intermittent renewable energy.

Additionally, the push for decarbonization and emissions reduction has led to greater investment in low-carbon and hydrogen-ready gas turbines, expanding market opportunities for aeroderivative models. Technological advancements in digital monitoring, predictive maintenance, and AI-driven turbine optimization have further enhanced operational efficiency and cost-effectiveness, making these turbines an attractive investment for power producers and industrial users. The growing need for reliable power generation in emerging economies, coupled with government incentives for cleaner energy technologies, is also contributing to market expansion. As energy systems continue to evolve, the combined cycle aeroderivative gas turbine market is poised for sustained growth, playing a pivotal role in the future of high-efficiency, low-emission power generation.

SCOPE OF STUDY:

The report analyzes the Combined Cycle Aeroderivative Gas Turbines market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Capacity (= 50 kW Capacity, > 50 kW to 500 kW Capacity, > 500 kW to 1 MW Capacity, > 1 to 30 MW Capacity, > 30 to 70 MW Capacity, > 70 MW Capacity); Application (Power Plants Application, Oil and Gas Application, Aviation Application, Process Plants Application, Marine Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 37 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â