¼¼°èÀÇ Ç×°ø Àü¿ë ¹× ¿¡³ÊÁö¿ë ¸¶ÀÌÅ©·Î °¡½º Åͺó(MGT) ½ÃÀå
Micro Gas Turbines (MGT) for Aeroderivative and Energy
»óǰÄÚµå : 1792787
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 492 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF & Excel (Single User License)
US $ 17,550 £Ü 24,701,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries)


Çѱ۸ñÂ÷

Ç×°ø Àü¿ë ¹× ¿¡³ÊÁö¿ë ¸¶ÀÌÅ©·Î °¡½º Åͺó(MGT) ¼¼°è ½ÃÀåÀº 2030³â±îÁö 1¾ï 9,920¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 1¾ï 3,160¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â Ç×°ø Àü¿ë ¹× ¿¡³ÊÁö¿ë ¸¶ÀÌÅ©·Î °¡½º Åͺó(MGT) ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 1¾ï 9,920¸¸ ´Þ·¯¿¡ ´ÞÇϰí, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 7.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ºñº¹¿­ ±â¼úÀº CAGR 8.5%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1¾ï 2,940¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º¹¿­ ±â¼ú ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 4.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 3,590¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, Áß±¹Àº CAGR 11.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ´Â

¹Ì±¹ÀÇ Ç×°ø Àü¿ë ¹× ¿¡³ÊÁö¿ë ¸¶ÀÌÅ©·Î °¡½º Åͺó(MGT) ½ÃÀåÀº 2024³â¿¡ 3,590¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ 2024³âºÎÅÍ 2030³â±îÁö CAGR 11.4%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 4,240¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 3.5%¿Í 7.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Ç×°ø Àü¿ë ¹× ¿¡³ÊÁö¿ë ¸¶ÀÌÅ©·Î °¡½º Åͺó(MGT) ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Çö´ëÀÇ ¿¡³ÊÁö ¹× Ç×°ø ¼ö¿ä¿¡ ´ëÀÀÇÏ´Â ¸¶ÀÌÅ©·Î °¡½º ÅͺóÀÇ ÁøÈ­´Â?

¸¶ÀÌÅ©·Î °¡½º Åͺó(MGT)Àº ºÐ»êÇü ¿¡³ÊÁö ½Ã½ºÅÛ°ú Ç×°ø Àüȯ ¾ÖÇø®ÄÉÀÌ¼Ç ¸ðµÎ¿¡¼­ Á¡Á¡ ´õ °ü·Ã¼ºÀÌ ³ô¾ÆÁü¿¡ µû¶ó Å« º¯È­¸¦ °Þ°í ÀÖ½À´Ï´Ù. Ãʱ⿡´Â ¼Ò±Ô¸ð ¹ßÀü ¹× º¸Á¶ ÃßÁø¿ëÀ¸·Î °³¹ßµÈ ÀÌ ¼ÒÇü °í¼Ó ÅͺóÀº ÇöÀç ¿¡³ÊÁö ½Å·Ú¼º, ¿¬·á À¯¿¬¼º, ȯ°æ Áؼö¿Í °°Àº º¹ÀâÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·Çϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ÃֽŠMGT´Â ¼¼¶ó¹Í ¸ÅÆ®¸¯½º º¹ÇÕÀç¿Í ´ÏÄ̰è ÃÊÇձݰú °°Àº ÷´Ü Àç·á¸¦ ÅëÇÕÇÏ¿© ´õ ³ôÀº ¿Âµµ¿¡¼­ ÀÛµ¿ÇÏ°í ´õ ³ôÀº ¿­È¿À²À» ´Þ¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. Ç×°ø ÅÍºó ¼³°è¸¦ °íÁ¤Çü¿¡ Àû¿ëÇÑ Ç×°ø Àüȯ ¾ÖÇø®ÄÉÀ̼ÇÀº °æ·®, °íÃâ·Â Áß·®ºñ, ºü¸¥ ½Ãµ¿ ±â´ÉÀ¸·Î ÀÎÇØ MGT ±â¼úÀÇ ÇýÅÃÀ» Å©°Ô ´©¸®°í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ºÐ¾ß¿¡¼­´Â ½Å·Ú¼º°ú ¼ÒÇüÈ­°¡ Áß¿äÇÑ ¿­º´ÇÕ¹ßÀü(CHP) ½Ã½ºÅÛ, ¸¶ÀÌÅ©·Î±×¸®µå, ¿ø°ÝÁö ¹ßÀü ¼³ºñ¿¡ MGT°¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ÅͺóÀº õ¿¬°¡½º, ¹ÙÀÌ¿À°¡½º, ¼ö¼Ò È¥ÇÕ°¡½º, ÇÕ¼º°¡½º µî ´Ù¾çÇÑ ¿¬·á·Î ¿îÀüÇÒ ¼ö ÀÖ¾î Àúź¼Ò Àç»ý¿¡³ÊÁö ½Ã½ºÅÛÀ¸·ÎÀÇ ÀüȯÀ» Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ, ¸®Å¥ÆäÀÌÅÍ ¼³°è ¹× Ãà·ù ¾ÐÃà±â ¿£Áö´Ï¾î¸µÀÇ Çõ½ÅÀº ¿¬·á ¼Òºñ¸¦ ÁÙÀ̰í Àüü ½Ã½ºÅÛ È¿À²À» ³ôÀÌ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. µðÁöÅÐ Á¦¾î ½Ã½ºÅÛ, ¿¹Ãø Áø´Ü, ¸ðµâ½Ä ¾ÆÅ°ÅØÃ³´Â MGT°¡ ´Ù¾çÇÑ ¿îÀü ȯ°æ¿¡¼­ ÃÖÀûÀÇ ¼º´ÉÀ» ¹ßÈÖÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. Ç×°ø ºÐ¾ß¿¡¼­´Â º¸Á¶µ¿·ÂÀåÄ¡(APU) ¹× ÇÏÀ̺긮µå Àü±â Ç×°ø±âÀÇ Ç׼ӰŸ® ¿¬Àå ÀåÄ¡·Î Ȱ¿ëµÇ°í ÀÖÀ¸¸ç, ±× È¿À²¼º°ú ÄÄÆÑÆ®ÇÑ ÆûÆÑÅÍ·Î ÀÎÇØ ±× Ȱ¿ëµµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Áö»ó ¹× ºñÇà °ü·Ã ¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼­ ÀÌ µÎ °¡ÁöÀÇ ¿¬°ü¼ºÀ¸·Î ÀÎÇØ MGT´Â ÁøÈ­ÇÏ´Â ¿¡³ÊÁö ¹× Ç×°ø¿ìÁÖ È¯°æ¿¡¼­ ´ÙÀç´Ù´ÉÇϰí Á¡Á¡ ´õ ÇʼöÀûÀÎ ±¸¼º¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÐ»êÇü ¿¡³ÊÁö ½Ã½ºÅÛÀÌ MGT äÅÃÀÌ ±ÞÁõÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ºÐ»êÇü ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·ÎÀÇ ÀüȯÀº ¿¡³ÊÁö ºÐ¾ß¿¡¼­ ¸¶ÀÌÅ©·Î °¡½º ÅͺóÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­ÇÏ´Â ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. Áö¿ªÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Àú¹èÃâ Àü·Â »ý»ê¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó MGT´Â Áß¾Ó ÁýÁᫎ Àü·Â¸ÁÀ¸·ÎºÎÅÍ µ¶¸³ÇϰíÀÚ ÇÏ´Â ÁöÀÚü, »ê¾÷ ½Ã¼³, ´ëÇÐ ¹× »ó¾÷¿ë Ä·ÆÛ½º¿¡ ½Ç¿ëÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ¿­º´ÇÕ¹ßÀü(CHP) ¼³ºñ¿ÍÀÇ È£È¯¼ºÀ» ÅëÇØ Æó¿­À» ȸ¼öÇÏ¿© ³­¹æ, ³Ã¹æ, °øÁ¤¿ëÀ¸·Î Ãß°¡ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ÀÌÁß Ãâ·Â ±â´ÉÀ» ÅëÇØ ¿¡³ÊÁö È¿À²ÀÌ Å©°Ô Çâ»óµÇ¸ç, Àü±â¿Í ¿­ ¿¡³ÊÁö¸¦ ¸ðµÎ »ç¿ëÇÒ °æ¿ì ¿¡³ÊÁö È¿À²ÀÌ 80%¸¦ ÃʰúÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¼¼°è ¿¡³ÊÁö ½ÃÀåÀÌ ¼®Åº ¹× ±âŸ Áß¾ÓÁýÁß½Ä È­¼®¿¬·á ¹ßÀü¼Ò¿¡¼­ ¹þ¾î³ª¸é¼­ ¼Ò±Ô¸ð, ¸ðµâÈ­, ºÐ»êÇü ¹ßÀü ¿É¼ÇÀº Á¡Á¡ ´õ ¸Å·ÂÀûÀ¸·Î º¯Çϰí ÀÖ½À´Ï´Ù. MGT´Â ºü¸¥ ½Ãµ¿ ½Ã°£, ³·Àº À¯Áöº¸¼ö Çʿ伺, ¿¬¼Ó ¿îÀü ´É·ÂÀ» Á¦°øÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¼ö¿ä¸¦ ÃæÁ·½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅͼ¾ÅÍ, º´¿ø, ±º»ç½Ã¼³ µî Á¤ÀüÀ¸·Î ÀÎÇØ Ä¡¸íÀûÀÎ ÇÇÇØ¸¦ ÀÔÀ» ¼ö ÀÖ´Â Áß¿äÇÑ ¾÷¹«¿¡ Áß¿äÇÑ ¹é¾÷ Àü·ÂÀ» Á¦°øÇÕ´Ï´Ù. µµ½Ã ȯ°æ¿¡¼­ MGT´Â ÇÇÅ© ¼ö¿ä °ü¸®, Àü·Â¸Á º¹¿ø·Â Çâ»ó, ¿Â½Ç°¡½º ¹èÃâ °¨¼Ò¸¦ À§ÇØ µµÀԵǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àú¼ÒÀ½°ú ÄÄÆÑÆ®ÇÑ Å©±â·Î Àα¸ ¹ÐÁý Áö¿ª¿¡¼­µµ ÃÖ¼ÒÇÑÀÇ È¥¶õÀ¸·Î ¼³Ä¡°¡ °¡´ÉÇÕ´Ï´Ù. ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°¡ Àμ¾Æ¼ºê¿Í ź¼Ò¹èÃâ±Ç ºÎ¿©¸¦ ÅëÇØ Áö¿ª ¹ÐÂøÇü ¿¡³ÊÁö »ý»êÀ» ÁöÁöÇϱ⠽ÃÀÛÇϸ鼭, MGT´Â È®Àå °¡´ÉÇϰí Áö¼Ó°¡´ÉÇÑ ±â¼ú·Î ¿¡³ÊÁö ÀÎÇÁ¶ó¸¦ °­È­ÇϰíÀÚ ÇÏ´Â °³¹ßÀڵ鿡°Ô ÇÕ¸®ÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¿¬·áÀÇ À¯¿¬¼º°ú ¹èÃâ Á¦¾î°¡ ¼³°è ¿ì¼±¼øÀ§¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡°í Àִ°¡?

¿¬·áÀÇ À¯¿¬¼º°ú ¹èÃâ Á¦¾î´Â ƯÈ÷ ȯ°æ ±ÔÁ¦ÀÇ ¹ßÀü°ú ¼¼°è Żź¼ÒÈ­ ÀÇÁ¦¿¡ ºñÃß¾î º¼ ¶§ ¸¶ÀÌÅ©·Î °¡½º ÅͺóÀÇ Áß¿äÇÑ ¼³°è ¿ì¼±¼øÀ§·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. MGT´Â õ¿¬°¡½º, ¹ÙÀÌ¿À°¡½ººÎÅÍ ¼ö¼Ò°¡ ´Ù·® ÇÔÀ¯µÈ È¥ÇÕ¿¬·á, Àç»ý °¡´ÉÇÑ ÇÕ¼º¿¬·á±îÁö ´Ù¾çÇÑ Á¾·ùÀÇ ±âü ¹× ¾×ü ¿¬·á·Î È¿À²ÀûÀ¸·Î ¿îÀüÇÒ ¼ö ÀÖ¾î ¿¡³ÊÁö ºÐ¾ß¿¡¼­ µÎ°¢À» ³ªÅ¸³»°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀûÀÀ¼ºÀº Æó°¡½º¸¦ ¹ß»ý½ÃŰ°Å³ª ¿¡³ÊÁö ÅõÀÔÀ» ´Ù¾çÈ­ÇϰíÀÚ ÇÏ´Â »ê¾÷ ¹× ÁöÀÚü¿¡ ƯÈ÷ °¡Ä¡°¡ ÀÖ½À´Ï´Ù. ÇöÀç ±â¼úÀÚµéÀº ¿­È¿À²À» ÀúÇϽÃŰÁö ¾Ê°í Áú¼Ò»êÈ­¹°(NOx) ¹èÃâ·®À» Áõ°¡½ÃŰÁö ¾ÊÀ¸¸é¼­ ´Ù¾çÇÑ ¿¬·á ±¸¼º¿¡¼­ ¾ÈÁ¤ÀûÀÎ ¼º´ÉÀ» À¯ÁöÇÒ ¼ö Àִ ÷´Ü ¿¬¼Ò½Ç ¹× ¿¬·á ºÐ»ç ½Ã½ºÅÛ °³¹ß¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ¸° ¿¹È¥ÇÕ ¿¬¼Ò ±â¼ú°ú Ã˸Š¿¬¼Ò ±â¼úÀ» Æ÷ÇÔÇÑ ÀúNOx ¿¬¼Ò±â ¼³°è°¡ »õ·Î¿î MGT ¸ðµ¨¿¡ Àû¿ëµÇ¾î ¾ö°ÝÇÑ ´ë±âÁú ±âÁØÀ» ÃæÁ·ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¬·á¸¦ ¿øÈ°ÇÏ°Ô ÀüȯÇÒ ¼ö ÀÖ´Â MGTÀÇ ´É·ÂÀº ¿¬·á °¡°Ý ¹× °¡¿ë¼º º¯È­¿¡ ´ëÀÀÇÒ ¼ö ÀÖ¾î ¿î¿µÀÇ Åº·Â¼ºÀ» ³ôÀÔ´Ï´Ù. ÀÌ¿Í ÇÔ²² ¹è±â°¡½º ó¸® ½Ã½ºÅÛ, ȸ¼ö ÀåÄ¡, ¼±ÅÃÀû Ã˸Šȯ¿ø(SCR) ÀåÄ¡¿Í °°Àº ¹èÃâ°¡½º Á¦¾î ±â¼úµµ ÅëÇյǾî ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ´õ¿í ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ °³¼±Àº ƯÈ÷ À¯·´, ºÏ¹Ì, ¾Æ½Ã¾Æ ÀϺΠÁö¿ª°ú °°ÀÌ È¯°æ ¹ý±Ô°¡ ¾ö°ÝÇÑ Áö¿ª¿¡¼­ äÅõDZâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. Á¤ºÎ¿Í ¹Î°£ ºÎ¹® ¸ðµÎ ûÁ¤¿¡³ÊÁö Àü·«ÀÇ ÇÙ½ÉÀ¸·Î ¼ö¼Ò ÀÎÇÁ¶ó¿¡ ÅõÀÚÇϰí Àֱ⠶§¹®¿¡ ¼ö¼Ò Áö¿ø MGT °³¹ßÀº Áß¿äÇÑ ±â¼ú Çõ½ÅÀÇ ÃÖÀü¼±ÀÌ µÉ °ÍÀÔ´Ï´Ù. ¿¬·áÀÇ ´Ù¾ç¼º°ú ¹èÃâ°¡½º °¨ÃàÀÇ °áÇÕÀ¸·Î MGT´Â ¼º´É, ±ÔÁ¤ Áؼö, Áö¼Ó°¡´É¼ºÀÇ º¹ÀâÇÑ ±³Â÷Á¡À» ±Øº¹ÇÒ ¼ö ÀÖ´Â ¸î ¾È µÇ´Â ¹ßÀü ±â¼ú Áß Çϳª·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¼¼°è MGT ºÐ¾ß ¼ºÀåÀ» ÁÖµµÇÏ´Â ½ÃÀå ¼¼·ÂÀº?

¸¶ÀÌÅ©·Î °¡½º Åͺó ½ÃÀåÀÇ ¼ºÀåÀº ¿¡³ÊÁö ´Ù¾çÈ­, ±â¼ú ¼º¼÷, »ê¾÷ ¼ö¿ä, ź¼Ò Á߸³À¸·ÎÀÇ Àüȯ°ú °ü·ÃµÈ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¡Àå µÎµå·¯Áø ¿øµ¿·Â Áß Çϳª´Â µ¶¸³ÀûÀ¸·Î ¶Ç´Â Áß¾ÓÁýÁᫎ ±×¸®µå¿Í ¿¬°èÇÏ¿© ¿î¿µÇÒ ¼ö ÀÖ´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â ºÐ»êÇü ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¼®À¯ ¹× °¡½º, ±¤¾÷, Á¦¾à, ¿î¼Û µîÀÇ »ê¾÷¿¡¼­ Áß¿äÇÑ ¾÷¹«¿¡ Áß´Ü ¾ø´Â Àü·Â °ø±ÞÀ» º¸ÀåÇϱâ À§ÇØ MGT¸¦ Ȱ¿ëÇÏ´Â »ç·Ê°¡ ´Ã°í ÀÖ½À´Ï´Ù. µµ½Ã¿Í ÁÖÅÿ¡¼­ ¸¶ÀÌÅ©·Î ¿­º´ÇÕ¹ßÀü(mCHP) ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖÀ¸¸ç, ƯÈ÷ Àü·Â °¡°ÝÀÌ ºÒ¾ÈÁ¤ÇÑ Áö¿ªÀ̳ª ¼ÛÀü¸Á ÀÎÇÁ¶ó°¡ Ãë¾àÇÑ Áö¿ª¿¡¼­ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Àç·á °úÇÐ, ¿­ °ü¸® ¹× Á¦¾î ½Ã½ºÅÛÀÇ ¹ßÀüÀ¸·Î MGTÀÇ È¿À²¼º, ³»±¸¼º ¹× È®À强ÀÌ È¹±âÀûÀ¸·Î °³¼±µÇ¾î ¹Î°ü ÀÌÇØ°ü°èÀÚ ¸ðµÎ¿¡°Ô ¸Å·ÂÀûÀ¸·Î ´Ù°¡¿À°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±¹Á¦ÀûÀÎ ±âÈÄ º¯È­ °ø¾à°ú °¢±¹ÀÇ Ã»Á¤¿¡³ÊÁö ¸ñÇ¥´Â Àç»ý °¡´É ¿¬·á ¹× Àú°øÇØ ¿¬·á¿¡ ´ëÇÑ ÅõÀÚ¸¦ Àå·ÁÇϰí ÀÖÀ¸¸ç, MGT´Â ¼ö¼Ò ¹× ¹ÙÀÌ¿À¿¬·á¿ÍÀÇ È£È¯¼ºÀ» ÅëÇØ ÀÌ·¯ÇÑ ¾à¼ÓÀ» ½ÇÇöÇÏ´Â µ¥ ÀÖ¾î µ¶º¸ÀûÀÎ À§Ä¡¿¡ ÀÖ½À´Ï´Ù. Ç×°ø ºÐ¾ßµµ ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, ¸®Àú³Î Ç×°ø±â¿Í ¹«ÀÎÇ×°ø±âÀÇ ÇÏÀ̺긮µå Àü±â ÃßÁø ½Ã½ºÅÛ¿¡ MGT¸¦ »ç¿ëÇÏ´Â °Í¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¼¼¾×°øÁ¦, °íÁ¤°¡°Ý¸ÅÀÔÁ¦µµ, º¸Á¶±Ý ÇÁ·Î±×·¥ µîÀÇ Á¤ºÎ Àμ¾Æ¼ºê°¡ MGT¸¦ Æ÷ÇÔÇÑ ºÐ»êÇü ¹ßÀü±â¼úÀÇ Ã¤ÅÃÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ ÅͺóÀº ¸ðµâÇüÀ̱⠶§¹®¿¡ À¯¿¬ÇÏ°Ô ¹èÄ¡ÇÒ ¼ö ÀÖ¾î °Ç¹° ÇÑ Ã¤ÀÇ ¿ëµµºÎÅÍ Áö¿ª ÀüüÀÇ ¿¡³ÊÁö ½Ã½ºÅÛ±îÁö ¸ðµç ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. Ç×°ø¿ìÁÖ ±â¾÷, ¿¡³ÊÁö °ø±Þ¾÷ü, ¿¬±¸±â°ü°úÀÇ Àü·«Àû Á¦ÈÞ¸¦ ÅëÇØ Á¦Ç° °³¹ß ¹× »ó¿ëÈ­°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ±× °á°ú, ÃʼÒÇü °¡½º ÅÍºó ¼¼°è ½ÃÀåÀº ¿¡³ÊÁö ¾Èº¸ ¼ö¿ä, ȯ°æ ¸ñÇ¥, ±â¼úÀû ÁغñÀÇ ¼ö·ÅÀ» ¿øµ¿·ÂÀ¸·Î »ï¾Æ °­·ÂÇϰí Áö¼ÓÀûÀÎ ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù.

ºÎ¹®

±â¼ú(ºñº¹¿­ ±â¼ú, º¹¿­ ±â¼ú), ¿ë·®(25-100 kW ¿ë·®, 100-300 kW ¿ë·®, 300-500 kW ¿ë·®), ¿¬·á À¯Çü(õ¿¬°¡½º ¿¬·á, ¸Þź ¿¬·á, ¼ö¼Ò ¿¬·á, ¹ÙÀÌ¿À°¡½º ¿¬·á, ±âŸ ¿¬·á À¯Çü), ÃÖÁ¾ ¿ëµµ(¹ßÀü ÃÖÁ¾ ¿ëµµ, ¿­º´ÇÕ¹ßÀü ÃÖÁ¾ ¿ëµµ, Æó¿­ ȸ¼ö ÃÖÁ¾ ¿ëµµ, ¼®À¯ ¹× °¡½º ÃÖÁ¾ ¿ëµµ, ±ä±Þ ¹é¾÷ ÃÖÁ¾ ¿ëµµ, Ç×°ø ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Micro Gas Turbines (MGT) for Aeroderivative and Energy Market to Reach US$199.2 Million by 2030

The global market for Micro Gas Turbines (MGT) for Aeroderivative and Energy estimated at US$131.6 Million in the year 2024, is expected to reach US$199.2 Million by 2030, growing at a CAGR of 7.2% over the analysis period 2024-2030. Non-Recuperated Technology, one of the segments analyzed in the report, is expected to record a 8.5% CAGR and reach US$129.4 Million by the end of the analysis period. Growth in the Recuperated Technology segment is estimated at 4.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$35.9 Million While China is Forecast to Grow at 11.4% CAGR

The Micro Gas Turbines (MGT) for Aeroderivative and Energy market in the U.S. is estimated at US$35.9 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$42.4 Million by the year 2030 trailing a CAGR of 11.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.5% and 7.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.7% CAGR.

Global Micro Gas Turbines (MGT) for Aeroderivative and Energy Market - Key Trends & Drivers Summarized

How Are Micro Gas Turbines Evolving to Meet Modern Energy and Aviation Demands?

Micro gas turbines (MGTs) are undergoing a significant transformation as they become increasingly relevant in both decentralized energy systems and aeroderivative applications. Initially developed for small-scale power generation and auxiliary propulsion, these compact, high-speed turbines are now engineered to meet the complex demands of energy reliability, fuel flexibility, and environmental compliance. Modern MGTs incorporate advanced materials such as ceramic matrix composites and nickel-based superalloys, allowing them to operate at higher temperatures and achieve greater thermal efficiencies. Aeroderivative applications, which adapt aviation turbine designs for stationary power use, benefit immensely from MGT technology due to its light weight, high power-to-weight ratio, and quick-start capability. In the energy sector, MGTs are being integrated into combined heat and power (CHP) systems, microgrids, and remote power installations where reliability and compactness are critical. These turbines can run on a variety of fuels including natural gas, biogas, hydrogen blends, and synthetic gases, supporting the transition to low-carbon and renewable energy systems. Additionally, innovations in recuperator design and axial-compressor engineering are helping reduce fuel consumption and increase overall system efficiency. Digital control systems, predictive diagnostics, and modular architectures are further enabling MGTs to perform optimally across diverse operational environments. In aviation, their use as auxiliary power units (APUs) or as range extenders for hybrid-electric aircraft is gaining momentum due to their efficiency and compact form factor. This dual relevance in both ground-based and flight-related energy systems positions MGTs as a versatile and increasingly essential component in the evolving energy and aerospace landscapes.

Why Are Decentralized Energy Systems Creating a Surge in MGT Adoption?

The shift toward decentralized and distributed energy systems is one of the primary forces accelerating the adoption of micro gas turbines in the energy sector. With the increasing need for local, reliable, and low-emission power generation, MGTs offer a practical solution for municipalities, industrial facilities, universities, and commercial campuses seeking autonomy from centralized grids. Their ability to operate in island mode makes them ideal for remote or off-grid installations, while their compatibility with combined heat and power (CHP) setups allows operators to capture waste heat for additional use in heating, cooling, or process applications. This dual-output functionality significantly enhances energy efficiency, often surpassing 80 percent when both electricity and thermal energy are utilized. As global energy markets transition away from coal and other centralized fossil fuel plants, smaller-scale, modular, and dispatchable generation options are becoming increasingly attractive. MGTs fulfill this demand by offering quick start-up times, low maintenance needs, and continuous operation capability. Moreover, they provide critical backup power for sensitive operations such as data centers, hospitals, and military installations, where outages can be catastrophic. In urban environments, MGTs are being deployed to help manage peak demand, improve grid resilience, and lower greenhouse gas emissions. Their low noise profile and compact size also allow for installation in densely populated areas with minimal disruption. As regulatory frameworks begin to favor localized energy production, supported by incentives and carbon credits, MGTs are becoming a logical choice for developers looking to future-proof their energy infrastructure with scalable and sustainable technologies.

How Are Fuel Flexibility and Emissions Control Influencing Design Priorities?

Fuel flexibility and emissions control are emerging as critical design priorities for micro gas turbines, especially in light of evolving environmental regulations and the global decarbonization agenda. MGTs stand out in the energy landscape due to their capacity to operate efficiently on a wide spectrum of gaseous and liquid fuels, ranging from natural gas and biogas to hydrogen-rich blends and renewable synthetic fuels. This adaptability is particularly valuable for industries and municipalities that generate waste gases or seek to diversify their energy inputs. Engineers are now focusing on developing advanced combustion chambers and fuel injection systems that can maintain stable performance across varying fuel compositions without compromising thermal efficiency or increasing nitrogen oxide (NOx) emissions. Low-NOx combustor designs, including lean premixed and catalytic combustion techniques, are being incorporated into newer MGT models to ensure compliance with strict air quality standards. The ability of MGTs to switch between fuels seamlessly also enables operators to respond to changes in fuel pricing and availability, thus enhancing operational resilience. In parallel, emissions control technologies such as exhaust gas treatment systems, recuperators, and selective catalytic reduction (SCR) units are being integrated to further minimize environmental impact. These improvements are essential for adoption in regions with stringent environmental legislation, particularly in Europe and parts of North America and Asia. The development of hydrogen-capable MGTs represents a key innovation frontier, as governments and private sectors alike invest in hydrogen infrastructure as a pillar of clean energy strategy. This convergence of fuel diversity and emissions mitigation is positioning MGTs as one of the few power generation technologies capable of navigating the complex intersection of performance, compliance, and sustainability.

What Market Forces Are Driving Growth in the MGT Sector Worldwide?

The growth in the micro gas turbines market is driven by several factors tied to energy diversification, technological maturation, industrial demand, and the shift toward carbon-neutral solutions. One of the most prominent drivers is the rising need for reliable, distributed energy solutions that can operate independently or in conjunction with centralized grids. Industries such as oil and gas, mining, pharmaceuticals, and transportation are increasingly turning to MGTs to ensure uninterrupted power supply in critical operations. In urban and residential settings, the demand for micro combined heat and power (mCHP) systems is also rising, especially in regions where electricity prices are volatile or grid infrastructure is weak. Advances in materials science, thermal management, and control systems have dramatically improved the efficiency, durability, and scalability of MGTs, making them more attractive to both public and private stakeholders. Furthermore, international climate commitments and national clean energy targets are encouraging investments in technologies that can utilize renewable or low-emission fuels, and MGTs are uniquely positioned to deliver on this promise through their compatibility with hydrogen and biofuels. The aviation sector is also contributing to market expansion, with growing interest in using MGTs for hybrid-electric propulsion systems in regional and unmanned aircraft. Government incentives, including tax credits, feed-in tariffs, and grant programs, are supporting the adoption of decentralized generation technologies, which includes MGTs. Additionally, the modular nature of these turbines allows for flexible deployment, making them suitable for everything from single-building applications to community-wide energy systems. Strategic collaborations between aerospace companies, energy providers, and research institutions are accelerating product development and commercialization. As a result, the global market for micro gas turbines is witnessing robust and sustained growth, driven by the convergence of energy security needs, environmental goals, and technological readiness.

SCOPE OF STUDY:

The report analyzes the Micro Gas Turbines (MGT) for Aeroderivative and Energy market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (Non-Recuperated Technology, Recuperated Technology); Capacity (25 - 100 kW Capacity, 100 - 300 kW Capacity, 300 - 500 kW Capacity); Fuel Type (Natural Gas Fuel, Methane Fuel, Hydrogen Fuel, Biogas Fuel, Other Fuel Types); End-Use (Power Generation End-Use, Combined Heat & Power End-Use, Waste Heat Recovery End-Use, Oil & Gas End-Use, Emergency Backup End-Use, Aviation End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â