AIGC 애플리케이션 시장 : 컨텐츠 형식별, 도입 모델별, 최종사용자별, 업계별 - 세계 예측(2025-2032년)
AIGC Applications Market by Content Formats, Deployment Models, End-Users, Industry Vertical - Global Forecast 2025-2032
상품코드 : 1868920
리서치사 : 360iResearch
발행일 : 2025년 09월
페이지 정보 : 영문 195 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,939 ₩ 5,844,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF 및 Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 4,249 ₩ 6,304,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF 및 Excel 보고서를 동일기업 내 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 5,759 ₩ 8,544,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF 및 Excel 보고서를 동일 기업 내 동일 지역 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 6,969 ₩ 10,339,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

AIGC 애플리케이션 시장은 2032년까지 CAGR 16.22%로 190억 2,000만 달러 규모로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 57억 1,000만 달러
추정 연도 2025년 65억 4,000만 달러
예측 연도 2032 190억 2,000만 달러
CAGR(%) 16.22%

AI 생성 컨텐츠가 기본 기능으로 성숙해지면서 크리에이티브 워크플로우, 거버넌스 우선순위, 운영 모델 재구축에 이르는 전략적 개관

인공지능이 실용적인 크리에이티브 엔진으로 진화하면서 조직이 컨텐츠를 구상, 제작, 배포하는 방식에 근본적인 변화가 가속화되고 있습니다. 이 글에서는 AI 생성 컨텐츠(AIGC)가 주변적인 혁신이 아니라 제품 개발, 마케팅, 교육, 고객 경험에 걸친 전략적 계획에 영향을 미치는 핵심 역량인 이유를 설명합니다. 이 기술을 보다 광범위한 디지털 전환의 목표로 설정하고, 컴퓨팅 파워, 모델 아키텍처, 데이터 가용성의 발전이 어떻게 융합되어 품질이 빠르게 향상되고 새로운 사용 사례를 창출할 수 있었는지 설명합니다.

모델 전문화, 조립 가능한 컨텐츠 파이프라인, 프로방스 측정, 경제적 재조정이 AIGC의 경쟁 환경과 도입 동향을 공동으로 변화시키고 있는 상황

AIGC의 상황에서는 경쟁력과 비즈니스 모델을 재정의하는 여러 가지 변혁적 변화가 진행 중입니다. 첫째, 범용 기반에서 수직 특화 및 도메인 최적화 시스템으로의 전환이 진행되고 있으며, 산업별 사용 사례에서 관련성과 정확도가 향상되는 모델 전문화가 두드러지고 있습니다. 이러한 추세는 컨텍스트에 의존하는 출력이 중요한 규제 산업에서 도입 장벽을 낮출 수 있습니다.

2025년 관세 조정이 AI 생성 컨텐츠 시스템을 도입하는 조직의 공급망, 공급업체 전략, 인프라 선택에 미치는 영향 평가

2025년 미국이 도입한 관세의 누적된 영향은 세계 기술 공급망에 새로운 변수를 도입하여 AIGC 시스템을 도입하는 조직의 하드웨어 가용성, 플랫폼 비용, 전략적 조달 결정에 영향을 미쳤습니다. 관세 조정은 특수 가속기 및 엣지 디바이스 공급업체에 압력을 가했고, 그 결과 조달팀은 공급업체 관계를 다양화하고 관세 위험이 낮은 클라우드 퍼스트 대안을 평가해야 했습니다. 이러한 재조정은 총 비용 구조와 벤더와의 협상에 영향을 미치고 있습니다.

컨텐츠 형식, 도입 형태, 최종사용자, 산업 부문별로 서로 다른 도입 패턴과 기술 우선순위를 파악할 수 있는 통찰력 있는 세분화 분석

세분화는 가치 실현 영역과 기술, 도입 형태, 사용자, 산업 차원별로 도입 경로가 어떻게 다른지 이해할 수 있는 실용적인 관점을 제공합니다. 컨텐츠 형식에 따른 시장은 3D 컨텐츠 생성, 음성/음성 생성, 이미지/아트 생성, 멀티모달 컨텐츠 제작, 텍스트 생성, 동영상 생성에 이르기까지 다양한 기술 요구사항과 창의적인 워크플로우를 주도하고 있습니다. 이러한 형식은 모델 선택, 주석의 필요성, 품질 보증 워크플로우를 결정하고, 인적 모니터링 프로세스의 조정에 영향을 미칩니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 AIGC 애플리케이션 시장 컨텐츠 형식별

제9장 AIGC 애플리케이션 시장 도입 모델별

제10장 AIGC 애플리케이션 시장 : 최종사용자별

제11장 AIGC 애플리케이션 시장 : 업계별

제12장 AIGC 애플리케이션 시장 : 지역별

제13장 AIGC 애플리케이션 시장 : 그룹별

제14장 AIGC 애플리케이션 시장 : 국가별

제15장 경쟁 구도

KSM
영문 목차

영문목차

The AIGC Applications Market is projected to grow by USD 19.02 billion at a CAGR of 16.22% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 5.71 billion
Estimated Year [2025] USD 6.54 billion
Forecast Year [2032] USD 19.02 billion
CAGR (%) 16.22%

A strategic overview of how AI-generated content has matured into a foundational capability reshaping creative workflows, governance priorities, and operational models

The evolution of artificial intelligence into practical creative engines has accelerated a fundamental shift in how organizations conceive, produce, and distribute content. This introduction outlines why AI-generated content (AIGC) is not a peripheral innovation but a core capability that influences strategic planning across product development, marketing, training, and customer experience. It situates the technology within broader digital transformation objectives and explains the confluence of compute advances, model architectures, and data availability that have enabled rapid quality improvements and new use cases.

Leaders must reconcile the potential for dramatic efficiency gains with the responsibilities that accompany creative automation, including intellectual property, attribution, and bias mitigation. This tension defines both the opportunity and the governance obligations organizations face as they incorporate AIGC into workflows. By framing AIGC as an infrastructural capability rather than a point product, stakeholders can better prioritize integrations, investments, and talent development.

Finally, this introduction sets expectations about adoption dynamics: early wins will often come from targeted pilots that augment human creativity rather than replace it, while competitive advantage accrues to organizations that pair technical capability with clear content strategies, governance frameworks, and cross-functional change management.

How model specialization, composable content pipelines, provenance measures, and economic realignment are jointly transforming the AIGC competitive and adoption landscape

The landscape of AIGC is undergoing several transformative shifts that are redefining competitive dynamics and business models. First, model specialization is increasingly prominent as general-purpose foundations give way to verticalized and domain-tuned systems that deliver higher relevance and accuracy for industry-specific use cases. This trend reduces friction for adoption in regulated sectors where context-sensitive outputs are critical.

Second, there is a notable move towards composability in content pipelines: organizations are integrating modular AI components-text, image, audio, and video-into orchestrated workflows that augment human oversight. This composable architecture enables quicker iteration and more granular control over output quality while supporting hybrid human-AI teams.

Third, trust and provenance mechanisms are maturing, with watermarking, metadata standards, and audit trails becoming essential to meet legal, ethical, and brand-protection requirements. These mechanisms facilitate safer scaling of AIGC at enterprise levels and are increasingly demanded by partners and customers.

Finally, the economic model around AIGC is shifting. Investment is being reallocated toward tooling that accelerates deployment and reduces total cost of ownership, while business models emphasize content velocity, personalization at scale, and measurable ROI in downstream KPIs. Collectively, these shifts accelerate productive adoption across both creative and operational functions.

Assessment of how 2025 tariff adjustments reshaped supply chains, vendor strategies, and infrastructure choices for organizations deploying AI-generated content systems

The cumulative impact of United States tariffs in 2025 introduced a new variable into global technology supply chains that affects hardware availability, platform costs, and strategic sourcing decisions for organizations deploying AIGC systems. Tariff adjustments have put pressure on suppliers of specialized accelerators and edge devices, which in turn has encouraged procurement teams to diversify supplier relationships and to evaluate cloud-first alternatives where tariff exposure is lower. This rebalancing has implications for total cost structures and vendor negotiations.

Enterprises have responded by placing greater emphasis on software portability and on hardware-agnostic deployment strategies that mitigate single-supplier risk. In parallel, regionalization of data center deployments and supply chain reconfiguration have become more common as organizations seek to align infrastructure choices with tariff exposure and regulatory compliance. These shifts have also intensified strategic partnerships between cloud providers and hardware manufacturers to smooth distribution channels and to create bundled offers that absorb some tariff-related costs.

For creative and content-driven teams, the net effect has been a re-prioritization of investments toward scalable, cloud-hosted services and toward edge deployments that justify on-premise capital expenditures only when latency, privacy, or sovereignty considerations demand it. The tariff environment in 2025 therefore amplified existing trends toward hybrid architectures and nuanced vendor selection criteria centered on resilience and total operational risk.

Insightful segmentation analysis revealing differentiated adoption patterns and technical priorities across content formats, deployment modes, end-users, and industry verticals

Segmentation provides a practical lens to understand where value is realized and how adoption pathways differ across technology, deployment, user, and industry dimensions. Based on Content Formats, the market spans 3D Content Generation, Audio & Voice Generation, Image & Art Generation, Multimodal Content Creation, Text Generation, and Video Generation, each driving distinct technical requirements and creative workflows. These formats determine model selection, annotation needs, and quality assurance workflows, and they influence the calibration of human oversight processes.

Based on Deployment Models, market options include Cloud Hosted and On-Premise arrangements; the former offers elasticity and rapid feature delivery while the latter provides stronger control over data governance and latency-sensitive processing. Organizations often adopt hybrid strategies to balance speed with security, moving experimentation to the cloud while placing mission-critical or regulated workloads on-premise.

Based on End-Users, adoption patterns vary across Educational Institutions & EdTech Platforms, Game Developers & Studios, Healthcare & Wellness Providers, Individual Content Creators, Legal & Financial Services, and Media, Advertising & Entertainment Firms. Each end-user category imposes unique constraints and success metrics, from pedagogical integrity in education to compliance requirements in healthcare and precision in legal document generation.

Based on Industry Vertical, implementation priorities differ across E-commerce & Retail, Education, Finance & Legal, Gaming, Healthcare, Marketing & Advertising, Media & Entertainment, Publishing & Journalism, and Real Estate. Industry context shapes not only content types and accuracy thresholds but also monetization approaches, acceptable levels of automation, and the design of feedback loops for continuous improvement.

A regional perspective on how the Americas, Europe Middle East & Africa, and Asia-Pacific shape adoption priorities, regulatory demands, and execution strategies for AIGC

Regional dynamics significantly influence adoption velocity, regulatory emphasis, and partnership ecosystems. In the Americas, buyers tend to prioritize rapid time-to-value and integrated cloud solutions, driven by mature enterprise demand and sizable creative industries that seek scale and personalization. This region also leads in commercial experimentation with advertising and entertainment-focused AIGC applications.

In Europe, Middle East & Africa, regulatory considerations and data protection norms are central to deployment decisions, creating a preference for solutions that emphasize privacy, transparency, and strong governance controls. The region exhibits diverse readiness levels, with advanced adoption in urban innovation hubs and emerging interest across markets where local language and cultural adaptation matter.

In Asia-Pacific, adoption is marked by a strong appetite for mobile-first experiences and localized content services, with rapid uptake in consumer-facing industries such as gaming, e-commerce, and social media platforms. The region benefits from dense developer ecosystems and high user engagement metrics, which accelerate iterative product development and the scaling of multimodal content offerings.

Across these regions, vendor strategies must account for local regulatory regimes, talent availability, and infrastructure maturity. Successful regional approaches blend global capabilities with localized execution, including partnerships, compliance workflows, and culturally relevant content tuning.

Competitive landscape overview highlighting how platform leaders, specialized vendors, and service-oriented firms differentiate through domain models, governance, and integration capabilities

Competitive dynamics in the AIGC space are characterized by a mix of platform leaders, specialized startups, and incumbent technology vendors moving up the stack. Leading companies are differentiating through domain-tuned models, integrated content pipelines, and enterprise-grade governance capabilities. Strategic partnerships and acquisitions are common as firms seek to combine model expertise with vertical content knowledge and customer relationships.

Innovation is concentrated around tooling that simplifies human-in-the-loop processes, automated quality assurance, and provenance tracking. Companies that provide robust SDKs, intuitive orchestration layers, and clear APIs for multimodal composition tend to be preferred by enterprise buyers because they lower integration friction. At the same time, vendors that offer managed services and professional services to accelerate deployment are capturing value from organizations that lack in-house AI engineering capacity.

Market leaders also invest heavily in compliance features and risk controls to address enterprise concerns about bias, copyright, and explainability. Differentiation is not only technical but also operational: firms demonstrating repeatable deployment patterns, comprehensive training materials, and measurable impact on downstream KPIs are more likely to secure large-scale engagements. As the ecosystem matures, buyer evaluation criteria increasingly prioritize interoperability, lifecycle support, and the vendor's ability to partner on long-term roadmaps.

Actionable, stepwise guidance for industry leaders to pilot, govern, and scale AI-generated content initiatives while minimizing legal and operational risks

Industry leaders must adopt a pragmatic, staged approach to capture AIGC value while managing risk. Begin by identifying high-impact use cases that augment existing human workflows and that have clear success metrics; pilot these use cases in cross-functional teams to validate technical assumptions and to measure user acceptance. Maintain tight feedback loops between creative teams and engineers to refine model prompts, fine-tuning datasets, and evaluation criteria.

Invest in governance foundations early: establish provenance and metadata standards, implement audit trails, and define escalation paths for content disputes. These measures reduce legal and reputational exposure and make scale-out decisions less risky. Parallel to governance, build a talent strategy that blends AI engineering with domain expertise, and create role-based training that empowers business users to leverage AIGC responsibly.

From an infrastructure standpoint, favor modular, cloud-native architectures that allow you to shift workloads between cloud-hosted and on-premise deployments as regulatory and cost considerations evolve. Negotiate vendor contracts that include performance SLAs, data handling guarantees, and options for portability. Finally, align executive sponsorship with measurable KPIs and a clear roadmap for scaling pilots into production, ensuring that investment decisions are tied to business outcomes rather than technology fascination.

Methodological framework detailing the mixed qualitative and quantitative approaches used to derive practical, reproducible insights into AIGC adoption and governance

The research methodology underpinning this analysis combines qualitative and quantitative techniques to triangulate insights across technical, commercial, and regulatory dimensions. Primary research involved structured interviews with technology leaders, product managers, and legal counsel within organizations deploying AIGC, providing practical context on implementation choices and governance practices. These engagements helped surface real-world constraints and success factors that inform recommended adoption pathways.

Secondary research included a systematic review of technical literature, public company disclosures, policy announcements, and vendor documentation to verify capabilities, feature roadmaps, and partnership arrangements. Emphasis was placed on synthesizing diverse sources to avoid single-vendor bias and to ensure perspectives reflect multiple geographies and industry contexts. Data synthesis prioritized reproducibility: methodology notes document inclusion criteria, interview protocols, and validation checks.

Analytical frameworks used in the study include capability mapping, value chain analysis, and risk-impact matrices to align technology features with organizational outcomes. The methodology intentionally blends empirical observation with practitioner experience to deliver insights that are both evidence-based and operationally relevant for decision-makers contemplating AIGC initiatives.

A concise synthesis emphasizing strategic clarity, disciplined execution, and ethical stewardship as prerequisites for sustainable value creation with AI-generated content

In conclusion, AI-generated content represents a transformative capability that organizations can harness to accelerate creativity, improve efficiency, and deliver more personalized experiences. Realizing these benefits requires a balanced strategy that pairs targeted pilots with robust governance, investment in talent, and architectures that support both cloud-hosted experimentation and on-premise control where necessary. Regulatory and tariff developments will continue to influence vendor selection and infrastructure decisions, making agility and supplier diversification critical.

Leaders that treat AIGC as a long-term capability-investing in provenance, model stewardship, and human-centered workflows-will be better positioned to capture sustainable competitive advantage. Successful scaling depends on translating technical proficiency into repeatable business processes, aligning KPIs with enterprise objectives, and maintaining transparent communication with stakeholders about risks and mitigations.

As the technology and ecosystem mature, the organizations that combine strategic clarity, disciplined execution, and ethical stewardship will shape industry standards and benefit from more predictable, defensible value creation in content-driven domains.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. AIGC Applications Market, by Content Formats

9. AIGC Applications Market, by Deployment Models

10. AIGC Applications Market, by End-Users

11. AIGC Applications Market, by Industry Vertical

12. AIGC Applications Market, by Region

13. AIGC Applications Market, by Group

14. AIGC Applications Market, by Country

15. Competitive Landscape

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기