석유회수증진(EOR) 시장 : 방법, 저장층 유형, 회수 메커니즘, 용도, 전개 유형별 - 세계 예측(2025-2032년)
Enhanced Oil Recovery Market by Method, Reservoir Type, Mechanism of Recovery, Application, Deployment Type - Global Forecast 2025-2032
상품코드 : 1834184
리서치사 : 360iResearch
발행일 : 2025년 09월
페이지 정보 : 영문 193 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,939 ₩ 5,687,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF 및 Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 4,249 ₩ 6,134,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF 및 Excel 보고서를 동일기업 내 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 5,759 ₩ 8,314,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF 및 Excel 보고서를 동일 기업 내 동일 지역 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 6,969 ₩ 10,061,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

석유회수증진(EOR) 시장은 2032년까지 연평균 복합 성장률(CAGR) 6.91%로 762억 5,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 446억 5,000만 달러
추정 연도 : 2025년 476억 달러
예측 연도 : 2032년 762억 5,000만 달러
CAGR(%) 6.91%

석유회수증진(EOR)을 전략적 자산 최적화 도구로 포지셔닝하는 기술적 추진력, 상업적 요구, 의사결정 기준에 대한 권위 있는 방향성

에너지 전환과 탄화수소 회수 극대화라는 진화하는 요구에 따라 석유회수증진(EOR)(EOR)는 틈새 기술 과제에서 생산 유지와 자산 수명 연장을 위한 전략적 수단으로 승화되었습니다. 운영자, 서비스 제공업체 및 자본 배분 담당자들은 배출, 비용 및 규제 제약에 따라 노후화된 유전에서 회수량을 늘리는 방법과 배치 전략에 점점 더 많은 초점을 맞추었습니다. 이 글에서는 현대 EOR을 정의하는 기술적 기반, 상업적 추진력, 단기적 전략적 선택에 대해 설명합니다.

기술적으로, EOR은 지하 물리학 및 유체역학을 변화시켜 잔류 오일을 동원하는 것을 목표로 하는 다양한 개입 방안을 포괄합니다. 그 방법은 계면 거동을 변화시키는 화학적 배합부터 압력 및 점성 체계를 변경하는 열 투입 및 가스 주입 방식에 이르기까지 다양합니다. 각 방법은 각각 다른 운영 발자국, 공급망 수요, 모니터링 요건을 수반하며, 방법의 선택은 저수지 특성 및 재정 체제와 밀접한 관련이 있습니다. 그 결과, 실무자들은 지질학적, 공학적, 상업적 인풋을 종합하여 최적의 개입 방안을 도출해야 합니다.

상업적 관점에서 볼 때, EOR 추진 여부는 프로젝트의 경제성, 계약 구조, 자본 및 서비스 능력의 가용성에 따라 결정됩니다. 규제, 특히 탄소 관리, 물 이용, 해양 인허가와 관련된 고려사항은 프로젝트 설계의 추가 조건이 될 수 있습니다. 다음 단락에서는 기술 도입의 주요 변화, 관세 및 무역에 미치는 영향, 지역 역학, 경쟁 포지셔닝, 가치 창출 전략으로서 EOR을 고려하는 리더을 위한 실용적인 제안에 대한 개요를 통해 보다 심층적인 분석의 발판을 마련합니다.

기술 혁신, 탄소 관리의 우선순위, 진화하는 상업적 역학이 석유 증진 회수 프로젝트를 평가하고 실행하는 방식을 근본적으로 변화시키고 있습니다.

EOR의 상황은 기술의 성숙, 탈탄소화 요구, 진화하는 자본 배분 패턴의 수렴으로 인해 변화하고 있습니다. 한편, 저류층 시뮬레이션과 갱내 모니터링의 발전으로 보다 정확한 주입제 배치 및 스위핑 효율의 실시간 최적화가 가능해졌습니다. 이러한 기술적 진보는 운영의 불확실성을 줄이고, 성능 성과에 따라 단계적으로 개입할 수 있게 해줍니다.

동시에 탄소 관리의 우선순위는 특정 EOR 기술, 특히 CO2 기반 가스 압입의 비즈니스 사례를 재구성하고 있습니다. 투자자와 사업자들은 EOR 프로젝트를 회수 배럴 수뿐만 아니라 탄소 회계 프로파일과 CCUS 밸류체인과의 통합 가능성도 함께 평가했습니다. 그 결과, 유전 서비스 회사, 기술 제공업체, 탄소 관리 전문가들이 전략적 파트너십을 맺는 것이 일반화되고 있습니다.

상업적 측면에서는 공급망의 탄력성과 비용 억제력이 기술 선택과 배치 순서에 영향을 미치고 있습니다. 운영자는 물류의 복잡성을 최소화하고 기존 인프라를 활용하여 첫 번째 생산량 증가까지 걸리는 시간을 단축하는 접근 방식을 선호합니다. 이와 함께, 주요 생산 지역의 규제 발전과 재정 상황은 본격적인 사업 전개에 착수하기 전에 학습과 위험 회피가 가능한 모듈화된 단계별 프로젝트를 장려하고 있습니다. 이러한 복합적인 힘은 획일적인 솔루션에서 기술적 성능과 환경 및 재정적 고려의 균형을 맞추는 맞춤형 저류층별 전략으로의 전환을 촉진하고 있습니다.

미국의 2025년 관세 도입은 조달 재설계, 지역 생산능력 확대, 계약 혁신의 계기가 되었고, 전 세계 조달 및 리스크 관리를 재구축했습니다.

2025년 미국의 관세 및 관련 무역 조치의 도입은 세계 EOR 생태계에 다각적인 영향을 미쳐 장비 조달, 화학물질 공급 라인, 공급업체 선정 전략에 변화를 가져왔습니다. 주요 부품 및 특수 화학제품의 관세로 인한 비용 상승으로 인해 기업들은 벤더 포트폴리오를 재평가하고 수입 관세 상승의 위험을 줄이기 위해 니어쇼어링 및 지역 조달 옵션을 모색하고 있습니다. 그 결과, 지역적 입지를 구축한 공급업체나 관세의 영향을 줄일 수 있는 대체 물류 경로를 가진 공급업체로 조달 전략이 바뀌었습니다.

관세는 단기적인 조달 효과에 그치지 않고, 장기적인 계약 행동에도 영향을 미쳤습니다. 서비스 기업 및 기술 공급업체들은 가격 조정 조항, 돌발 상황 대응, 공급망 패스스루 메커니즘을 더 많이 포함하도록 계약 조건을 조정했습니다. 이에 따라 공급업체와의 계약에서 계약내용의 명확화, 관세, 운임, 리드타임, 재고보유비용을 고려한 총소유비용 프레임워크의 채택이 강조되고 있습니다.

운영 측면에서는 관세 조치로 인해 EOR 화학제품 및 모듈형 장비 어셈블리의 국내 제조에 대한 관심이 높아져 지역 제조업체의 생산 능력 확대에 대한 투자가 촉진되었습니다. 이러한 투자와 함께 제품 사양과 성능의 동등성에 대한 요구가 강화되고 있으며, 사업자들은 현지에서 조달한 투입물이 기존 세계 배합의 성능을 충족하거나 능가할 것을 요구하고 있습니다. 요약하면, 2025년 관세는 EOR 부문공급망 다각화, 계약 혁신, 지역 산업 역량 개발의 촉매제 역할을 했습니다.

방법, 저류층 유형, 회수 메커니즘, 적용 환경, 전개 유형이 어떻게 수렴하여 EOR 전략을 결정하는지를 보여주는 미묘한 세분화 프레임 워크

세분화 기반 통찰력을 통해 방법론 선택, 저류층 특성, 회수 메커니즘, 적용 환경, 배치 유형화가 EOR 이니셔티브의 기술적 접근 방식과 상업적 실행 가능성을 종합적으로 결정한다는 사실이 밝혀졌습니다. 화학적 접근법에는 알칼리-계면활성제-폴리머 플러딩, 폴리머 플러딩, 계면활성제-폴리머 플러딩, 가스 주입에는 CO2 주입, 탄화수소 가스 주입, 질소 주입, 열적 방법에는 원위치 연소 및 증기 주입이 포함되며, 원위치 연소는 건식 연소 및 습식 연소로, 증기 주입은 순환 증기 자극과 증기 보조 중력 배수로 세분화됩니다. 실제로, 방법의 선택은 저수층의 투과성, 온도, 유체 특성의 상호 작용에 따라 결정되며, 성숙한 샘물 자산에서는 석유 및 가스 접근법이, 특정 상황에서는 중질유에 열을 이용한 방법이 우선시되는 경우가 많습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 석유회수증진(EOR) 시장 : 방법별

제9장 석유회수증진(EOR) 시장 : 저장층 유형별

제10장 석유회수증진(EOR) 시장 : 회수 메커니즘별

제11장 석유회수증진(EOR) 시장 : 용도별

제12장 석유회수증진(EOR) 시장 : 전개 유형별

제13장 석유회수증진(EOR) 시장 : 지역별

제14장 석유회수증진(EOR) 시장 : 그룹별

제15장 석유회수증진(EOR) 시장 : 국가별

제16장 경쟁 구도

LSH
영문 목차

영문목차

The Enhanced Oil Recovery Market is projected to grow by USD 76.25 billion at a CAGR of 6.91% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 44.65 billion
Estimated Year [2025] USD 47.60 billion
Forecast Year [2032] USD 76.25 billion
CAGR (%) 6.91%

An authoritative orientation to the technical drivers, commercial imperatives, and decision criteria that position enhanced oil recovery as a strategic asset optimization tool

The energy transition and the evolving imperative to maximize hydrocarbon recovery have elevated enhanced oil recovery (EOR) from a niche technical exercise to a strategic lever for sustaining production and extending asset life. Operators, service providers, and capital allocators are increasingly focused on methods and deployment strategies that unlock incremental recovery in aging fields while aligning with emissions, cost, and regulatory constraints. This introduction frames the technical foundations, commercial drivers, and near-term strategic choices that define contemporary EOR engagement.

Technologically, EOR encompasses a diverse set of interventions intended to alter subsurface physics and fluid dynamics to mobilize residual oil. Techniques vary from chemical formulations that change interfacial behavior to thermal inputs and gas injection schemes that modify pressure and viscosity regimes. Each approach carries distinct operational footprints, supply chain demands, and monitoring requirements, and the choice of method is tightly coupled to reservoir characteristics and fiscal regimes. Consequently, practitioners must synthesize geological, engineering, and commercial inputs to arrive at optimal interventions.

From a commercial perspective, the decision to proceed with EOR hinges on project economics, contractual frameworks, and the availability of capital and service capabilities. Regulatory considerations, particularly related to carbon management, water use, and offshore permitting, further condition project design. In the paragraphs that follow, the report sets the stage for deeper analysis by outlining key shifts in technology adoption, tariff and trade impacts, segmentation-driven insights, regional dynamics, competitive positioning, and pragmatic recommendations for leaders considering EOR as a value-accretive strategy.

How technological innovation, carbon management priorities, and evolving commercial dynamics are fundamentally reshaping the way enhanced oil recovery projects are evaluated and executed

The EOR landscape is undergoing transformative shifts driven by the convergence of technology maturation, decarbonization imperatives, and evolving capital allocation patterns. Innovations in chemical formulations have reduced required concentrations and improved compatibility with produced water chemistry, while advances in reservoir simulation and downhole monitoring enable more precise placement of injectants and real-time optimization of sweep efficiency. These technological advances lower operational uncertainty and enable staged interventions that can be scaled according to performance outcomes.

Simultaneously, carbon management priorities are reshaping the business case for certain EOR techniques, particularly CO2-based gas injection where the combination of storage and enhanced production creates blended value propositions. Investors and operators are increasingly evaluating EOR projects not only on incremental barrels recovered but also on the carbon accounting profile and potential for integration with CCUS value chains. As a result, strategic partnerships between oilfield service firms, technology providers, and carbon management specialists are becoming more common.

On the commercial front, supply chain resilience and cost containment are influencing technology selection and deployment sequencing. Operators are favoring approaches that minimize logistical complexity and leverage existing infrastructure to reduce time-to-first-incremental-production. In parallel, regulatory developments and fiscal terms in key producing regions are encouraging modular, staged projects that allow for learning and de-risking before committing to full-field rollouts. These combined forces are driving a transition from one-size-fits-all solutions toward more bespoke, reservoir-specific strategies that balance technical performance with environmental and fiscal considerations.

The 2025 United States tariffs triggered procurement redesign, regional capacity expansion, and contract innovations that reshaped global enhanced oil recovery sourcing and risk management

The introduction of United States tariffs and related trade measures in 2025 has had multifaceted implications for the global EOR ecosystem, altering equipment sourcing, chemical supply lines, and vendor selection strategies. Tariff-driven cost increases for key components and specialty chemicals prompted operators to reassess vendor portfolios and to explore nearshoring or regional sourcing options to mitigate exposure to elevated import duties. The result has been a shift in procurement strategies toward suppliers with established regional footprints or alternative logistics pathways that reduce tariff impact.

Beyond immediate procurement effects, tariffs influenced longer-term contracting behavior. Service companies and technology suppliers adjusted contract terms to incorporate greater price adjustment clauses, contingency allocations, and supply chain pass-through mechanisms. This has increased the emphasis on contractual clarity in supplier agreements and on the adoption of total cost of ownership frameworks that account for duty, freight, lead times, and inventory carrying costs.

Operationally, the tariffs accelerated interest in domestic manufacturing of EOR chemicals and modular equipment assemblies, catalyzing investments in capacity expansion by regional producers. These investments are accompanied by intensified scrutiny of product specifications and performance equivalence, as operators demand that locally sourced inputs meet or exceed the performance of established global formulations. In sum, the tariffs of 2025 acted as a catalyst for supply chain diversification, contractual innovation, and regional industrial capacity development within the EOR sector.

A nuanced segmentation framework showing how method, reservoir type, recovery mechanism, application environment, and deployment typology converge to determine EOR strategy

Segmentation-driven insight reveals that method selection, reservoir characteristics, mechanism of recovery, application environment, and deployment typology collectively determine the technical approach and commercial viability of an EOR initiative. Based on method, markets are evaluated across chemical, gas injection, microbial, and thermal techniques; chemical approaches include alkaline-surfactant-polymer flooding, polymer flooding, and surfactant-polymer flooding, while gas injection spans CO2 injection, hydrocarbon gas injection, and nitrogen injection, and thermal methods encompass in-situ combustion and steam injection with in-situ combustion further differentiated into dry and wet combustion and steam injection subdivided into cyclic steam stimulation and steam-assisted gravity drainage. In practice, method choice is informed by the interplay of reservoir permeability, temperature, and fluid properties, with chemical and gas approaches often favored in mature, waterflooded assets and thermal methods prioritized for heavier oil in specific contexts.

Based on reservoir type, distinctions between carbonate and sandstone reservoirs are critical; carbonate reservoirs commonly present fractured or vuggy architectures that demand tailored injection strategies and fracture-informed modeling, whereas sandstone reservoirs may be consolidated or unconsolidated, influencing injectivity, sand control measures, and well completion approaches. The mechanism of recovery further layers nuance into project design: interfacial tension reduction, mobility control, pressure maintenance, viscosity reduction, and wettability alteration each target different recovery barriers and require bespoke monitoring and surveillance programs to validate effectiveness.

Application considerations differentiate offshore versus onshore deployment environments, with offshore projects facing higher logistical complexity, stricter safety and environmental controls, and higher capital intensity, while onshore projects offer greater flexibility for incremental testing and modular implementation. Finally, deployment type-whether brownfield EOR projects that retrofit existing infrastructure or greenfield projects built around EOR from the outset-affects capital planning, risk allocation, and the pace at which full-field strategies can be executed. Integrating these segmentation lenses enables a pragmatic, reservoir-specific roadmap that balances technical performance with operational and commercial constraints.

How regional operational realities, infrastructure endowments, and policy regimes across the Americas, Europe Middle East & Africa, and Asia-Pacific shape EOR technology choices and project design

Regional dynamics exert a decisive influence on technology selection, supply chains, and commercial structuring of EOR projects. In the Americas, resource diversity and established service ecosystems support a wide spectrum of EOR methods, and mature basins often provide the operational experience and infrastructure that facilitate staged deployments and pilot-to-full-field transitions. Policy frameworks and carbon management initiatives in parts of North and South America are also shaping interest in CO2-based solutions and integrated storage-production models.

In Europe, Middle East & Africa, the operational context varies significantly across jurisdictions. The Middle East presents large, often carbonate-dominated reservoirs with both legacy and greenfield opportunities, where high-capacity infrastructure and sovereign-led project models can enable large-scale gas injection and thermal options in select settings. Europe's stringent environmental standards and regulatory scrutiny drive demand for EOR approaches with clear environmental performance profiles, while Africa's frontier basins and project economics create opportunities for modular, low-footprint interventions.

Asia-Pacific exhibits a wide spectrum of operational challenges and opportunities, with heavy oil provinces where thermal methods are relevant, and densely developed basins where chemical and gas injection projects must contend with complex regulatory and land-use considerations. Supply chain proximity to major chemical manufacturers in parts of the region is an advantage for certain EOR techniques, while logistics constraints in remote offshore locales necessitate careful planning and robust contingency measures. Together, these regional characteristics underscore the importance of aligning technology selection, partner ecosystems, and contractual models with local operational realities and policy regimes.

Competitive dynamics driven by proprietary technologies, integrated delivery models, and performance-aligned commercial structures that determine winner differentiation in EOR engagements

Competitive positioning in the EOR landscape reflects a blend of technology capability, integrated service delivery, intellectual property portfolios, and the depth of reservoir engineering expertise. Leading players differentiate through proprietary chemical formulations, modular equipment designs, advanced subsurface monitoring suites, or the ability to combine engineering services with carbon management offerings. Strategic partnerships that link specialty chemical producers, reservoir modelers, and field services teams create end-to-end value propositions that lower integration risk for operators.

In addition to technical differentiation, companies that demonstrate repeatable delivery models for pilot-to-scale transitions tend to win longer-term engagements. This requires not only demonstrable field performance but also robust governance frameworks for data sharing, performance-based contracting, and joint risk-reward structures. Firms that can offer flexible commercial constructs-such as performance-linked fees, staged commitments, and options for carriage of incremental production-are increasingly attractive to risk-conscious operators.

Service organizations that invest in local manufacturing, regional logistics, and technical training programs build durable advantages in markets where supply chain resilience and local content are increasingly emphasized. Finally, entrants that combine digitalization tools-real-time surveillance, machine-learning-driven reservoir optimization, and integrated production forecasting-with traditional engineering services stand to accelerate project execution and improve recovery outcomes, provided they can demonstrate sustained field-level improvements under operational constraints.

High-impact operational, procurement, and commercial actions that industry leaders can deploy to de-risk EOR pilots and accelerate reliable scale-up across asset portfolios

Industry leaders should pursue a set of pragmatic, high-impact actions to translate EOR potential into predictable, low-risk outcomes. Begin by prioritizing pilot programs that are explicitly designed to produce decision-quality data; pilots should have clear performance metrics, monitoring frameworks, and pre-agreed escalation triggers that allow for staged scale-up only when technical and commercial thresholds are met. This reduces exposure to large up-front capital commitments and enables iterative learning.

Second, strengthen supply chain resilience through diversified sourcing and regional partnerships. Where tariffs or logistics risks are material, assess nearshoring options for key chemical inputs and modular equipment to shorten lead times and reduce exposure to trade volatility. Complement procurement diversification with contractual protections, such as price-adjustment mechanisms and supplier performance bonds, to align incentives and mitigate delivery risk.

Third, integrate carbon management considerations into project evaluation rather than treating them as add-on compliance exercises. For CO2-based approaches, establish clear accounting and verification protocols and pursue partnerships that can deliver co-benefits such as storage credits or access to carbon markets. Finally, adopt hybrid commercial models that link compensation to measured incremental production and cost control; this aligns supplier incentives with operator outcomes and creates a clearer pathway to scale successful pilots into full-field deployments. Executed cohesively, these actions will improve predictability, reduce cost overruns, and accelerate value realization.

A transparent, multi-method research approach combining technical review, stakeholder engagement, and segmentation-focused synthesis to support practical decision-making in EOR

The research methodology underpinning this analysis combines technical review, stakeholder interviews, and cross-disciplinary synthesis to ensure robust and actionable conclusions. Technical review entailed a comprehensive evaluation of peer-reviewed literature, field case studies, and public technical disclosures to map the evolving capabilities of chemical, gas, microbial, and thermal methods, and to understand their operational envelopes and monitoring requirements.

Stakeholder interviews were conducted with reservoir engineers, field operations managers, procurement specialists, and independent consultants to capture experiential insights on deployment challenges, contractual innovations, and detection of early signs of technical success or failure. These qualitative inputs were triangulated with engineering best practices and documented field performance to produce a balanced assessment of what drives successful outcomes across different reservoir types and application settings.

Finally, the methodology applied a segmentation-driven lens-spanning method, reservoir type, mechanism of recovery, application, and deployment type-to ensure the analysis is actionable at the project level. Emphasis was placed on reproducibility of findings, transparency of assumptions, and the delineation of uncertainty ranges where empirical evidence remains limited. This layered approach delivers a practical synthesis that supports decision-making across technical, commercial, and regulatory dimensions.

Synthesis of strategic imperatives showing how integrated engineering, procurement, and commercial practices unlock reliable enhanced oil recovery outcomes across asset portfolios

Enhanced oil recovery represents a pragmatic and increasingly essential component of contemporary asset stewardship, offering operators a means to extend production life, recover incremental resources, and integrate recovery strategies with carbon management objectives. The path to successful EOR is rarely linear; it demands careful alignment of method selection with reservoir characteristics, a disciplined approach to piloting and scale-up, and contractual structures that allocate risk and incentivize performance.

Key trends-such as improvements in chemical formulations, the growing intersection with carbon management, and supply chain reconfiguration in response to trade measures-are reshaping how EOR projects are designed and executed. Leaders who proactively adjust procurement strategies, invest in local manufacturing where warranted, and adopt performance-linked commercial models will be best positioned to convert pilot successes into repeatable, portfolio-level value.

In closing, EOR should be approached as a systems problem that requires coordination across subsurface engineering, surface operations, commercial contracting, and regulatory engagement. When these elements are integrated thoughtfully, EOR can deliver meaningful operational and economic benefits while aligning with broader environmental and corporate objectives.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Enhanced Oil Recovery Market, by Method

9. Enhanced Oil Recovery Market, by Reservoir Type

10. Enhanced Oil Recovery Market, by Mechanism of Recovery

11. Enhanced Oil Recovery Market, by Application

12. Enhanced Oil Recovery Market, by Deployment Type

13. Enhanced Oil Recovery Market, by Region

14. Enhanced Oil Recovery Market, by Group

15. Enhanced Oil Recovery Market, by Country

16. Competitive Landscape

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기