저소비전력 및 소형 가스 센서 시장 : 유형별, 가스 유형별, 최종 용도 산업별, 용도별 - 세계 예측(2025-2032년)
Low Power & Miniaturized Gas Sensors Market by Type, Gas Type, End-Use Industry, Application - Global Forecast 2025-2032
상품코드 : 1828026
리서치사 : 360iResearch
발행일 : 2025년 09월
페이지 정보 : 영문 190 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,939 ₩ 5,691,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF 및 Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 4,249 ₩ 6,138,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF 및 Excel 보고서를 동일기업 내 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 5,759 ₩ 8,320,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF 및 Excel 보고서를 동일 기업 내 동일 지역 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 6,969 ₩ 10,068,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

저소비전력·소형 가스 센서 시장은 2032년까지 CAGR 10.99%로 26억 7,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 11억 6,000만 달러
추정연도 2025 12억 8,000만 달러
예측연도 2032 26억 7,000만 달러
CAGR(%) 10.99%

소형화, 저전력 설계, 시스템 통합이 업계 전반의 센서 선택 및 도입 전략을 재정의하는 방법을 종합적으로 소개

아래 주요 요약은 저전력 및 소형화된 가스 센서의 현황을 소개하고, 현재 성공적인 제품 전략을 정의하는 재료 과학, 전자공학 통합 및 시스템 레벨 설계의 융합을 강조합니다.

최근 저전력 전자장치와 센싱 전송 메커니즘의 발전으로 디바이스의 실적와 에너지 소비가 감소하여 웨어러블 건강 모니터부터 분산형 사물인터넷 노드까지 제약이 많은 환경에도 배치할 수 있게 되었습니다. 이러한 발전은 단일 장치의 성능 지표에서 시스템 상호운용성, 수명주기 전력 관리, 장기적인 배치에 맞는 교정 전략에 대한 논의로 전환되고 있습니다.

이해관계자들은 센서의 감도와 선택성뿐만 아니라 제조 재현성, 공급망 견고성, 무선 교정 및 진단을 지원하는 펌웨어 아키텍처를 고려해야 합니다. 또한 안전에 중요한 용도에 대한 규제 요건과 환경 모니터링에 대한 관심이 높아짐에 따라 제품 사양이 변경되어 소형화와 신뢰성의 균형을 맞추는 센서에 대한 압력이 증가하고 있습니다. 이 요약의 나머지 부분에서는 기술 로드맵을 상업적 및 규제적 현실과 일치시키려는 제품 리더, 조달 팀, 시스템 통합사업자를 위해 이러한 역학을 실용적인 인사이트으로 요약합니다.

재료의 혁신, 초저전력 전자제품, 임베디드 인텔리전스가 센서 공급업체의 용도 모델과 상거래 흐름을 재구성하는 방법

저전력, 소형화된 가스 센서를 둘러싼 환경은 재료, 전자, 소프트웨어 통합의 병행적인 발전에 힘입어 새로운 용도와 비즈니스 모델을 함께 열어주는 혁신적인 변화를 경험하고 있습니다.

새로운 반도체 산화물 및 기능화 나노 물질을 포함한 재료 과학의 획기적인 발전은 선택성을 향상시키는 동시에 더 작은 전송 소자를 가능하게 했습니다. 동시에 초저전력 마이크로컨트롤러, 에너지수확기술 모듈, 최적화된 전원 관리 펌웨어의 발전으로 배터리 구동 및 에너지 제약이 있는 장치의 작동 수명이 연장되었습니다. 이러한 하드웨어의 개선은 소프트웨어에 의해 증폭됩니다. 내장된 머신러닝 및 적응형 보정 루틴은 현재 드리프트를 완화하고 오감지를 줄이며, 컴팩트한 실적로 다중 매개변수 보정을 가능하게 합니다.

시스템 설계자들은 점점 더 모듈성과 상호운용성을 우선시하고 있으며, 표준화된 디지털 인터페이스, 자체 테스트 기능, 안전한 펌웨어 업데이트 경로를 통합한 센서 패키지를 선호하고 있습니다. 그 결과, 비즈니스 모델은 서비스형 센서와 구독 기반 분석으로 전환되고 있으며, 센서는 단발성 하드웨어 판매가 아닌 지속적인 데이터 스트림의 진입점이 되고 있습니다. 마지막으로 대기질 및 안전 모니터링에 대한 규제 모멘텀은 공공 및 민간 부문 모두에서 채택을 가속화하고 있으며, 제조업체는 비용 및 전력 소비 목표를 유지하면서 정의된 규정 준수 임계값을 충족하는 솔루션을 설계하도록 촉구하고 있습니다. 이러한 변화로 인해 경쟁 우위가 재정의되고, 센서 기술의 선택과 도입 기준이 바뀌고 있습니다.

진화하는 미국의 관세 정책이 센서 밸류체인 전반의 조달 전략, 공급업체 다각화, 공급망 탄력성 설계에 미치는 실질적인 영향

미국의 관세 및 무역 정책의 발전은 기업이 수입 관세 인상과 규제 강화에 대응하는 과정에서 세계 센서 공급망의 조달 전략, 공급업체 선택 및 비용 구조에 구체적인 영향을 미치고 있습니다.

제조업체와 OEM은 조달처를 다변화하고, 중요한 생산 공정을 최종 시장 근처로 옮기고, 관세 변동에 따른 영향을 줄이기 위해 대체 공급업체를 선정하는 방식으로 대응하고 있습니다. 이러한 전략적 조정은 종종 지역적 제조 능력을 갖춘 공급업체나 지역적 함량 및 부품의 출처를 추적할 수 있음을 증명할 수 있는 공급업체에 우선권을 부여합니다. 동시에 기업은 관세의 영향을 받는 부품에 대한 의존도를 줄이기 위해 범용 재료를 대체하고, 여러 부품으로 구성된 어셈블리를 가능한 한 단일 모듈로 통합하는 등 부품과 어셈블리의 재설계에 투자하고 있습니다.

또한 조달팀은 관세 분담 조항, 장기적인 부품 확정, 과도한 계약 위약금 없이 생산 능력을 전환할 수 있는 유연한 제조 계약을 포함하도록 계약을 재협상하고 있습니다. 제품 로드맵은 공급업체와 지역 간 빠른 전환을 위해 제조에 적합한 설계와 공급에 적합한 설계를 모두 강조하고 있습니다. 기업이 적응할 때, 예측 가능한 납기를 유지하면서 제품 성능을 유지하는 것을 염두에 두고, 재편에 소요되는 단기적인 비용과 무역 혼란에 노출될 기회를 줄이는 전략적 이점의 균형을 맞출 수 있습니다.

세분화 기반 인사이트를 통해 센서 전도도 선택, 가스별 감지 과제, 산업 요구사항, 용도 제약 조건을 제품 로드맵에 맞게 조정할 수 있습니다.

주요 세분화 렌즈는 제품 개발 및 채널 전략을 안내하는 동시에 기술 성능과 대응 가능한 용도의 적합성을 구조적으로 해석하는 방법을 제공합니다. 유형별로 전기화학식 가스 센서, 적외선 가스 센서, 고체 가스 센서를 조사하여 선택성, 전력 소비, 소형 장치로의 통합을 위한 확장성 사이의 명확한 트레이드오프를 강조합니다. 전기화학 솔루션은 특정 독성 가스에 대해 높은 감도를 제공하는 경우가 많지만, 전해질 관리 및 수명에 대한 고려가 필요합니다. 반면, 적외선 접근 방식은 특정 분자 종에 대해 안정적인 비접촉식 검출을 제공하지만, 전력 소비와 폼팩터에 미치는 영향은 다릅니다. 솔리드 센서는 CMOS 호환 집적화와 적극적인 소형화 기회를 제공하지만, 신호 처리로 처리해야 하는 특이성을 희생해야 하는 단점이 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 저소비전력·소형 가스 센서 시장 : 유형별

제9장 저소비전력·소형 가스 센서 시장 : 가스 유형별

제10장 저소비전력·소형 가스 센서 시장 : 최종 용도 산업별

제11장 저소비전력·소형 가스 센서 시장 : 용도별

제12장 저소비전력·소형 가스 센서 시장 : 지역별

제13장 저소비전력·소형 가스 센서 시장 : 그룹별

제14장 저소비전력·소형 가스 센서 시장 : 국가별

제15장 경쟁 구도

KSA
영문 목차

영문목차

The Low Power & Miniaturized Gas Sensors Market is projected to grow by USD 2.67 billion at a CAGR of 10.99% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.16 billion
Estimated Year [2025] USD 1.28 billion
Forecast Year [2032] USD 2.67 billion
CAGR (%) 10.99%

A comprehensive introduction to how miniaturization, low-power design, and system integration are redefining sensor selection and deployment strategies across industries

The following executive summary introduces the contemporary landscape of low power and miniaturized gas sensors, emphasizing the convergence of material science, electronics integration, and system-level design that now defines successful product strategies.

Recent advances in low-power electronics and sensing transduction mechanisms have reduced device footprints and energy draw, enabling deployment in constrained environments from wearable health monitors to distributed Internet of Things nodes. These developments have shifted conversations away from single-device performance metrics toward considerations of system interoperability, lifecycle power management, and calibration strategies tailored to long-duration deployments.

Stakeholders must consider not only sensor sensitivity and selectivity but also manufacturing repeatability, supply-chain robustness, and firmware architectures that support over-the-air calibration and diagnostics. In addition, regulatory requirements for safety-critical applications and increasing emphasis on environmental monitoring are reshaping product specifications, creating pressure for sensors that balance miniaturization with reliability. The remainder of this summary distills these dynamics into actionable insights for product leaders, procurement teams, and systems integrators who aim to align technical roadmaps with commercial and regulatory realities.

How materials breakthroughs, ultra-low-power electronics, and embedded intelligence are reshaping application models and commercial pathways for sensor suppliers

The landscape for low power and miniaturized gas sensors is experiencing transformative shifts driven by parallel advances in materials, electronics, and software integration that together unlock new applications and business models.

Materials science breakthroughs, including novel semiconducting oxides and functionalized nanomaterials, have improved selectivity while enabling smaller transduction elements. At the same time, advances in ultra-low-power microcontrollers, energy-harvesting modules, and optimized power management firmware have extended operational lifetimes for battery-powered and energy-constrained devices. These hardware improvements are amplified by software: embedded machine learning and adaptive calibration routines now mitigate drift, reduce false positives, and enable multi-parameter compensation within compact footprints.

System architects are increasingly prioritizing modularity and interoperability, favoring sensor packages that integrate standardized digital interfaces, self-test capability, and secure firmware update paths. As a result, business models are shifting toward sensor-as-a-service and subscription-based analytics where the sensor becomes an entry point for continuous data streams rather than a one-off hardware sale. Finally, regulatory momentum around air quality and safety monitoring is accelerating adoption in both public and private sectors, prompting manufacturers to design solutions that meet defined compliance thresholds while maintaining cost and power targets. Together, these shifts are redefining competitive advantage and the criteria by which sensor technologies are selected and deployed.

The practical effects of evolving U.S. tariff policies on procurement strategies, supplier diversification, and design-for-supply resilience across sensor value chains

Tariffs and trade policy developments in the United States are exerting a tangible effect on procurement strategies, supplier selection, and cost structures within global sensor supply chains as firms respond to heightened import duties and regulatory scrutiny.

Manufacturers and OEMs have reacted by diversifying sourcing footprints, relocating critical production steps closer to end markets, and qualifying alternate suppliers to mitigate exposure to tariff volatility. These strategic adjustments often prioritize suppliers with regional manufacturing capabilities or those that can demonstrate local content and traceable component provenance. Simultaneously, companies have invested in redesigning components and assemblies to reduce dependence on tariff-impacted parts, including substitution of commodity materials and consolidation of multi-component assemblies into single modules where feasible.

Procurement teams are also renegotiating contracts to include tariff-sharing clauses, longer-term component commitments, and flexible manufacturing agreements that allow capacity shifts without excessive contractual penalty. For product roadmaps, the combined effect has been an increased emphasis on design-for-manufacture and design-for-supply resiliency, enabling quicker transitions between suppliers and regions. As firms adapt, they balance the near-term costs of retooling against the strategic benefit of reduced exposure to trade disruptions, with an eye toward preserving product performance while maintaining predictable delivery timelines.

Segmentation-driven insights that align sensor transduction choices, gas-specific detection challenges, industry requirements, and application constraints to product roadmaps

Key segmentation lenses provide a structured way to interpret technology performance and addressable application fit while guiding product development and channel strategy. Based on Type, market is studied across Electrochemical Gas Sensors, Infrared Gas Sensors, and Solid-State Gas Sensors, which highlights distinct trade-offs among selectivity, power consumption, and scalability for integration into compact devices. Electrochemical solutions often offer high sensitivity to specific toxic gases but require considerations around electrolyte management and lifetime, whereas infrared approaches deliver stable, non-contact detection for certain molecular species with different power and form-factor implications. Solid-state sensors present opportunities for CMOS-compatible integration and aggressive miniaturization, albeit sometimes at the cost of specificity that must be addressed through signal processing.

Based on Gas Type, market is studied across Ammonia, Butane, Carbon Dioxide, Carbon Monoxide, Chlorine, Hydrogen, Hydrogen Sulfide, Methane, Nitric Oxide, Nitrogen Dioxide, Oxygen, Propane, Refrigerant Gas, and Sulfur Dioxide, underscoring the diversity of sensing chemistries and calibration regimes required to support multi-gas deployments. Each gas presents unique detection thresholds, cross-sensitivity concerns, and environmental dependencies that influence choice of sensing transduction and conditioning electronics. Consequently, application engineers must align sensor selection with target gas characteristics, expected ambient variabilities, and maintenance cycles to ensure dependable performance.

Based on End-Use Industry, market is studied across Aerospace, Automotive, Consumer Electronics, Food & Beverage, Healthcare, and Military & Defense, indicating how industry-driven requirements-such as safety integrity levels, environmental resistance, electromagnetic compatibility, and validation protocols-shape form factor, certification, and supplier qualification efforts. Finally, Based on Application, market is studied across Air Quality Monitoring, Gas Leakage Detection, and Smart Home Systems, each of which imposes specific needs for detection latency, false alarm tolerance, and user-facing integration. Taken together, these segmentation lenses inform product roadmaps, regulatory planning, and go-to-market strategies by aligning technical capabilities with customer expectations and operational constraints.

How regional regulatory priorities, manufacturing footprints, and deployment use cases drive differentiated demand and supply-chain strategies across key global regions

Regional dynamics influence supply-chain design, regulatory compliance priorities, and customer requirements in ways that affect adoption patterns and partnership strategies across three macro regions. In the Americas, demand is shaped by a combination of industrial safety regulations, growing municipal air quality monitoring programs, and strong adoption of IoT platforms, which together create opportunities for integrated, turnkey sensing solutions designed for rapid deployment and interoperability with cloud analytics. Firms operating here often prioritize certifications and data security protocols that meet both federal and state-level expectations.

In Europe, Middle East & Africa, regulatory rigor around emissions and workplace safety, combined with diverse climatic and infrastructural conditions, drives a preference for sensors that demonstrate durability, broad operating temperature ranges, and clear compliance documentation. This region also shows a willingness to adopt advanced calibration and data-quality assurance practices as part of procurement requirements. Meanwhile, the Asia-Pacific region exhibits a rapid pace of deployment across consumer, industrial, and smart-city initiatives, with particular emphasis on cost-effective scaling and local manufacturing partnerships. Strong government-led environmental monitoring initiatives and rapid urbanization in key markets have accelerated demand for distributed sensing networks and integrated solutions that can be manufactured at scale.

Across all regions, companies are evaluating a mix of localization strategies, certification approaches, and channel partnerships to address region-specific technical, regulatory, and commercial considerations. This regional differentiation informs decisions about where to place testing facilities, how to structure warranties and service agreements, and which product variants to prioritize for specific geographies.

Competitive dynamics showing how established manufacturers, innovative entrants, and integrators combine technical depth and systems capabilities to shape supplier selection

Competitive dynamics in the low power and miniaturized gas sensor space are shaped by a mix of established component suppliers, specialized startups, and systems integrators that combine sensing hardware with analytics and connectivity layers.

Established sensor manufacturers bring depth in materials development, volume manufacturing, and long-term reliability testing that appeal to safety-critical applications. Startups and smaller technology firms, by contrast, often differentiate through novel transduction approaches, advanced packaging techniques, or differentiated system-level software that compensates for intrinsic sensor limitations. Systems integrators and OEMs play a pivotal role in bundling sensors with power management, calibration services, and secure connectivity to create compelling, deployable solutions for end users.

Strategic partnerships and acquisitions are common as firms seek to combine sensing IP with cloud analytics, machine learning for drift compensation, and low-power wireless modules. For procurement teams, supplier evaluation must therefore weigh not only component performance but also the supplier's ability to provide long-term calibration support, lifecycle firmware updates, and responsive technical assistance. In addition, intellectual property positioning and manufacturing scalability often determine which suppliers can successfully transition from prototype to high-volume production without compromising product timelines or quality assurance standards.

Actionable steps for product, procurement, and commercial leaders to strengthen supply resilience, validation rigor, and systems-level differentiation for sensor deployments

Leaders should prioritize a set of practical actions that accelerate adoption while reducing technical and supply risk across product, procurement, and go-to-market functions.

First, integrate design-for-supply principles early in the product development lifecycle to enable multiple qualified sources for critical components and to simplify substitution pathways. Concurrently, invest in modular hardware and firmware architectures that permit rapid sensor swaps and over-the-air calibration updates without the need for costly field service. This approach reduces time to market and enhances resilience against component shortages and tariff-driven disruptions.

Second, commit resources to rigorous multi-environment validation plans that reflect end-use industry conditions, including temperature extremes, humidity cycles, and electromagnetic interference scenarios. These tests should validate not only nominal sensitivity but also long-term drift, cross-sensitivity under mixed-gas exposures, and recovery behavior after fault events. Third, develop clear data governance and security frameworks that support remote diagnostics, secure firmware updates, and compliance with regional privacy or telemetry regulations. Finally, pursue partnerships that combine sensing IP with analytics and connectivity providers to deliver turnkey solutions. Doing so accelerates customer value realization and builds defensible positioning in both safety-critical and consumer-facing segments.

An evidence-based methodology combining technical assessment, supplier profiling, and scenario analysis to produce practical, deployable insights for decision-makers

This research synthesizes primary technical assessment, supplier profiling, and cross-industry use-case analysis to produce insights that are relevant to product leaders, procurement teams, and systems integrators.

Primary inputs include technical literature on sensing transduction mechanisms, public regulatory documents for safety and environmental monitoring, and validated supplier disclosures describing manufacturing capability and product roadmaps. These inputs were analyzed alongside system-level engineering criteria such as power budgets, interface standards, and calibration strategies to create a cohesive view of technology fit for target applications. Where possible, laboratory performance characteristics reported in technical datasheets were interpreted through the lens of real-world deployment constraints, including expected environmental variability and maintenance intervals.

The methodology emphasizes cross-validation across sources to ensure that claims about durability, power consumption, and integration complexity align with observed engineering practices. In addition, scenario analysis was used to surface how supply-chain disruptions, regulatory changes, and application-driven requirements interact to affect product selection and commercialization timelines. The resulting synthesis yields practical guidance rather than proprietary forecasting, aiming to inform design choices, procurement diligence, and partnership strategies.

Synthesis and concluding insights on how strategic alignment of technology, validation, and supply-chain resilience will determine leadership in sensor-driven applications

In conclusion, the combined trajectories of miniaturization, low-power innovation, and system-level integration are creating fertile ground for expanded deployment of gas sensing across industrial, consumer, and public-good applications. Success will favor those organizations that systematically align materials and transduction choices with firmware strategies, validation rigor, and supply-chain resilience. Transitioning from component-centric thinking to solution-focused architectures-where sensors are evaluated as data sources within broader, secure, and maintainable systems-will be essential for long-term adoption.

Moreover, regulatory momentum, regional procurement priorities, and evolving commercial models that emphasize recurring services over one-time hardware sales are shifting the competitive basis of value. Firms that invest in modularity, multi-source strategies, and partnership ecosystems will find it easier to respond to tariff-induced disruptions and shifting certification landscapes. Finally, targeted investments in testing, calibration, and firmware maintenance will protect product reliability and customer trust, enabling broader deployment in safety-sensitive and environmental monitoring contexts. These strategic priorities together form a pragmatic roadmap for organizations intent on leveraging low power and miniaturized gas sensors as differentiating capabilities.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Low Power & Miniaturized Gas Sensors Market, by Type

9. Low Power & Miniaturized Gas Sensors Market, by Gas Type

10. Low Power & Miniaturized Gas Sensors Market, by End-Use Industry

11. Low Power & Miniaturized Gas Sensors Market, by Application

12. Low Power & Miniaturized Gas Sensors Market, by Region

13. Low Power & Miniaturized Gas Sensors Market, by Group

14. Low Power & Miniaturized Gas Sensors Market, by Country

15. Competitive Landscape

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기