콜센터용 인공지능 시장 : 제공 제품, 채널, 배포 유형, 조직 규모별 - 세계 예측(2025-2030년)
Artificial Intelligence in Call Centers Market by Offerings, Channel, Deployment Type, Organization Size - Global Forecast 2025-2030
상품코드 : 1807965
리서치사 : 360iResearch
발행일 : 2025년 08월
페이지 정보 : 영문 198 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,939 ₩ 5,657,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF 및 Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 4,249 ₩ 6,102,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF 및 Excel 보고서를 동일기업 내 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 5,759 ₩ 8,271,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF 및 Excel 보고서를 동일 기업 내 동일 지역 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 6,969 ₩ 10,008,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

콜센터용 인공지능 시장은 2024년에는 18억 6,000만 달러에 달하며, 2025년에는 21억 7,000만 달러, CAGR 17.10%로 성장하며, 2030년에는 48억 2,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 18억 6,000만 달러
추정연도 2025 21억 7,000만 달러
예측연도 2030 48억 2,000만 달러
CAGR(%) 17.10%

콜센터용 인공지능의 새로운 지평을 열다 고객 참여와 운영의 우수성을 대규모로 형성할 수 있는 인공지능의 새로운 지평을 열다.

인공지능은 고객 서비스 업무에 큰 변화를 초래하는 촉매제로 등장했습니다. 콜센터 환경에서는 인공지능의 통합을 통해 과거에는 불가능하다고 여겨졌던 응답 정확도 향상, 보다 개인화된 고객 참여, 간소화된 워크플로우를 실현할 수 있습니다. 경쟁이 치열해지는 시장에서 지능형 자동화 및 예측 분석의 힘을 활용하는 기업은 고객 만족도를 높이고 운영 비용을 최적화함으로써 분명한 우위를 점하고 있습니다.

AI 기술이 가져올 혁신적인 변화 콜센터 환경에서 원활한 고객 여정 생성 및 상담원 생산성 최적화 지원

대화형 AI와 예측 분석의 발전은 콜센터 업무의 근본적인 재구성을 추진하고 있습니다. 정교한 알고리즘의 적용으로 자연 언어 이해는 기본적인 키워드 인식을 넘어 고객의 의도의 뉘앙스를 진정으로 이해하게 되었습니다. 그 결과, 자동응답시스템은 공감성을 유지하면서 해결 시간을 단축하는 인간과 같은 대화를 제공할 수 있게 되었습니다.

2025년 미국 관세의 콜센터 서비스 프로바이더에 대한 파급효과 분석 기술 소싱 및 비용 관리 전략

2025년 수입 하드웨어 부품 및 소프트웨어 라이선스에 대한 새로운 관세 조치의 도입은 전 세계 콜센터 기술 공급망에 파장을 불러일으키고 있습니다. 특수 프로세서, 음성 인식 모듈, 서버 인프라에 의존하는 공급자는 조달 비용 상승에 직면해 있습니다. 이러한 변화에 따라 많은 공급업체들은 공급업체와의 계약을 재검토하고, 다른 조달 경로를 모색하고, 현지 조립 및 개발에 투자하여 리스크를 줄이기 위해 노력하고 있습니다.

시장 세분화에 대한 종합적인 인사이트를 통해 제공 채널 및 기업 차원의 배포 모델의 미묘한 레이어를 드러냅니다.

시장 제공, 참여 채널, 배포 모델, 조직 규모 등이 어떻게 상호 작용하여 채택 경로를 형성하는지 살펴보면 콜센터 AI의 상황에 대한 미묘한 견해가 드러납니다. 서비스 제공 영역에서는 완전 관리형 운영과 맞춤형 통합을 위한 전문 서비스를 모두 포함하는 서비스 지향적 계약과 지능형 음성 응답 플랫폼에서 실시간 성능 관리 및 분석이 결합된 전체 솔루션 지향적 제품군으로 시장이 나뉩니다. 인력 최적화 제품군에 이르는 솔루션 지향적 제품으로 시장이 나뉘어져 있습니다.

AI 도입에 있으며, 지역별 차이점 강조, 세계 시장 규제 역학 및 고객 기대치를 바탕으로 한 지역별 전망

지역적 뉘앙스는 AI 기반 콜센터 솔루션이 어떻게 채택되고 확장되는지를 형성하는 데 있으며, 매우 중요한 역할을 합니다. 아메리카 지역에서는 클라우드 프레임워크와 옴니채널 플랫폼을 가장 먼저 도입하여 대량의 다국어 컨택센터를 지원하고 있습니다. 데이터 프라이버시를 둘러싼 규제가 암호화와 컴플라이언스 관리의 통합을 가속화하고 있으며, 서비스 프로바이더는 이러한 기능을 핵심 제품에 통합해야 합니다.

혁신 파트너십과 경쟁 포지셔닝 다이내믹스를 통해 AI 콜센터 생태계를 구성하는 주요 기업의 전략적 검토

진화하는 AI 콜센터 생태계는 세계 기술 대기업, 전문 서비스 프로바이더, 민첩한 스타트업 간의 역동적인 상호 작용이 특징입니다. 기존 플랫폼 벤더들은 광범위한 R&D 예산을 활용하여 고급 음성 텍스트 엔진과 예측 분석을 통합한 고객 참여 제품군을 제공함으로써 대규모 기업 계정에서 입지를 넓혀가고 있습니다.

AI 역량을 활용하는 업계 리더를 위한 실행 가능한 전략적 제안 운영적 우수성을 촉진하고 지속가능한 성장 궤도를 촉진

콜센터 운영에서 AI의 혁신 가능성을 활용하기 위해 업계 리더들은 혁신과 거버넌스, 그리고 지속적인 개선의 균형을 맞추는 전략적 로드맵을 추구해야 합니다. 먼저, 기술 투자를 명확한 비즈니스 목표와 일치시키면 AI 도입이 보다 광범위한 자동화 시나리오로 확장되기 전에 예측 라우팅 및 자동 품질 보증과 같은 고부가가치 이용 사례에 대응할 수 있습니다.

엄격한 다중 소스 조사 방법론 정성적, 정량적 접근의 세부 전문가 참여 및 분석 프레임워크 데이터의 무결성을 보장

이 조사는 신뢰성과 깊이 있는 인사이트를 확보하기 위해 정성적 방법과 정량적 방법을 결합한 엄격한 다단계 조사 방식을 채택했습니다. 첫 번째 단계에서는 시장 역학 및 기술 동향에 대한 기초적인 이해를 확립하기 위해 업계 잡지, 규제 당국에 제출된 서류, 일반에 공개된 재무 보고서 등을 활용한 종합적인 2차 조사를 진행했습니다.

콜센터 운영 및 전략적 의사결정에 있으며, AI가 미치는 변혁적 영향과 향후 과제를 강조하는 주요 연구 결과 및 향후 과제를 정리했습니다.

이번 주요 요약에서는 옴니채널 인터랙션의 원활한 오케스트레이션부터 실시간 인력 성능 최적화에 이르기까지 인공지능이 콜센터 업무를 재구성하는 심오한 방법을 소개했습니다. 지정학적 요인, 진화하는 고객 기대치, 급속한 기술 발전의 누적된 영향은 혁신과 신중한 리스크 관리의 균형을 맞추는 적응 전략의 중요성을 강조하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

제7장 미국 관세의 누적 영향 2025

제8장 콜센터용 인공지능 시장 : 제공별

제9장 콜센터용 인공지능 시장 : 채널별

제10장 콜센터용 인공지능 시장 : 배포 유형별

제11장 콜센터용 인공지능 시장 : 조직 규모별

제12장 아메리카의 콜센터용 인공지능 시장

제13장 유럽, 중동 및 아프리카의 콜센터용 인공지능 시장

제14장 아시아태평양의 콜센터용 인공지능 시장

제15장 경쟁 구도

제16장 리서치 AI

제17장 리서치 통계

제18장 리서치 컨택

제19장 리서치 기사

제20장 부록

KSA
영문 목차

영문목차

The Artificial Intelligence in Call Centers Market was valued at USD 1.86 billion in 2024 and is projected to grow to USD 2.17 billion in 2025, with a CAGR of 17.10%, reaching USD 4.82 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 1.86 billion
Estimated Year [2025] USD 2.17 billion
Forecast Year [2030] USD 4.82 billion
CAGR (%) 17.10%

Unveiling the New Frontier of Artificial Intelligence in Call Centers Shaping Customer Engagement and Operational Excellence at Scale

Artificial intelligence has emerged as a catalyst for profound change in customer service interactions. Within call center environments, its integration promises enhanced response accuracy, more personalized engagement, and streamlined workflows that were once thought impossible. As organizations navigate an increasingly competitive marketplace, those that harness the power of intelligent automation and predictive analytics are gaining a clear advantage by both improving customer satisfaction and optimizing operational costs.

Moreover, the convergence of natural language processing and machine learning has created unprecedented opportunities to elevate call center effectiveness. Insights drawn from voice and text interactions enable real-time adjustments to routing protocols, ensuring that customers are matched with the most appropriate resource at each touchpoint. This same intelligence empowers agents with decision support tools that anticipate needs before they emerge, fostering a more proactive service model that resonates with today's empowered consumers.

Given these sweeping developments, this executive summary sets out to explore the key dimensions of artificial intelligence within call centers. It will examine the transformative shifts reshaping the landscape, analyze external pressures such as emerging trade policies, and deliver strategic insights across segmentation and regional dynamics. By synthesizing critical findings, it aims to guide decision makers toward informed investments and sustainable growth initiatives.

As this document unfolds, readers will also encounter an analysis of leading industry players, actionable recommendations for best practices, and a transparent research methodology that underpins the credibility of the insights presented. Ultimately, the goal is to provide a comprehensive foundation from which stakeholders can craft an AI adoption roadmap aligned with their unique organizational objectives.

Revolutionary Transformations Driven by AI Technologies Creating Seamless Customer Journeys and Optimizing Agent Productivity in Call Center Environments

Advancements in conversational AI and predictive analytics are driving a fundamental redefinition of call center operations. Through the application of sophisticated algorithms, natural language understanding has moved beyond basic keyword recognition to truly comprehend the nuances of customer intent. As a result, automated response systems are now capable of delivering human-like interactions that maintain empathy while accelerating resolution times.

Meanwhile, predictive modeling is transforming workforce management by forecasting call volumes with remarkable accuracy. Supervisors can allocate resources dynamically, ensuring that peak demand periods are met without sacrificing service levels or incurring unnecessary labor costs. Additionally, sentiment analysis tools continuously monitor live interactions, surfacing potential escalations before they impact customer loyalty. This proactive stance reduces churn risk and enables a more agile operational posture.

The shift to omnichannel engagement further underscores the transformative role of AI. Customers can begin an inquiry on one platform and seamlessly transition to another without repeating context, thanks to unified data orchestration and intelligent session routing. This convergence of technology layers not only enhances the customer journey but also delivers deeper insights into behavioral patterns. Consequently, organizations are better equipped to refine their service offerings and cultivate long-term brand advocacy.

Analyzing the Ripple Effects of 2025 United States Tariffs on Call Center Service Providers Technology Sourcing and Cost Management Strategies

The introduction of new tariff measures on imported hardware components and software licenses in 2025 has reverberated across the global call center technology supply chain. Providers that rely on specialized processors, voice recognition modules, and server infrastructure have encountered elevated procurement costs. These shifts have prompted many to revisit vendor contracts, explore alternative sourcing corridors, and invest in local assembly or development to mitigate exposure.

In parallel, increased duties on cloud-enabled services have incentivized some organizations to reevaluate their deployment strategies. While cloud models continue to offer scalability and rapid feature updates, total cost of ownership calculations now factor in additional cross-border levies. In response, several regional service providers are expanding their on-premises offerings, positioning them as cost-effective solutions for enterprises wary of fluctuating import tariffs.

Amid these evolving trade dynamics, technology partners are adapting their roadmaps. Roadblocks in component availability have accelerated R&D efforts toward modular designs and open-source frameworks, reducing dependence on proprietary imports. Furthermore, long-term support agreements and fixed-price licensing models have emerged as tools to safeguard budgets against future tariff swings. Collectively, these strategies underscore the industry's agility in sustaining innovation despite escalating regulatory constraints.

Comprehensive Insights into Market Segmentation Revealing the Nuanced Layers of Offerings Channels Deployment Models and Enterprise Dimensions

A nuanced view of the call center AI landscape emerges when examining how market offerings, engagement channels, deployment models, and organizational scale interact to shape adoption pathways. In the realm of offerings, the market is split between service-oriented engagements-encompassing both fully managed operations and professional services for custom integrations-and solution-driven products, which range from intelligent voice response platforms to holistic workforce optimization suites that blend analytics with real-time performance management.

When considering customer engagement channels, traditional voice interactions coexist with digital touchpoints such as email, social media, and both bot-based and human-assisted chat interfaces. Each channel brings its own set of performance metrics and user expectations, emphasizing the need for a cohesive orchestration layer that can synchronize context and deliver consistent experiences across modalities.

Deployment type further differentiates buyer preferences, as some enterprises gravitate toward cloud-native architectures that promise elastic scaling and continuous feature delivery, while others opt for on-premises installations to maintain full control over data governance and system uptime. Finally, organizational size underscores divergent priorities: large enterprises often pursue end-to-end transformation programs with extensive customization, whereas smaller and medium-sized businesses seek cost-effective, off-the-shelf solutions that accelerate time to value.

By understanding how these segmentation dimensions interrelate, stakeholders can more precisely target investments and tailor implementation roadmaps to their unique operational and budgetary constraints.

Geographically Tailored Perspectives Highlighting Regional Nuances in AI Adoption Regulatory Dynamics and Customer Expectations Across Global Markets

Regional nuances play a pivotal role in shaping how AI-driven call center solutions are adopted and scaled. In the Americas, early innovators have embraced cloud frameworks and omnichannel platforms to support high-volume, multilingual contact centers. Regulatory drivers around data privacy have accelerated the integration of encryption and compliance controls, compelling service providers to embed these capabilities into core offerings.

Across Europe, the Middle East, and Africa, stringent data protection regimes and a mosaic of regulatory standards have fostered a thriving market for localized AI implementations. Multilingual customers demand solutions that understand context and cultural subtleties, prompting vendors to enrich their natural language models with regional dialects and sentiment lexicons. In parallel, public sector agencies in certain jurisdictions are leveraging intelligent virtual assistants to streamline citizen services, underscoring the broad applicability of AI beyond traditional commercial environments.

In the Asia-Pacific region, explosive digital growth and rising consumer expectations have driven rapid adoption of AI-powered engagement solutions. Local technology vendors are competing with global players by offering end-to-end platforms optimized for mobile networks and regional compliance requirements. Meanwhile, government initiatives supporting smart cities and digital transformation are channeling investments into contact center modernization, further accelerating the uptake of voice biometrics, robotic process automation, and real-time analytics.

Together, these geographically tailored trends highlight the importance of a region-specific go-to-market approach and the value of aligning solution capabilities with distinct regulatory, linguistic, and technological landscapes.

Strategic Examination of Key Players Shaping the AI Call Center Ecosystem Through Innovation Partnerships and Competitive Positioning Dynamics

The evolving AI call center ecosystem is characterized by a dynamic interplay among global technology conglomerates, specialized service providers, and agile startups. Established platform vendors are leveraging extensive research and development budgets to integrate advanced speech-to-text engines and predictive analytics into unified customer engagement suites, thereby broadening their footprint in large-scale enterprise accounts.

In contrast, niche players are carving out differentiated positions by focusing on specific capabilities such as emotional analytics, voice biometrics, and robotic process automation. Their targeted innovations often find resonance in mid-market segments or industry verticals with stringent compliance demands, where bespoke solutions are prized over one-size-fits-all offerings.

Partnerships and strategic alliances are further reshaping competitive dynamics. Collaboration between leading cloud infrastructure providers and AI specialists has given rise to co-developed offerings that streamline deployment and address security concerns. At the same time, mergers and acquisitions among regional integrators are creating consolidated service networks capable of delivering end-to-end managed services on a global scale.

Collectively, these movements underscore a market in which both breadth of portfolio and depth of specialization drive success. Buyers now evaluate vendors not only on the sophistication of their algorithms but also on their ability to provide seamless integration, ongoing support, and a clear roadmap for future innovation.

Actionable Strategic Recommendations Guiding Industry Leaders to Harness AI Capabilities Drive Operational Excellence and Foster Sustainable Growth Trajectories

To capitalize on the transformative potential of AI in call center operations, industry leaders should pursue a strategic roadmap that balances innovation with governance and continuous improvement. First, aligning technology investments with clear business objectives will ensure that AI deployments address high-value use cases-such as predictive routing or automated quality assurance-before expanding into broader automation scenarios.

Equally important is the development of internal capabilities. Upskilling existing agents in AI-enabled workflows and establishing cross-functional teams that bring together analytics, IT, and customer experience professionals will foster a culture of data-driven decision making. Additionally, forging partnerships with specialist vendors can accelerate time to market, provided that governance frameworks are in place to manage vendor performance and data security.

A robust performance measurement system should accompany every implementation. By defining key operational metrics-ranging from first-contact resolution to customer sentiment scores-and leveraging real-time dashboards, organizations can track outcomes, adjust parameters dynamically, and articulate ROI to executive stakeholders.

Finally, scaling AI initiatives requires an iterative approach. Pilots should be designed with clear success criteria and feedback loops that capture lessons learned. As deployments mature, continuous optimization-driven by ongoing data analysis and user feedback-will ensure that AI capabilities evolve in step with changing customer expectations and market conditions.

Rigorous Multi Source Research Methodology Detailing Qualitative and Quantitative Approaches Expert Engagement and Analytical Frameworks Ensuring Data Integrity

This research employs a rigorous, multi-phase methodology combining both qualitative and quantitative techniques to ensure reliability and depth of insight. The initial phase involved comprehensive secondary research, drawing upon industry journals, regulatory filings, and publicly available financial reports to establish a foundational understanding of market dynamics and technology trends.

In the second phase, primary interviews were conducted with senior executives, technology architects, and operations managers across leading service providers and enterprise contact centers. These in-depth discussions offered firsthand perspectives on deployment challenges, ROI considerations, and emerging use cases. Concurrently, surveys targeting end users and agents provided quantitative validation of sentiment around adoption drivers and inhibitors.

Data from these sources were triangulated through cross-referencing vendor press releases, patent filings, and independent analyst commentaries. A dedicated validation team then assessed the consistency of findings, while statistical techniques were applied to ensure that sample sizes and response distributions met rigorous confidence thresholds.

Analytical frameworks-including SWOT analyses, technology adoption models, and cost-benefit matrices-were used to structure the evaluation of strategic alternatives. Throughout the process, adherence to ethical guidelines and data privacy regulations was maintained, preserving the integrity and confidentiality of all primary inputs.

Synthesizing Key Findings and Future Imperatives Emphasizing the Transformative Impact of AI on Call Center Operations and Strategic Decision Making

This executive summary has illuminated the profound ways in which artificial intelligence is reshaping call center operations, from the seamless orchestration of omnichannel interactions to the real-time optimization of workforce performance. The cumulative effects of geopolitical factors, evolving customer expectations, and rapid technological advancements underscore the importance of an adaptive strategy that balances innovation with prudent risk management.

Segmentation analysis revealed that a one-size-fits-all approach is no longer tenable; instead, organizations must tailor their offerings, channel strategies, deployment models, and scalability plans to their unique operational contexts. Regional insights further highlighted the necessity of aligning solution design with local regulatory landscapes, linguistic nuances, and infrastructure capabilities.

Key company profiles illustrated the dual pressures of comprehensive portfolio expansion and deep specialization, driving partnerships and M&A activity across the ecosystem. Against this backdrop, the recommended strategic roadmap emphasized clear alignment of AI initiatives with business priorities, investment in talent and governance, and an iterative deployment methodology designed to deliver measurable outcomes.

As artificial intelligence continues its trajectory from novelty to necessity in call center environments, stakeholders who embrace these imperatives will unlock new levels of customer loyalty, operational resilience, and competitive differentiation.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Dynamics

6. Market Insights

7. Cumulative Impact of United States Tariffs 2025

8. Artificial Intelligence in Call Centers Market, by Offerings

9. Artificial Intelligence in Call Centers Market, by Channel

10. Artificial Intelligence in Call Centers Market, by Deployment Type

11. Artificial Intelligence in Call Centers Market, by Organization Size

12. Americas Artificial Intelligence in Call Centers Market

13. Europe, Middle East & Africa Artificial Intelligence in Call Centers Market

14. Asia-Pacific Artificial Intelligence in Call Centers Market

15. Competitive Landscape

16. ResearchAI

17. ResearchStatistics

18. ResearchContacts

19. ResearchArticles

20. Appendix

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기