ÀÚ±â°ø¸í¿µ»ó¹ý¿ë ÀΰøÁö´É ½ÃÀå : ±â°è À¯Çü, ÄÄÆ÷³ÍÆ®, ±â¼ú À¯Çü, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)
Artificial Intelligence in Magnetic Resonance Imaging Market by Machine Type, Component, Technology Type, Application, End-User - Global Forecast 2025-2030
»óǰÄÚµå : 1803782
¸®¼­Ä¡»ç : 360iResearch
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 180 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,939 £Ü 5,587,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF ¹× Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 4,249 £Ü 6,027,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿Àϱâ¾÷ ³» 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 5,759 £Ü 8,169,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ³» µ¿ÀÏ Áö¿ª »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 6,969 £Ü 9,886,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¤± º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼Û±âÀÏÀº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

ÀÚ±â°ø¸í¿µ»ó¹ý¿ë ÀΰøÁö´É ½ÃÀåÀº 2024³â¿¡´Â 61¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇϸç, 2025³â¿¡´Â 67¾ï 1,000¸¸ ´Þ·¯, CAGR 8.94%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 103¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ¿¬µµ 2024 61¾ï 7,000¸¸ ´Þ·¯
ÃßÁ¤¿¬µµ 2025 67¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø¿¬µµ 2030 103¾ï 2,000¸¸ ´Þ·¯
CAGR(%) 8.94%

Áø´Ü Á¤È®µµ¿Í ¿öÅ©Ç÷οì È¿À²À» Çõ½ÅÇÏ´Â ÀΰøÁö´É°ú MRIÀÇ À¶ÇÕÀ» »ìÆìº¾´Ï´Ù.

ÀΰøÁö´ÉÀº ÀÚ±â°ø¸í¿µ»ó ÁøÈ­¿¡ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î µîÀåÇÏ¿© Áø´Ü Á¤È®µµ¿Í ¾÷¹« È¿À²¼ºÀÇ »õ·Î¿î ½Ã´ë¸¦ Ã˸ÅÇϰí ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú ½ÉÃþ ½Å°æ¸ÁÀ» ÅëÇÕÇÔÀ¸·Î½á ÀÓ»óÀÇ´Â º¹ÀâÇÑ ÇØºÎÇÐ ½ºÄµ¿¡¼­ º¸´Ù Á¤È®ÇÏ°í °íÇØ»óµµ À̹ÌÁö¸¦ ÃßÃâÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ À¶ÇÕÀº ±âÁ¸ÀÇ ¿µ»ó Áø´Ü ÇÁ·ÎÅäÄÝÀ» À籸¼ºÇÏ°í ºñħ½ÀÀû Áø´ÜÀÇ °æ°è¸¦ ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù.

ÀΰøÁö´ÉÀÇ ÅëÇÕ°ú ÆÄ±«Àû Çõ½ÅÀ¸·Î ÀÚ±â°ø¸í¿µ»ó¿¡ º¯È­¸¦ °¡Á®¿Ã »õ·Î¿î ÆÐ·¯´ÙÀÓ¿¡ ´ëÇÑ Æò°¡

ÀÚ±â°ø¸í¿µ»óÀ» µÑ·¯½Ñ ȯ°æÀº Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î ¹× ÀÓ»ó Áø·á Àü¹Ý¿¡ °ÉÄ£ ÀΰøÁö´ÉÀÇ µ¿È­·Î ÀÎÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ¾Ë°í¸®Áò ¼³°èÀÇ Çõ½ÅÀº »õ·Î¿î À籸¼º ÆÐ·¯´ÙÀÓ¿¡ ÈûÀ» ½Ç¾îÁÖ¸ç, ÃÊ ´ÜÀ§ÀÇ À̹ÌÁö ÇÕ¼º ¹× ½ºÄµ ÆÄ¶ó¹ÌÅ͸¦ Áï½Ã Á¶Á¤ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÇÑÆí, ¿§Áö ÄÄÇ»ÆÃÀÇ ¹ßÀüÀ¸·Î ÀÇ·á ÇöÀå¿¡¼­ÀÇ ½Ç½Ã°£ Ãß·ÐÀÌ ¿ëÀÌÇØÁ® Áß¾Ó ÁýÁᫎ ¼­¹ö¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³·¾ÆÁö°í ÀÇ»ç°áÁ¤ Áö¿øÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

2025³â ¹Ì±¹ ÀÚ±â°ø¸í¿µ»ó ºÎ¹®°ú ¼¼°è Àåºñ °ø±Þ¸Á¿¡ ´ëÇÑ »õ·Î¿î °ü¼¼ Á¤Ã¥ÀÇ º¹ÇÕÀûÀÎ È¿°ú °ËÁõ

2025³â ¹Ì±¹ÀÇ »õ·Î¿î °ü¼¼ ±¸Á¶ÀÇ µµÀÔÀº ÀÚ±â°ø¸í¿µ»ó ºÎ¹®¿¡ ÀÏ·ÃÀÇ º¹ÇÕÀûÀÎ È¿°ú¸¦ °¡Á®¿Ô½À´Ï´Ù. ¼öÀÔ ºÎǰ¿¡ ´ëÇÑ °ü¼¼ ÀλóÀº ¼³ºñ ÅõÀÚ ¿¹»ê¿¡ »ó½Â ¾Ð·ÂÀ» °¡Çϰí, ÀÇ·á ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ¿Í ½Ã½ºÅÛ ÅëÇÕ ¾÷ü´Â Á¶´Þ Àü·«°ú Àç°í °ü¸® ¹æ¹ýÀ» Àç°ËÅäÇØ¾ß ÇÕ´Ï´Ù.

MRI AI ½ÃÀåÀÇ ±â°è À¯Çü, ±¸¼º ¿ä¼Ò, ±â¼ú, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ ¼¼ºÐÈ­¿¡ µû¸¥ Àü·«Àû ÀλçÀÌÆ® °³¹ß

Á¤ÀÇµÈ ¼¼ºÐÈ­¸¦ ÅëÇØ ºÐ¼®À» È®ÀåÇϸé ÀÚ±â°ø¸í¿µ»ó Áø´Ü¿¡ ´ëÇÑ ÀΰøÁö´É(AI)ÀÇ ¿µÇâÀÌ °¡Àå Å« ºÎºÐÀ» ¸íÈ®È÷ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. Æó¼âÇü º¸¾î ½Ã½ºÅÛ ¹× 3Å×½½¶ó ÀÌ»óÀÇ °íÀÚÀå ½ºÄ³³ÊºÎÅÍ 1.5Å×½½¶ó ÀÌÇÏÀÇ ÀúÀÚÀå ÀåÄ¡, °³¹æÇü ¾ÆÅ°ÅØÃ³ Ç÷§Æû, ½ÅÈï ÈÞ´ë¿ë ½Ã½ºÅÛ±îÁö ÀåÄ¡ À¯Çüº° ÀλçÀÌÆ®¸¦ ÅëÇØ ÀÓ»óÀû ÀÌ¿ë »ç·Ê ¹× ÀÎÇÁ¶ó Á¦¾à¿¡ µû¸¥ ´Ù¾çÇÑ Ã¤Åà ÆÐÅÏÀ» È®ÀÎÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹àÇôÁ³½À´Ï´Ù. °¢ ºÎ¹®Àº °íÀ¯ÇÑ ¼º´É Æ®·¹À̵å¿ÀÇÁ¿Í ÅëÇÕ °úÁ¦¸¦ °¡Áö°í ÀÖ½À´Ï´Ù.

ºÏ¹Ì, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÚ±â°ø¸í¿µ»ó¿¡ ´ëÇÑ AI µµÀÔ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â Áö¿ªÀû ¿ªÇаü°è ºÐ¼®

ÀÚ±â°ø¸í¿µ»ó ºÐ¾ß¿ë ÀΰøÁö´É µµÀÔÀÇ ¼Óµµ¿Í ±ËÀûÀº Áö¿ªÀû ¿ªÇаü°è¿¡ µû¶ó Å« ¿µÇâÀ» ¹Þ½À´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â ÁÖ¿ä ÀÇ·á ½Ã½ºÅÛÀÌ °­·ÂÇÑ ¿¬±¸ ÀÎÇÁ¶ó¿Í À¯¸®ÇÑ »óȯ ü°è¸¦ Ȱ¿ëÇÏ¿© ´ëµµ½Ã ÀÇ·á ¼¾ÅÍ¿¡ ÷´Ü AI Áö¿ø MRI ¼Ö·ç¼ÇÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ ½ÅÈï ±¹°¡µéÀº ÀÇ·á ¼­ºñ½º°¡ ºÎÁ·ÇÑ Áö¿ªÀÇ Áø´Ü Á¢±Ù¼ºÀ» È®´ëÇϱâ À§ÇØ AI·Î ³ëÀÌÁî Á¦°Å¸¦ °­È­ÇÑ ÈÞ´ë¿ë ÀúÀÚ±âÀå ÀåÄ¡¸¦ ¿ì¼±¼øÀ§¿¡ µÎ°í ÀÖ½À´Ï´Ù.

ÇÙÀÚ±â°ø¸í¿µ»ó ºÐ¾ßÀÇ ÀΰøÁö´É ¿ëµµ¸¦ Çõ½ÅÇÏ´Â ÁÖ¿ä °ø±Þ¾÷üµéÀÇ Àü·«Àû ³ë·Â°ú Çõ½ÅÀÇ ¿øµ¿·ÂÀ» »ìÆìº¾´Ï´Ù.

¾÷°è¸¦ ¼±µµÇÏ´Â ±â¾÷Àº AI¸¦ Ȱ¿ëÇÑ MRI ¿µ¿ª¿¡¼­ °¡Ä¡¸¦ âÃâÇϱâ À§ÇÑ ´Ù°¢ÀûÀÎ Àü·«¿¡ ÁýÁßÇϰí ÀÖ½À´Ï´Ù. ¼¼°è À̹Ì¡ ÄÁ¼Ò½Ã¾öÀº Ŭ¶ó¿ìµå ¹× ¹ÝµµÃ¼ ±â¾÷°ú Çù·ÂÇÏ¿© °ÅÀÇ ½Ç½Ã°£¿¡ °¡±î¿î À̹ÌÁö À籸¼ºÀ» ÃËÁøÇÏ´Â GPU °¡¼Ó Ç÷§ÆûÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ±âÁ¸ OEMÀº ¸ðµâ½Ä ½Ã½ºÅÛ ¾ÆÅ°ÅØÃ³¸¦ µÎ ¹è·Î ´Ã¸®°í, ½Ã½ºÅÛ ¼ö¸í Áֱ⸦ ¿¬ÀåÇÏ´Â Çϵå¿þ¾îÀÇ ´Ü°èÀû ¾÷±×·¹À̵带 °¡´ÉÇÏ°Ô Çϸç, ¼ÒÇÁÆ®¿þ¾î ¸±¸®½º¸¦ ÅëÇØ »õ·Î¿î AI ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù.

AI ±â¹Ý MRI ¼Ö·ç¼ÇÀÇ ÅëÇÕ°ú äÅÃÀ» °¡¼ÓÈ­Çϱâ À§ÇØ ÇコÄÉ¾î °æ¿µÁø°ú ±â¼ú °³¹ßÀÚ¸¦ À§ÇÑ ¹Ì·¡ÁöÇâÀû ±Ç°í¾È ¸¶·Ã

ÇコÄÉ¾î °æ¿µÁø°ú ¿µ»ó ±â¼ú °³¹ßÀÚµéÀº MRI¿¡¼­ AIÀÇ ÀáÀç·ÂÀ» Ȱ¿ëÇϱâ À§ÇØ ¸î °¡Áö Áß¿äÇÑ Á¶Ä¡ÀÇ ¿ì¼±¼øÀ§¸¦ Á¤ÇØ¾ß ÇÕ´Ï´Ù. ù°, On-Premise ÇÁ·Î¼¼½Ì°ú ¾ÈÀüÇÑ Å¬¶ó¿ìµå Ç÷§ÆûÀ» ÅëÇÕÇÏ´Â È®Àå °¡´ÉÇÑ ÀÎÇÁ¶ó¿¡ ÅõÀÚÇÔÀ¸·Î½á °íÀÚ±âÀå ½Ã½ºÅÛ°ú ÈÞ´ë¿ë ½ºÄ³³Ê ¸ðµÎ ´ë±â ½Ã°£ Á¦¾à ¾øÀÌ °í±Þ AI ¸ðµ¨¿¡ ¾×¼¼½ºÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ¹æ»ç¼± ÀÇÇÐ Àü¹® Áö½Ä, µ¥ÀÌÅÍ »çÀ̾𽺠¼÷·Ãµµ, ±ÔÁ¦ °ü·Ã Áö½ÄÀ» À¶ÇÕÇÑ ºÎ¼­ °£ ÆÀÀ» ±¸¼ºÇÏ¿© ¸ðµ¨ °ËÁõÀ» È¿À²È­Çϰí ÀÓ»ó ÅëÇÕÀ» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

AI¸¦ Ȱ¿ëÇÑ MRI ÀλçÀÌÆ®¸¦ À§ÇÑ Á¾ÇÕÀûÀÎ µ¥ÀÌÅÍ ¼öÁý °ËÁõ°ú °í±Þ ºÐ¼® ±â¹ýÀ» °áÇÕÇÑ ¾ö°ÝÇÑ Á¶»ç ¹æ¹ý·Ð °³¿ä

ÀÌ Á¶»ç´Â Á¤·®Àû ¾ö°ÝÇÔ°ú Á¤¼ºÀû ÀλçÀÌÆ®ÀÇ ±ÕÇüÀ» ¸ÂÃß´Â ¾ö°ÝÇÑ ¹æ¹ýÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. 2Â÷ µ¥ÀÌÅÍ ¼öÁýÀ» À§ÇØ, ¿ì¸®´Â ÇмúÁö, ±ÔÁ¦ ´ç±¹¿¡ Á¦ÃâµÈ ¼­·ù, ƯÇã °£Ç๰, ±â¼ú ¹é¼­ µîÀ» Á¾ÇÕÀûÀ¸·Î °ËÅäÇÏ¿© ±âÁ¸ Áö½Ä°ú »õ·Î¿î µ¿Çâ¿¡ ´ëÇÑ ÅºÅºÇÑ ±â¹ÝÀ» È®º¸Çß½À´Ï´Ù. ÀÌ¿Í º´ÇàÇÏ¿© 1Â÷ Á¶»ç¿¡¼­´Â ¹æ»ç¼±°ú Àü¹®ÀÇ, ¿µ»ó °úÇÐÀÚ, OEM Á¦Ç° °ü¸®ÀÚ, ±â¼ú ºÐ¼®°¡¿ÍÀÇ ±¸Á¶È­µÈ ÀÎÅͺ並 ÅëÇØ Á¶»ç °á°ú¸¦ °ËÁõÇÏ°í ½ÇÁ¦ °üÁ¡À» ÆÄ¾ÇÇß½À´Ï´Ù.

ÀΰøÁö´ÉÀ» Ȱ¿ëÇÑ ÀÚ±â°ø¸í¿µ»ó Áø´Ü µµÀÔÀ» ÃËÁøÇϱâ À§ÇÑ ÁÖ¿ä ¹ß°ß ¹× Àü·«Àû Áß¿ä »çÇ× ¿ä¾à

ÀΰøÁö´É°ú ÀÚ±â°ø¸í¿µ»ó Áø´ÜÀÇ ±³Â÷Á¡Àº ¿µ»ó Áø´ÜÀÇ ¿ª»ç¿¡¼­ °¡Àå Áß¿äÇÑ º¯°îÁ¡ Áß ÇϳªÀÔ´Ï´Ù. µö·¯´×°ú ÷´Ü Çϵå¿þ¾î ¾ÆÅ°ÅØÃ³ÀÇ °áÇÕÀº À̹ÌÁö ǰÁúÀ» ÀçÁ¤ÀÇÇϰí, ½ºÄµ ½Ã°£À» ´ÜÃàÇϸç, »õ·Î¿î ÀÓ»ó Àû¿ëÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡, ÁøÈ­ÇÏ´Â ¹«¿ª Á¤Ã¥°ú Áö¿ª º¸°Ç ÀÇ·á ¿ì¼± ¼øÀ§°¡ Àü ¼¼°è¿¡¼­ Á¶´Þ ¿ªÇÐ ¹× ¹èÄ¡ Àü·«À» Çü¼ºÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ÀÚ±â°ø¸í¿µ»ó¹ý¿ë ÀΰøÁö´É ½ÃÀå : ±â°è À¯Çüº°

Á¦9Àå ÀÚ±â°ø¸í¿µ»ó¹ý¿ë ÀΰøÁö´É ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦10Àå ÀÚ±â°ø¸í¿µ»ó¹ý¿ë ÀΰøÁö´É ½ÃÀå : ±â¼ú À¯Çüº°

Á¦11Àå ÀÚ±â°ø¸í¿µ»ó¹ý¿ë ÀΰøÁö´É ½ÃÀå : ¿ëµµº°

Á¦12Àå ÀÚ±â°ø¸í¿µ»ó¹ý¿ë ÀΰøÁö´É ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ ÀÚ±â°ø¸í¿µ»ó¹ý¿ë ÀΰøÁö´É ½ÃÀå

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÀÚ±â°ø¸í¿µ»ó¹ý¿ë ÀΰøÁö´É ½ÃÀå

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÚ±â°ø¸í¿µ»ó¹ý¿ë ÀΰøÁö´É ½ÃÀå

Á¦16Àå °æÀï ±¸µµ

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Artificial Intelligence in Magnetic Resonance Imaging Market was valued at USD 6.17 billion in 2024 and is projected to grow to USD 6.71 billion in 2025, with a CAGR of 8.94%, reaching USD 10.32 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 6.17 billion
Estimated Year [2025] USD 6.71 billion
Forecast Year [2030] USD 10.32 billion
CAGR (%) 8.94%

Exploring the Convergence of Artificial Intelligence and Magnetic Resonance Imaging to Revolutionize Diagnostic Precision and Workflow Efficiency

Artificial Intelligence has emerged as a pivotal enabler in the evolution of Magnetic Resonance Imaging, catalyzing a new era of diagnostic precision and operational efficiency. By integrating machine learning algorithms and deep neural networks, clinicians can now extract more accurate, high-resolution images from complex anatomical scans. This convergence is reshaping traditional imaging protocols and redefining the boundaries of noninvasive diagnostics.

Over the past decade, advancements in computing power, algorithmic sophistication, and data availability have converged to accelerate AI-driven breakthroughs in MRI analysis. Techniques such as convolutional neural networks are enhancing image reconstruction speed, while generative adversarial networks are refining noise reduction and artifact suppression. As a result, scanning durations are decreasing, patient comfort is improving, and throughput in imaging centers is reaching unprecedented levels.

This executive summary outlines the key developments, systemic shifts, and strategic considerations essential for stakeholders across healthcare systems, device manufacturers, and research institutions. By examining transformative trends, regulatory headwinds, segmentation insights, and regional imperatives, this document equips decision-makers with the authoritative intelligence required to navigate the rapidly evolving landscape of AI-enabled MRI.

Assessing the Emerging Paradigms Transforming Magnetic Resonance Imaging through Artificial Intelligence Integration and Disruptive Technological Innovations

The landscape of Magnetic Resonance Imaging is undergoing a transformation driven by the assimilation of artificial intelligence across hardware, software, and clinical practice. Breakthroughs in algorithmic design have empowered new reconstruction paradigms, enabling sub-second image synthesis and on-the-fly adjustment of scanning parameters. Meanwhile, edge computing advancements are facilitating real-time inference at the point of care, reducing dependence on centralized servers and accelerating decision support.

In tandem, the proliferation of high-field systems-operating at or above 3 Tesla-has provided richer signal-to-noise ratios that AI models leverage to enhance lesion detection and tissue characterization. At the same time, low-field and portable systems are democratizing access to MRI technology in remote and resource-constrained environments through energy-efficient designs paired with AI-based image enhancement.

Furthermore, seamless integration with diagnostic workstations, cloud architectures, and electronic health records is redefining interoperability standards. This interconnected ecosystem allows for continuous learning loops, where federated learning and privacy-preserving protocols enable cross-institutional model refinement without compromising patient confidentiality. As a result, the MRI arena is witnessing a fundamental shift toward intelligent, adaptive, and patient-centric imaging workflows.

Examining the Compounded Effects of New Tariff Policies on the United States Magnetic Resonance Imaging Sector and Global Equipment Supply Chains in 2025

The introduction of new tariff structures in the United States in 2025 has created a series of compounded effects for the Magnetic Resonance Imaging sector. Increased duties on imported components have exerted upward pressure on capital expenditure budgets, compelling healthcare providers and system integrators to reassess procurement strategies and inventory management practices.

As import costs rose, original equipment manufacturers responded by re-optimizing their supply chains, shifting production closer to key markets, and renegotiating vendor agreements to mitigate margin erosion. These adaptations have fostered strategic partnerships between domestic assemblers and international vendors, enabling continuity of supply while maintaining technological superiority.

Additionally, the tariff environment has spurred innovation in component design, as hardware suppliers seek to minimize reliance on high-duty parts by embracing modular architectures and open platform standards. Parallel policy shifts regarding raw material sourcing have prompted increased collaborations with alternative suppliers and investments in vertical integration. Consequently, the diagnostic imaging ecosystem is evolving to balance the dual imperatives of cost containment and technological differentiation under the new trade regime.

Revealing Strategic Insights from Segmentation of Machine Types Components Technologies Applications and End Users in the MRI AI Landscape

Expanding the analysis through defined segmentation provides clarity into where artificial intelligence's impact on Magnetic Resonance Imaging is most potent. Insights from machine type categories, ranging from closed bore systems and high-field scanners at three Tesla and above to low-field units below 1.5 Tesla, open architecture platforms, and emerging portable systems, reveal divergent adoption patterns driven by clinical use case and infrastructure constraints. Each segment exhibits unique performance trade-offs and integration challenges.

Similarly, component segmentation underscores the interplay between hardware, encompassing advanced computing units and next-generation image capture devices, and the critical roles of consultancy and installation plus maintenance services. Within software, the dynamic between data analysis platforms and imaging software ecosystems illustrates how developers are merging algorithmic sophistication with user-centric interfaces to streamline radiology workflows.

A deeper look at technology type segmentation highlights the ascendancy of deep learning modalities-including convolutional neural networks, generative adversarial networks, and recurrent neural networks-alongside conventional machine learning disciplines such as supervised and unsupervised learning, with natural language processing emerging as a complementary enabler for automating report generation and clinical decision support.

Application segmentation, spanning diagnostic imaging with a particular focus on brain, cardiac, and spinal examinations, as well as next-generation image reconstruction practices, demonstrates how differential clinical demands shape AI model development. Finally, end-user segmentation encompassing diagnostic centers, hospital networks, and research institutes sheds light on varying levels of resource availability, regulatory oversight, and institutional priorities, each guiding how AI in MRI is tailored and deployed.

Uncovering Regional Dynamics Shaping AI Adoption in Magnetic Resonance Imaging across Americas Europe Middle East Africa and Asia Pacific

Regional dynamics exert a profound influence on the pace and trajectory of artificial intelligence adoption within Magnetic Resonance Imaging. In the Americas, leading healthcare systems are leveraging robust research infrastructures and favorable reimbursement frameworks to deploy advanced AI-enabled MRI solutions across metropolitan medical centers. Concurrently, emerging economies in Latin America are prioritizing portable and low-field units augmented by AI-driven noise reduction to expand diagnostic access in underserved areas.

Across Europe, Middle East, and Africa, a diverse array of regulatory regimes and funding pathways has shaped adoption curves. Western European nations have been at the forefront of integrating advanced AI image reconstruction into public health networks, while select markets in the Middle East are channeling sovereign wealth investments into cutting-edge imaging facilities. In Africa, partnerships between global technology providers and regional health ministries are piloting energy-efficient systems with AI-based image enhancement to optimize resource utilization.

Meanwhile, the Asia-Pacific region stands out for its rapid deployment of high-throughput MRI installations in major academic hospitals, supported by substantial R&D investments. China's domestic vendors are scaling AI-empowered platforms through joint ventures, and markets such as Japan, South Korea, and Australia are driving interoperability standards that facilitate cross-border research collaborations. Each region's distinct healthcare priorities and infrastructure endowments continue to inform how AI-empowered MRI transformations unfold globally.

Highlighting Strategic Initiatives and Innovation Drivers Leading Providers Transforming Artificial Intelligence Applications in Magnetic Resonance Imaging

Leading industry participants are converging around multifaceted strategies to capture value in the AI-enabled MRI domain. Global imaging consortiums are partnering with cloud and semiconductor firms to deploy GPU-accelerated platforms that facilitate near-real-time image reconstruction. At the same time, established OEMs are doubling down on modular system architectures, enabling incremental hardware upgrades that extend system lifecycles and deliver new AI capabilities via software releases.

Strategic alliances between device manufacturers and life sciences researchers are fostering the co-development of targeted AI applications, particularly in neurological and cardiovascular imaging. In parallel, pure-play AI vendors are collaborating with academic hospitals to validate clinical efficacy and gain regulatory clearances for automated anomaly detection workflows. To differentiate their portfolios, leading organizations are embedding AI within comprehensive clinical decision support suites, integrating structured reporting, 3D visualization, and predictive analytics into unified imaging platforms.

Furthermore, cross-industry collaborations with telehealth and data security specialists are addressing critical imperatives around remote diagnostics, patient data privacy, and compliance with evolving healthcare regulations. These initiatives underscore a broader shift from standalone AI tools to end-to-end solutions that align with provider priorities for scalability, interoperability, and demonstrable clinical value.

Crafting Forward Looking Recommendations for Healthcare Executives and Technology Developers to Accelerate Integration and Adoption of AI Enabled MRI Solutions

Healthcare executives and imaging technology developers must prioritize several critical actions to capitalize on AI's potential in MRI. First, investing in scalable infrastructure that unifies on-premises processing and secure cloud platforms will ensure that both high-field systems and portable scanners can access advanced AI models without latency constraints. Concurrently, establishing cross-functional teams that blend radiology expertise, data science proficiency, and regulatory knowledge will streamline model validation and expedite clinical integration.

In addition, organizations should forge strategic partnerships with component suppliers and software providers to co-innovate modular architectures, thereby reducing upgrade costs and accelerating feature roll-outs. Emphasizing adherence to emerging interoperability standards will enhance system compatibility and future-proof deployments. Equally important is the implementation of robust governance frameworks for data privacy and ethical AI, ensuring that model training leverages anonymized datasets and complies with patient consent protocols.

Finally, a commitment to continuous performance monitoring and outcome measurement will create feedback loops that refine AI algorithms over time. By coupling these efforts with targeted workforce training programs, stakeholders can foster a culture of innovation and maintain competitive advantage in a rapidly evolving MRI landscape.

Outlining a Rigorous Research Methodology Combining Comprehensive Data Collection Validation and Advanced Analytical Techniques for AI Enabled MRI Insights

This research integrates a rigorous methodology that balances quantitative rigor with qualitative insights. Secondary data collection encompassed a comprehensive review of peer-reviewed journals, regulatory filings, patent publications, and technical white papers, ensuring a robust foundation of established knowledge and emerging trends. In parallel, primary research involved structured interviews with radiologists, imaging scientists, OEM product managers, and technology analysts to validate findings and capture real-world perspectives.

Data triangulation was achieved by cross-referencing insights from multiple sources, mitigating potential biases and reinforcing the credibility of conclusions. A series of expert validation workshops provided an additional layer of scrutiny, enabling iterative refinement of thematic frameworks and segmentation models. Advanced analytical techniques, including multivariate analysis and scenario modeling, were applied to assess the interdependencies between technological drivers, regulatory environments, and adoption rates.

Finally, the research underwent a thorough quality assurance process, encompassing peer review by independent industry specialists and a final verification of data points against publicly available disclosures. This comprehensive approach ensures that the resulting intelligence presents both depth and accuracy, equipping stakeholders with actionable insights into the AI-enabled MRI ecosystem.

Summarizing Key Findings and Strategic Imperatives for Advancing Adoption of Artificial Intelligence Driven Magnetic Resonance Imaging Practices

The intersection of artificial intelligence and Magnetic Resonance Imaging represents one of the most significant inflection points in diagnostic imaging history. The fusion of deep learning with advanced hardware architectures is redefining image quality, shortening scan times, and unlocking novel clinical applications. Concurrently, evolving trade policies and regional healthcare priorities are shaping procurement dynamics and deployment strategies across the globe.

Strategic segmentation analysis highlights where value is concentrated-whether in high-field systems optimized for neurological diagnostics, modular software suites powered by generative adversarial networks, or community-focused portable scanners leveraging noise-suppression algorithms. Regional insights underscore the importance of tailored approaches, acknowledging that reimbursement models and infrastructure readiness vary widely between the Americas, EMEA, and Asia-Pacific.

Leading companies are actively forging alliances, investing in interoperable platforms, and embedding AI throughout the imaging lifecycle. For stakeholders, actionable recommendations coalesce around scalable infrastructure investments, cross-disciplinary teams, robust governance, and continuous performance monitoring. With a validated research methodology underpinning these insights, decision-makers are well positioned to navigate this dynamic environment and accelerate the adoption of AI-driven MRI practices.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Dynamics

6. Market Insights

7. Cumulative Impact of United States Tariffs 2025

8. Artificial Intelligence in Magnetic Resonance Imaging Market, by Machine Type

9. Artificial Intelligence in Magnetic Resonance Imaging Market, by Component

10. Artificial Intelligence in Magnetic Resonance Imaging Market, by Technology Type

11. Artificial Intelligence in Magnetic Resonance Imaging Market, by Application

12. Artificial Intelligence in Magnetic Resonance Imaging Market, by End-User

13. Americas Artificial Intelligence in Magnetic Resonance Imaging Market

14. Europe, Middle East & Africa Artificial Intelligence in Magnetic Resonance Imaging Market

15. Asia-Pacific Artificial Intelligence in Magnetic Resonance Imaging Market

16. Competitive Landscape

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â