데이터 레이크 시장 보고서 : 컴포넌트, 배포 모드, 조직 규모, 비즈니스 기능, 최종 용도 산업, 지역별(2025-2033년)
Data Lakes Market Report by Component, Deployment Mode, Organization Size, Business Function, End Use Industry, and Region 2025-2033
상품코드 : 1831833
리서치사 : IMARC
발행일 : 2025년 10월
페이지 정보 : 영문 140 Pages
 라이선스 & 가격 (부가세 별도)
US $ 2,999 ₩ 4,322,000
PDF & Excel (Single User License) help
PDF & Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 인쇄 불가능하며, 텍스트 등의 Copy&Paste도 불가능합니다.
US $ 3,999 ₩ 5,763,000
PDF & Excel (5 User License) help
PDF & Excel 보고서를 동일 기업의 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 Copy&Paste가 불가능합니다. 인쇄는 5부까지 가능하며, 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.
US $ 4,999 ₩ 7,205,000
PDF & Excel (Corporate License) help
PDF & Excel 보고서를 동일 기업의 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 Copy&Paste가 불가능합니다. 인쇄는 5부까지 가능하며, 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.

한글목차

세계의 데이터 레이크 시장 규모는 2024년에 147억 달러에 달했습니다. 향후 IMARC Group은 2033년에는 918억 달러에 달하며, 2025-2033년의 성장률(CAGR)은 21.48%에 달할 것으로 예측하고 있습니다. 대량 디지털 데이터 관리에 관한 비즈니스의 증가가 시장을 강화하고 있습니다.

데이터 레이크 시장 동향 :

AI 통합 증가

시장을 강화하는 주요 요인 중 하나는 AI와 ML의 통합이 진행되어 데이터에서 더 심층 인사이트와 예측 분석을 이끌어 낼 수 있다는 점입니다. 또한 AI를 탑재한 데이터 레이크는 데이터 분류, 이상 감지, 패턴 인식 등을 자동화할 수 있습니다. Databricks나 IBM과 같은 기업은 자사의 데이터 레이크 솔루션과 통합된 AI 및 ML 기능을 제공함으로써 이러한 추세를 주도하고 있습니다. 예를 들어 2024년 6월, 기업의 데이터 파이프라인 구축을 지원하는 파이브트란(Fivetran)은 최신 제품인 파이브트란 매니지드 데이터 레이크 서비스(Fivetran Managed Data Lake Service)의 일반 제공을 발표했습니다. 이 서비스는 데이터 레이크 관리를 자동화하고 효율화하여 고객의 반복적인 작업을 없애는 것을 목표로 합니다.

데이터 거버넌스 중요성 증대

데이터 거버넌스와 보안에 대한 관심이 높아지면서 시장이 강화되고 있습니다. 기업은 방대한 양의 기밀 데이터를 저장하고 있으므로 기밀성, 무결성, 규제 요건 준수를 보장하는 것이 가장 중요한 과제입니다. 효과적인 데이터 거버넌스 프레임워크는 메타데이터, 데이터 품질, 리니지의 관리를 지원하여 데이터 자산의 투명성과 통제력을 확보할 수 있도록 돕습니다. 예를 들어 2024년 7월, 플린더스 대학교 연구팀은 공중보건 모니터링 및 비상사태 대응을 위해 호주에 통합 AI 기반 공중보건 및 임상 데이터 저장소를 도입했습니다.

성장하는 멀티 클라우드 전략

멀티 클라우드 전략은 일반적으로 벤더 종속을 피하고 중복성을 높이기 위해 여러 클라우드 프로바이더를 이용하는 것이 일반적입니다. 또한 이러한 접근 방식은 조직이 특정 요구에 따라 워크로드를 분산하고 여러 벤더의 베스트 오브 브리드 서비스를 활용할 수 있는 민첩성을 제공합니다. 예를 들어 어떤 기업은 고급 AI 기능을 위해 구글 클라우드를 사용하는 반면, 데이터 분석 툴의 광범위한 생태계를 위해 AWS에 의존할 수도 있습니다. 또한 Snowflake와 Cloudera와 같은 벤더들은 여러 클라우드 및 On-Premise 인프라와 원활하게 통합할 수 있는 플랫폼을 제공함으로써 이러한 전략을 촉진하고 있습니다.

목차

제1장 서문

제2장 조사 범위와 조사 방법

제3장 개요

제4장 서론

제5장 세계의 데이터 레이크 시장

제6장 시장 내역 : 컴포넌트별

제7장 시장 내역 : 배포 모드별

제8장 시장 내역 : 조직 규모별

제9장 시장 내역 : 비즈니스 기능별

제10장 시장 내역 : 최종 용도 산업별

제11장 시장 내역 : 지역별

제12장 SWOT 분석

제13장 밸류체인 분석

제14장 Porter's Five Forces 분석

제15장 가격 분석

제16장 경쟁 구도

KSA
영문 목차

영문목차

The global data lakes market size reached USD 14.7 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 91.8 Billion by 2033, exhibiting a growth rate (CAGR) of 21.48% during 2025-2033. The rising number of businesses concerning the management of large amounts of digital data is bolstering the market.

Data Lakes Market Trends:

Rising Integration of AI

One of the key factors bolstering the market is the growing integration of AI and ML, which can extract deeper insights and predictive analytics from data. Moreover, AI-powered data lakes can automate data classification, anomaly detection, and pattern recognition. Companies like Databricks and IBM are leading this trend by offering AI and ML capabilities integrated with their data lake solutions. For instance, in June 2024, Fivetran, a company that helps enterprises build their data pipelines, announced the general availability of its newest product, the Fivetran Managed Data Lake Service, which aims to remove the repetitive work of managing data lakes by automating and streamlining it for clients.

Increasing Emphasis on Data Governance

The growing focus on data governance and security is bolstering the market. As organizations store vast amounts of sensitive data, thereby ensuring its confidentiality, integrity, and compliance with regulatory requirements becomes paramount. Effective data governance frameworks help manage metadata, data quality, and lineage, thereby providing transparency and control over data assets. For instance, in July 2024, a research team at Flinders University introduced an integrated and AI-driven public health and clinical data repository in Australia for public health surveillance and emergency response.

Growing Multi-cloud Strategies

Multi-cloud strategies usually involve using multiple cloud providers to avoid vendor lock-in and enhance redundancy. This approach also provides organizations with the agility to distribute workloads based on specific needs and leverage best-of-breed services from numerous vendors. For example, a company might use Google Cloud for its advanced AI capabilities while relying on AWS for its extensive ecosystem of data analytics tools. Moreover, vendors like Snowflake and Cloudera are facilitating these strategies by offering platforms that seamlessly integrate with several cloud and on-premises infrastructures.

Global Data Lakes Industry Segmentation:

Breakup by Component:

The solutions segment includes key areas such as data discovery, data integration and management, data lake analytics, and data visualization. Data discovery tools help organizations identify and understand their data assets, while data integration and management solutions streamline the process of consolidating disparate data sources. Data lake analytics enable the processing and analysis of large datasets to extract valuable insights, and data visualization tools facilitate the representation of data in graphical formats for better comprehension and decision-making. The services segment is divided into managed services and professional services. Managed services offer ongoing support and maintenance of data lake infrastructure, ensuring optimal performance and reliability. Professional services provide specialized expertise, including consulting, implementation, and training, to help organizations effectively deploy and utilize data lake solutions. This detailed segmentation underscores the diverse range of components driving the data lakes market and their critical roles in enabling data-driven business strategies.

Breakup by Deployment Mode:

On-premises data lakes involve deploying the infrastructure within an organization's own data centers, providing complete control over data security, customization, and compliance with internal policies. Industries particularly favor this mode with stringent regulatory requirements, such as finance and healthcare. Conversely, cloud-based data lakes, hosted on platforms like Amazon Web Services (AWS), Microsoft Azure, and Google Cloud, offer scalability, flexibility, and cost-efficiency. They enable organizations to handle massive data volumes without significant upfront investment in physical infrastructure.

Breakup by Organization Size:

For SMEs, data lakes offer a cost-effective solution to manage and analyze large datasets, helping these organizations gain insights without the need for extensive IT infrastructure. Solutions tailored for SMEs typically emphasize ease of use, scalability, and integration with existing systems to support their growth and innovation needs. On the other hand, large enterprises benefit from data lakes' ability to handle vast amounts of data from diverse sources, facilitating complex analytics, machine learning, and real-time data processing. These enterprises often require advanced features like robust security, compliance, and customization to meet their extensive operational demands. By segmenting the market based on organization size, the report highlights the distinct needs and advantages of data lakes for both SMEs and large enterprises, reflecting their critical role in enhancing data-driven decision-making across different business scales.

Breakup by Business Function:

In marketing, data lakes facilitate comprehensive customer insights, enabling targeted campaigns and personalized customer experiences through the integration of vast amounts of behavioral and demographic data. For sales, data lakes enhance performance tracking, forecasting, and customer relationship management by consolidating data from various touchpoints. In operations, data lakes improve efficiency and decision-making by providing real-time analytics and process optimization insights. The finance function benefits from data lakes by gaining accurate financial reporting, risk management, and fraud detection capabilities through the aggregation and analysis of transactional and historical data. In human resources, data lakes support talent management, employee engagement, and workforce analytics by integrating data from recruitment, performance evaluations, and employee feedback. By segmenting the market based on business function, the report underscores the versatile applications of data lakes in driving strategic decisions and operational excellence across different organizational domains.

Breakup by End Use Industry:

In the BFSI sector, data lakes enable enhanced fraud detection, risk management, and customer analytics by consolidating vast amounts of transactional data. The IT and telecom industry leverages data lakes for network optimization, customer service improvements, and big data analytics. Retail and e-commerce businesses use data lakes to gain insights into customer behavior, inventory management, and personalized marketing. In healthcare and life sciences, data lakes support clinical data analysis, patient care optimization, and research. The manufacturing sector benefits from improved supply chain management, predictive maintenance, and quality control. Energy and utilities companies use data lakes for operational efficiency, predictive maintenance, and energy consumption analysis. Media and entertainment industries utilize data lakes for audience analytics, content personalization, and trend analysis. Government agencies adopt data lakes for improved public service delivery, policy-making, and data transparency. This is expanding the data lakes market share.

Breakup by Region:

The market research report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa.

North America, particularly the United States, leads the market due to its advanced technological infrastructure, high adoption rates of big data solutions, and the presence of major technology firms like AWS, Microsoft, and Google. The Asia Pacific region is experiencing rapid market expansion driven by increasing digital transformation initiatives, a burgeoning IT sector, and significant investments in data analytics across countries like China, India, and Japan. Europe follows closely, with a strong emphasis on data privacy and regulatory compliance, which fuels the demand for sophisticated data management solutions. In Latin America, growing awareness of the benefits of big data and rising investments in technology infrastructure are propelling market growth, particularly in countries like Brazil and Mexico. The Middle East and Africa region, although at an earlier stage of adoption, is witnessing increasing interest in data lakes due to emerging smart city projects, digital initiatives, and investments in IT infrastructure.

Competitive Landscape:

The market research report has provided a comprehensive analysis of the competitive landscape. Detailed profiles of all major market companies have also been provided. Some of the key players in the market include:

Key Questions Answered in This Report:

Table of Contents

1 Preface

2 Scope and Methodology

3 Executive Summary

4 Introduction

5 Global Data Lakes Market

6 Market Breakup by Component

7 Market Breakup by Deployment Mode

8 Market Breakup by Organization Size

9 Market Breakup by Business Function

10 Market Breakup by End Use Industry

11 Market Breakup by Region

12 SWOT Analysis

13 Value Chain Analysis

14 Porters Five Forces Analysis

15 Price Analysis

16 Competitive Landscape

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기