Ãßõ ¿£Áø ½ÃÀå º¸°í¼­ : À¯Çü, ±â¼ú, µµÀÔ ¸ðµå, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº°(2024-2032³â)
Recommendation Engine Market Report by Type, Technology, Deployment Mode, Application, End User, and Region 2024-2032
»óǰÄÚµå : 1560946
¸®¼­Ä¡»ç : IMARC Group
¹ßÇàÀÏ : 2024³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 143 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 2,999 £Ü 4,130,000
PDF & Excel (Single User License) help
PDF, Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 3,999 £Ü 5,507,000
PDF & Excel (5 User License) help
PDF, Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,999 £Ü 6,884,000
PDF & Excel (Corporate License) help
PDF, Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

¼¼°èÀÇ Ãßõ ¿£Áø ½ÃÀå ±Ô¸ð´Â 2023³â¿¡ 48¾ï ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ IMARC GroupÀº ½ÃÀåÀÌ 2032³â±îÁö 591¾ï ´Þ·¯¿¡ ´ÞÇϸç, 2024-2032³â 31.2%ÀÇ ¼ºÀå·ü(CAGR)À» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù.

Ãßõ ¿£ÁøÀº ¸¶ÄÉÆÃ ´ã´çÀÚ°¡ °í°´¿¡°Ô ÀûÇÕÇÑ »óǰÀ» ½Ç½Ã°£À¸·Î ÃßõÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â µ¥ÀÌÅÍ ÇÊÅ͸µ ÅøÀ» ¸»ÇÕ´Ï´Ù. ¸Ó½Å·¯´×(ML), ÀΰøÁö´É(AI) µî µ¥ÀÌÅÍ ºÐ¼® ±â¼ú°ú °íµµÈ­µÈ ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇÏ¿© °³Àο¡°Ô ÀûÇÕÇÑ »óǰ īŻ·Î±×¸¦ Á¦¾ÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ °í°´ÀÇ ¼±È£µµ, °ú°Å ºê¶ó¿ìÀú ±â·Ï, ¼Ó¼º, »óȲÀû ¸Æ¶ôÀ» ±â¹ÝÀ¸·Î À¥»çÀÌÆ®, ¾Û, À̸ÞÀÏÀ» ÅëÇØ »óǰÀ» Ç¥½ÃÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇöÀç´Â ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ¸ð¹ÙÀÏ ¾Û, ±³À° µî °³ÀÎÈ­ Àü·«ÀÌ ÇÊ¿äÇÑ B2C(Business to Consumer) E-Commerce ºÐ¾ß¿¡¼­ ³Î¸® Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù.

Ãßõ ¿£Áø ½ÃÀå µ¿Çâ :

Ãßõ ¿£Áø ½ÃÀå µ¿Çâ

Äڷγª¹ÙÀÌ·¯½º °¨¿°Áõ(COVID-19)ÀÇ ´ëÀ¯Çà°ú °¢±¹ Á¤ºÎ ±â°üÀÇ Àü¸éÀûÀÎ ¿µ¾÷ Áß´Ü Á¶Ä¡·Î ÀÎÇØ ¸¹Àº ±â¾÷ÀÌ ¿Â¶óÀÎ ¼Ò¸Å Ç÷§ÆûÀ¸·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ¸ÅÃâ Áõ´ë ¹× °í°´ °ü°è À¯Áö¸¦ À§ÇÑ Ãßõ ¿£Áø¿¡ ´ëÇÑ ¼ö¿ä¸¦ ºÒ·¯ÀÏÀ¸Å°´Â ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. ÀÌ ¿Ü¿¡µµ ÀÎÅͳÝÀÇ º¸±Þ, ½º¸¶Æ®Æù¿¡ ´ëÇÑ ÀÇÁ¸µµ Áõ°¡, ¼Ò¼È¹Ìµð¾îÀÇ ºÎ»óÀ¸·Î ÀÎÇÑ E-Commerce »ê¾÷ÀÇ ¹ø¿µÀÌ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼ÒºñÀÚÀÇ ¼Òºñ ½À°üÀÌ º¯È­ÇÏ°í ¼îÇνà Æí¸®ÇÔ, Áï½Ã¼º, °£ÆíÇÔ¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁø °Íµµ ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¶ÇÇÑ ¿øÈ°ÇÑ °í°´ °æÇè Á¦°ø¿¡ ÁßÁ¡À» µÐ ¿È´Ïä³Î Á¢±Ù ¹æ½ÄÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºñÁî´Ï½º ¼¼°èÀÇ ±Þ¼ÓÇÑ È®ÀåÀº ´ë·®ÀÇ µ¥ÀÌÅ͸¦ °ü¸®ÇÏ°í »ç¿ëÀÚ¸¦ Àû±ØÀûÀ¸·Î Âü¿©½Ã۱â À§ÇÑ Ãßõ ¿£Áø¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü ¼¼°è Áß¼Ò±â¾÷(SME)µéÀº ±âÁ¸ °í°´¿¡°Ô ½ÅÁ¦Ç°À» ±³Â÷ ÆÇ¸ÅÇϰųª Æò±Õ ÁÖ¹® ±Ý¾×À» ±Ø´ëÈ­ÇÏ¿© Àüü ¸ÅÃâÀ» Áõ°¡½Ãų ¼ö ÀÖ´Â Ãßõ ¿£Áø¿¡ ´ëÇÑ ¼±È£µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­¿¡¼­ ´Ù·é ÁÖ¿ä Áú¹®

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ¼­·Ð

Á¦5Àå ¼¼°èÀÇ Ãßõ ¿£Áø ½ÃÀå

Á¦6Àå ½ÃÀå ³»¿ª : À¯Çüº°

Á¦7Àå ½ÃÀå ³»¿ª : ±â¼úº°

Á¦8Àå ½ÃÀå ³»¿ª : µµÀÔ ¸ðµåº°

Á¦9Àå ½ÃÀå ³»¿ª : ¿ëµµº°

Á¦10Àå ½ÃÀå ³»¿ª : ÃÖÁ¾»ç¿ëÀÚº°

Á¦11Àå ½ÃÀå ³»¿ª : Áö¿ªº°

Á¦12Àå SWOT ºÐ¼®

Á¦13Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦14Àå Porter's Five Forces ºÐ¼®

Á¦15Àå °¡°Ý ºÐ¼®

Á¦16Àå °æÀï ±¸µµ

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The global recommendation engine market size reached US$ 4.8 Billion in 2023. Looking forward, IMARC Group expects the market to reach US$ 59.1 Billion by 2032, exhibiting a growth rate (CAGR) of 31.2% during 2024-2032.

Recommendation engine refers to a data filtering tool that enables marketers to offer relevant product recommendations to customers in real-time. It is leveraged with data analysis techniques and advanced algorithms, such as machine learning (ML) and artificial intelligence (AI), which can suggest relevant product catalogs to an individual. In addition, it can show products on websites, apps, and emails, based on customer preferences, past browser history, attributes, and situational context. At present, it is widely utilized in business-to-consumer (B2C) e-commerce fields, such as entertainment, mobile apps, and education, which require a personalization strategy.

Recommendation Engine Market Trends:

The coronavirus disease (COVID-19) pandemic and complete lockdowns imposed by governing agencies of numerous countries have encouraged enterprises to shift to online retail platforms. This represents one of the major factors catalyzing the demand for recommendation engines to increase sales and maintain a positive customer relationship. Apart from this, the thriving e-commerce industry on account of the increasing penetration of the Internet, the growing reliance on smartphones, and the emerging social media trend are contributing to the market growth. This can also be attributed to changing consumer spending habits and the rising need for convenience, immediacy, and simplicity during shopping. Moreover, the increasing adoption of the omnichannel approach to sales that focuses on providing a seamless customer experience is driving the market. Furthermore, due to the rapid expansion of businesses globally, there is a rise in the demand for recommendation engines to manage large volumes of data and engage users actively. They are also gaining traction in small and medium-sized enterprises (SMEs) worldwide to enable them to increase overall sales by cross-selling new products to existing customers and maximize average order value.

Key Market Segmentation:

IMARC Group provides an analysis of the key trends in each sub-segment of the global recommendation engine market report, along with forecasts at the global, regional and country level from 2024-2032. Our report has categorized the market based on type, technology, deployment mode, application and end user.

Breakup by Type:

Breakup by Technology:

Breakup by Deployment Mode:

Breakup by Application:

Breakup by End User:

Breakup by Region:

Competitive Landscape:

The competitive landscape of the industry has also been examined along with the profiles of the key players being Adobe Inc., Amazon.com Inc., Dynamic Yield (McDonald's), Google LLC (Alphabet Inc.), Hewlett Packard Enterprise Development LP, Intel Corporation, International Business Machines Corporation, Kibo Software Inc., Microsoft Corporation, Oracle Corporation, Recolize GmbH, Salesforce.com Inc. and SAP SE.

Key Questions Answered in This Report

Table of Contents

1 Preface

2 Scope and Methodology

3 Executive Summary

4 Introduction

5 Global Recommendation Engine Market

6 Market Breakup by Type

7 Market Breakup by Technology

8 Market Breakup by Deployment Mode

9 Market Breakup by Application

10 Market Breakup by End User

11 Market Breakup by Region

12 SWOT Analysis

13 Value Chain Analysis

14 Porters Five Forces Analysis

15 Price Analysis

16 Competitive Landscape

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â