¼¼°èÀÇ Ãßõ ¿£Áø ½ÃÀå
Recommendation Engines
»óǰÄÚµå : 1761036
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 202 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,106,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,320,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Ãßõ ¿£Áø ¼¼°è ½ÃÀåÀº 2030³â±îÁö 291¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 57¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Ãßõ ¿£Áø ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 31.4%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 291¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÇùÁ¶ ÇÊÅ͸µÀº CAGR 29.9%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 115¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÄÁÅÙÃ÷ ±â¹Ý ÇÊÅ͸µ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 31.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 16¾ï ´Þ·¯, Áß±¹Àº CAGR 29.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ Ãßõ ¿£Áø ½ÃÀåÀº 2024³â¿¡ 16¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 43¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 29.8%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 27.8%¿Í 26.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 21.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Ãßõ ¿£Áø ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Ãßõ ¿£ÁøÀº µðÁöÅÐ °æÇèÀ» ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

Ãßõ ¿£ÁøÀº »ç¿ëÀÚÀÇ ÃëÇâ°ú Çൿ¿¡ µû¶ó °³ÀÎÈ­µÈ ÄÁÅÙÃ÷¿Í »óǰ Á¦¾ÈÀ» Á¦°øÇÔÀ¸·Î½á µðÁöÅÐ °æÇèÀÇ ±âº» ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿£ÁøÀº E-Commerce »çÀÌÆ®, ½ºÆ®¸®¹Ö ¼­ºñ½º, ¼Ò¼È ¹Ìµð¾î, ´º½º Æ÷ÅÐ µî ´Ù¾çÇÑ Ç÷§Æû¿¡¼­ »ç¿ëµÇ°í ÀÖÀ¸¸ç, »ç¿ëÀÚ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© »ç¿ëÀÚ Âü¿©¿Í ¸¸Á·µµ¸¦ ³ôÀÌ´Â ¸ÂÃãÇü ÃßõÀ» Á¦°øÇÕ´Ï´Ù. Ãßõ ¿£ÁøÀº ¹æ´ëÇÑ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®ÇÏ´Â ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇÏ¿© »ç¿ëÀÚ°¡ °ü½ÉÀ» °¡Áú¸¸ÇÑ »óǰ, ¿µÈ­, ±â»ç µîÀ» ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °³ÀÎÈ­´Â »ç¿ëÀÚ °æÇèÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ÀüȯÀ²°ú °í°´ Ãæ¼ºµµ¸¦ ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. Ãßõ ¿£ÁøÀÇ º¸±ÞÀº ºñÁî´Ï½º¿Í °í°´°úÀÇ °ü°è ¹æ½ÄÀ» ¹Ù²Ù°í ÀÖÀ¸¸ç, °³ÀÎÈ­¸¦ µðÁöÅÐ ¼º°øÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î »ï°í ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº Ãßõ ¿£ÁøÀÇ ±â´ÉÀ» ¾î¶»°Ô °­È­Çϰí Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº Ãßõ ¿£ÁøÀÇ ±â´ÉÀ» ´ëÆø °­È­ÇÏ¿© ´õ¿í Á¤È®Çϰí È¿À²ÀûÀ̸ç È®À强À» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML) ¾Ë°í¸®ÁòÀÇ ÅëÇÕÀ» ÅëÇØ Ãßõ ¿£ÁøÀº »ç¿ëÀÚ¿ÍÀÇ »óÈ£ÀÛ¿ëÀ» ÅëÇØ Áö¼ÓÀûÀ¸·Î ÇнÀÇϰí, »ç¿ëÀÚÀÇ ÃëÇâ¿¡ ´õ Àß ¸Âµµ·Ï Á¦¾ÈÀ» °³¼±ÇØ ³ª°©´Ï´Ù. ½Å°æ¸Á°ú °°Àº µö·¯´× ±â¼úÀº »ç¿ëÀÚ ÇൿÀÇ º¹ÀâÇÑ ÆÐÅÏÀ» ºÐ¼®ÇÏ´Â µ¥ »ç¿ëµÇ¾î º¸´Ù Á¤±³ÇÏ°í ¸Æ¶ô¿¡ ¸Â´Â ÃßõÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÚ¿¬¾î ó¸®(NLP)¸¦ »ç¿ëÇÏ¿© Ãßõ ¿£ÁøÀº »ç¿ëÀÚÀÇ Äõ¸®¿Í Çǵå¹éÀ» º¸´Ù È¿°úÀûÀ¸·Î ÀÌÇØÇϰí ÇØ¼®ÇÏ¿© ÃßõÀÇ °ü·Ã¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ ÅëÇÕÀº Ãßõ ¿£ÁøÀÇ ¹üÀ§¸¦ È®ÀåÇÏ¿© ¼Ò¼È ¹Ìµð¾î, ±¸¸Å ³»¿ª, °Ë»ö Çൿ µî ¿©·¯ ¼Ò½º·ÎºÎÅÍ ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ ¹ßÀüÀ¸·Î ´Ù¾çÇÑ »ê¾÷¿¡¼­ º¸´Ù °íµµÈ­µÇ°í È¿°úÀûÀÎ Ãßõ ¿£ÁøÀÇ Ã¤ÅÃÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.

Ãßõ ¿£ÁøÀÇ ÁÖ¿ä ¿ëµµ¿Í ÀåÁ¡Àº?

Ãßõ ¿£ÁøÀº »ç¿ëÀÚ Âü¿©, ¸¸Á·µµ, ºñÁî´Ï½º ¼º°ú¸¦ Çâ»ó½ÃŰ´Â µ¥ Å« ÀÌÁ¡À» Á¦°øÇϸç, µðÁöÅРȯ°æ Àü¹Ý¿¡ °ÉÃÄ ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Netflix³ª Spotify¿Í °°Àº ½ºÆ®¸®¹Ö ¼­ºñ½º¿¡¼­ Ãßõ ¿£ÁøÀº »ç¿ëÀÚÀÇ ½Ãû ¹× ûÃë ½À°üÀ» ±â¹ÝÀ¸·Î ¿µÈ­, TV ÇÁ·Î±×·¥, À½¾ÇÀ» Á¦¾ÈÇϰí, »ç¿ëÀÚ°¡ Áñ±æ °¡´É¼ºÀÌ ³ôÀº »õ·Î¿î ÄÁÅÙÃ÷¸¦ ¹ß°ßÇÏ¿© »ç¿ëÀÚ °æÇèÀ» Çâ»ó½Ãŵ´Ï´Ù. »ç¿ëÀÚ °æÇèÀ» Çâ»ó½Ãŵ´Ï´Ù. ¼Ò¼È ¹Ìµð¾î Ç÷§ÆûÀº Ãßõ ¿£ÁøÀ» »ç¿ëÇÏ¿© ¿¬°á, ±×·ì, ÄÁÅÙÃ÷¸¦ Á¦¾ÈÇÏ°í »ç¿ëÀÚ¸¦ °ü·Ã Ä¿¹Â´ÏƼ¿¡ Âü¿©½ÃŰ°í ¿¬°á »óŸ¦ À¯ÁöÇϵµ·Ï À¯µµÇÕ´Ï´Ù. Ãßõ ¿£ÁøÀÇ ÁÖ¿ä ÀÌÁ¡À¸·Î´Â »ç¿ëÀÚ °æÇè Çâ»ó, Âü¿©µµ Áõ°¡, ÀüȯÀ² Çâ»ó, °í°´ Ãæ¼ºµµ Çâ»ó µîÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀåÁ¡À¸·Î ÀÎÇØ Ãßõ ¿£ÁøÀº µðÁöÅÐ °æÇèÀ» °³ÀÎÈ­ÇÏ°í ¼ºÀåÀ» ÃËÁøÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô Áß¿äÇÑ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù.

Ãßõ ¿£Áø ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

Ãßõ ¿£Áø ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °³ÀÎÈ­µÈ »ç¿ëÀÚ °æÇè¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ±â¾÷ÀÌ °³ÀÎÈ­µÈ ÄÁÅÙÃ÷ ¹× Á¦Ç° ÃßõÀ» ÅëÇØ Â÷º°È­¸¦ ²ÒÇϰí Àֱ⠶§¹®¿¡ Áß¿äÇÑ ÃËÁø¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI, ML, ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ ±â¼ú ¹ßÀüÀº Ãßõ ¿£ÁøÀÇ ±â´É°ú Á¤È®µµ¸¦ ³ô¿© ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, E-Commerce, ½ºÆ®¸®¹Ö ¼­ºñ½º, ¼Ò¼È ¹Ìµð¾î µî µðÁöÅÐ Ç÷§ÆûÀÇ µµÀÔÀÌ Áõ°¡Çϸ鼭 Ãßõ ¿£Áø¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Ãßõ ¿£ÁøÀÇ ¼ö¿ä¸¦ ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº »ç¿ëÀÚÀÇ °ü½ÉÀ» ²ø°í ÀüȯÀ» ÃËÁøÇϱâ À§ÇØ °³ÀÎÈ­µÈ Ãßõ¿¡ Å©°Ô ÀÇÁ¸Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, °æÀï ½ÃÀå¿¡¼­ °í°´ À¯Áö¿Í Ãæ¼ºµµ°¡ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀº »ç¿ëÀÚ ¸¸Á·µµ¸¦ ³ôÀÌ°í °í°´°úÀÇ Àå±âÀûÀÎ °ü°è¸¦ ±¸ÃàÇϱâ À§ÇØ Ãßõ ¿£Áø¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº Ãßõ ±â¼úÀÇ Áö¼ÓÀûÀÎ Çõ½Å°ú ÇÔ²² Ãßõ ¿£Áø ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦Ç° À¯Çü(ÇùÁ¶ ÇÊÅ͸µ, ÄÁÅÙÃ÷ ±â¹Ý ÇÊÅ͸µ, ÇÏÀ̺긴µå·¹Äڸ൥À̼Ç), µµÀÔ ÇüÅÂ(Ŭ¶ó¿ìµå, ¿ÂÇÁ·¹¹Ì½º), ¿ëµµ(°³ÀÎÈ­µÈ Ä·ÆäÀÎ ¹× °í°´ µô¸®¹ö¸®, »óǰ ±âȹ ¹× ÇÁ·Î¾×Ƽºê ÀÚ»ê °ü¸®, Àü·« ¿ÀÆÛ·¹ÀÌ¼Ç ¹× Ç÷¡´×), ÃÖÁ¾ ¿ëµµ(¼Ò¸Å, IT, ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ÇコÄɾî, BFSI, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 53°³»ç)

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å ºñµð¿À Æ®·£½ºÅ©¸³Æ®, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è µµ¸ÞÀÎ Àü¹®°¡°¡ ¼±º°ÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Recommendation Engines Market to Reach US$29.1 Billion by 2030

The global market for Recommendation Engines estimated at US$5.7 Billion in the year 2024, is expected to reach US$29.1 Billion by 2030, growing at a CAGR of 31.4% over the analysis period 2024-2030. Collaborative Filtering, one of the segments analyzed in the report, is expected to record a 29.9% CAGR and reach US$11.5 Billion by the end of the analysis period. Growth in the Content-Based Filtering segment is estimated at 31.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.6 Billion While China is Forecast to Grow at 29.8% CAGR

The Recommendation Engines market in the U.S. is estimated at US$1.6 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$4.3 Billion by the year 2030 trailing a CAGR of 29.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 27.8% and 26.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 21.8% CAGR.

Global Recommendation Engines Market - Key Trends and Drivers Summarized

How Are Recommendation Engines Transforming the Digital Experience?

Recommendation engines have become a fundamental component of the digital experience, providing personalized content and product suggestions to users based on their preferences and behavior. These engines are used across a wide range of platforms, including e-commerce websites, streaming services, social media, and news portals, where they analyze user data to deliver tailored recommendations that enhance engagement and satisfaction. By leveraging algorithms that process vast amounts of data in real-time, recommendation engines can predict what users are likely to be interested in, whether it's a product, a movie, or an article. This personalization not only improves the user experience but also drives higher conversion rates and customer loyalty, as users are more likely to engage with content that aligns with their interests. The widespread adoption of recommendation engines is transforming how businesses interact with their customers, making personalization a key driver of digital success.

How Are Technological Advancements Enhancing the Capabilities of Recommendation Engines?

Technological advancements are significantly enhancing the capabilities of recommendation engines, making them more accurate, efficient, and scalable. The integration of artificial intelligence (AI) and machine learning (ML) algorithms allows recommendation engines to continuously learn from user interactions, refining their suggestions over time to better match user preferences. Deep learning techniques, such as neural networks, are being used to analyze complex patterns in user behavior, enabling more sophisticated and context-aware recommendations. Additionally, the use of natural language processing (NLP) allows recommendation engines to understand and interpret user queries and feedback more effectively, improving the relevance of the recommendations provided. The integration of big data analytics is also expanding the scope of recommendation engines, allowing them to process and analyze large volumes of data from multiple sources, such as social media, purchase history, and browsing behavior. These technological advancements are driving the adoption of more advanced and effective recommendation engines across various industries.

What Are the Key Applications and Benefits of Recommendation Engines?

Recommendation engines are used in a wide range of applications across the digital landscape, offering significant benefits that enhance user engagement, satisfaction, and business outcomes. In e-commerce, recommendation engines are used to suggest products based on a user's browsing history, purchase behavior, and preferences, increasing the likelihood of repeat purchases and higher basket values. In streaming services, such as Netflix and Spotify, recommendation engines suggest movies, TV shows, and music based on a user's viewing and listening habits, enhancing the user experience by helping them discover new content they are likely to enjoy. Social media platforms use recommendation engines to suggest connections, groups, and content, keeping users engaged and connected to relevant communities. The primary benefits of recommendation engines include improved user experience, increased engagement, higher conversion rates, and enhanced customer loyalty. These advantages make recommendation engines a critical tool for businesses seeking to personalize the digital experience and drive growth.

What Factors Are Driving the Growth in the Recommendation Engines Market?

The growth in the Recommendation Engines market is driven by several factors. The increasing demand for personalized user experiences is a significant driver, as businesses seek to differentiate themselves by offering content and product recommendations tailored to individual users. Technological advancements in AI, ML, and big data analytics are also propelling market growth by enhancing the capabilities and accuracy of recommendation engines. The rising adoption of digital platforms, including e-commerce, streaming services, and social media, is further boosting demand for recommendation engines, as these platforms rely heavily on personalized recommendations to engage users and drive conversions. Additionally, the growing importance of customer retention and loyalty in competitive markets is contributing to market growth, as businesses invest in recommendation engines to enhance user satisfaction and build long-term relationships with customers. These factors, combined with continuous innovation in recommendation technologies, are driving the sustained growth of the Recommendation Engines market.

SCOPE OF STUDY:

The report analyzes the Recommendation Engines market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Collaborative Filtering, Content-Based Filtering, Hybrid Recommendation); Deployment (Cloud, On-Premise); Application (Personalized Campaigns & Customer Delivery, Product Planning & Proactive Asset Management, Strategy Operations & Planning); End-Use (Retail, Information Technology, Media & Entertainment, Healthcare, BFSI, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 53 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â