In Situ Hybridization Market Size, Share & Trends Analysis Report By Technology, By Probe Type, By Product, By Application, By End-use, By Region, And Segment Forecasts, 2024 - 2030
The global in situ hybridization market size is expected to reach USD 2.55 billion by 2030, registering a CAGR of 7.2% during the forecast period, according to a new report by Grand View Research, Inc. Situ Hybridization (ISH) is extensively utilized for research and clinical applications of diagnostics. ISH is a popular approach among researchers as it aids in determining the relationship between the distribution of specific nucleic acids and the target gene protein products. Hence, expanding the scope of ISH in applications is accelerating and leading to further research.
The increasing awareness about ISH techniques and their usage encourages researchers to employ the techniques for various applications. For instance, the CEO of MultiplexDX stated in an interview with Elsevier that FISH technology can contribute breakthrough information for early drug development and personalized treatment. A growing number of people in developed countries are opting for personalized treatment owing to an increase in awareness, thus boosting market demand.
Furthermore, reimbursement schemes being made available in developed economies have led to an increase in demand for this diagnosis. The demand continues to increase as the majority of the public can now afford it due to the recent expansion through insurance coverage. For instance, Medicare is the largest market player in the U.S., which provides care for those aged 65 years and above, irrespective of their income and medical history.
Owing to the COVID-19 pandemic, the demand side showcased a positive impact on the ISH market as various researchers employed the technique on COVID-19-infected cells. Research published in July 2020, considered 8 autopsy lungs, 10 kidney biopsies, and 1 placenta from COVID-19-infected patients with ISH assay and RNA probes.
COVID-19 positive results showed in all 8 lungs and the placenta by ISH, but not in the kidney samples. The assay showcases a sensitive and specific technique for detecting the virus from tissue samples. Similarly, Advanced Cell Diagnostics, Inc., introduced RNAscope technology to support COVID-19 research.
The growing strategic initiatives by the companies are anticipated to boost the ISH market growth. Key players are introducing novel products in the market to strengthen their portfolios. For instance, in March 2021, F. Hoffmann-La Roche launched DISCOVERY Green HRP chromogen detection kit to expand the multiplexing capability of in situ hybridization and immunohistochemistry.
On the other hand, molecular diagnostics renders accurate & effective results and has indispensable applications in the field of diagnosis. However, the high manufacturing cost of FISH assays and the high amount of capital required for specialized assembly plants & maintenance of instruments used in FISH imaging are likely to limit revenue generation.
In Situ Hybridization Market Report Highlights:
By technology, the CISH segment is projected to expand at the fastest growth rate during the forecast period. Since the reagents used in CISH are more stable, the sample can be stored for a longer duration and can be examined multiple times
By probe, the DNA segment is anticipated to have the fastest growth rate during the forecast period. Owing to the increasing incidence of diseases associated with chromosomal aberrations, such as genetic abnormalities and cancer
By product, the services segment is anticipated to have the fastest-growing CAGR between 2024 to 2030. Increasing outsourcing to ensure high adherence to quality standards and improve operational functionalities contributes to the lucrative growth.
Table of Contents
Chapter 1. Methodology and Scope
1.1. Market Segmentation
1.1.1. Market Definitions
1.2. Objectives
1.2.1. Objective - 1
1.2.2. Objective - 2
1.2.3. Objective - 3
1.3. Research Methodology
1.4. Information Procurement
1.4.1. Purchased Database
1.4.2. GVR's Internal Database
1.4.3. Secondary Sources
1.4.4. Primary Research
1.5. Information or Data Analysis
1.5.1. Data Analysis Models
1.6. Market Formulation & Validation
1.7. Model Details
1.7.1. Commodity Flow Analysis
1.8. List of Secondary Sources
1.9. List of Abbreviations
1.10. List of Primary Sources
Chapter 2. Executive Summary
2.1. Market Snapshot
2.2. Segment Snapshot
2.3. Competitive Landscape Snapshot
Chapter 3. Market Variables, Trends, & Scope
3.1. Market Segmentation and Scope
3.2. Market Lineage Outlook
3.2.1. Parent Market Outlook
3.2.2. Related/Ancillary Market Outlook
3.3. Market Trends and Outlook
3.4. Market Dynamics
3.4.1. Rising Prevalence of Target Disorders
3.4.2. Technological Advancement In the Field of In Vitro Diagnostics
3.4.3. Increasing R&D Investments In In Vitro Diagnostics
3.5. Market Restraint Analysis
3.5.1. High Cost of ISH
3.5.2. Presence of An Ambiguous Regulatory Framework
3.6. Penetration and Growth Prospect Mapping 2023
3.7. Business Environment Analysis
3.7.1. SWOT Analysis; By Factor (Political & Legal, Economic And Technological)
3.7.2. Porter's Five Forces Analysis
Chapter 4. Technology Business Analysis
4.1. In Situ Hybridization Market: Product Type Movement Analysis
4.2. FISH
4.2.1. FISH Market, 2018 - 2030 (USD Million)
4.3. CISH
4.3.1. CISH Market, 2018 - 2030 (USD Million)
Chapter 5. Probe Business Analysis
5.1. In Situ Hybridization Market: Site Movement Analysis
5.2. DNA
5.2.1. DNA Market, 2018 - 2030 (USD Million)
5.3. RNA
5.3.1. RNA Market, 2018 - 2030 (USD Million)
Chapter 6. Product Business Analysis
6.1. In Situ Hybridization Market: Site Movement Analysis