¼¼°èÀÇ ÇØ»ó ¼ö·Â¹ßÀü ½ÃÀå
Offshore Hydropower
»óǰÄÚµå : 1799159
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 179 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,204,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,612,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÇØ»ó ¼ö·Â¹ßÀü ½ÃÀåÀº 2030³â±îÁö 84¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 57¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÇØ»ó ¼ö·Â¹ßÀü ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 6.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 84¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Á¶·ù´Â CAGR 4.9%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 32¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÆÄ·Â ¿¡³ÊÁö º¯È¯±â ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 8.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 15¾ï ´Þ·¯, Áß±¹Àº CAGR 6.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÇØ»ó ¼ö·Â¹ßÀü ½ÃÀåÀº 2024³â¿¡ 15¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 14¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 6.7%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 6.0%¿Í 6.0%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 5.7%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ÇØ»ó ¼ö·Â¹ßÀü ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Àç»ý¿¡³ÊÁö ´Ùº¯È­·Î ÇØ¾ç¼ö·Â ¹ßÀüÀÌ ºÎ»óÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

Àç»ý¿¡³ÊÁö Áß¿¡¼­µµ »ó´ëÀûÀ¸·Î ¹Ì°³Ã´ ºÐ¾ßÀÎ ÇØ¾ç¼ö·Â¹ßÀüÀº ÇØ·ù, Á¶·ù, ÆÄµµ¸¦ ÀÌ¿ëÇÑ Ã»Á¤ ¹ßÀü °¡´É¼ºÀ¸·Î ÀÎÁöµµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. dz·ÂÀ̳ª ž籤°ú °°Àº À°»ó Àç»ý¿¡³ÊÁö¿øÀÌ Àα¸ ¹ÐÁý Áö¿ª¿¡¼­´Â ¿ë·®ÀÇ ÇѰ迡 µµ´ÞÇÔ¿¡ µû¶ó, dzºÎÇÑ °ø°£°ú ³ôÀº ¿¡³ÊÁö ¹Ðµµ¸¦ Á¦°øÇÏ´Â ÇØ»ó ¼Ö·ç¼Ç¿¡ °ü½ÉÀÌ ÁýÁߵǰí ÀÖ½À´Ï´Ù. ÇØ¾ç ¼ö·Â ¹ßÀü¿¡´Â Á¶·Â ¹üÀ§ ½Ã½ºÅÛ(¹ÙÁö¼± ¹× ¶ó±º ¼³Ä¡ µî), Á¶·ù ¹ßÀü±â(¼öÁß Åͺó), ÆÄ·Â ¿¡³ÊÁö º¯È¯±â µîÀÌ Æ÷ÇԵǸç, °¢±â ´Ù¸¥ ÇØ¾çÀÇ ¿îµ¿·Â°ú Áß·ÂÀ» Ȱ¿ëÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ¿¹Ãø °¡´ÉÇÏ°í ¾ÈÁ¤ÀûÀÎ ÀÛµ¿ÀÌ °¡´ÉÇϸç, ž籤À̳ª dz·Â°ú °°Àº °£ÇæÀûÀÎ Àç»ý ¿¡³ÊÁö¿¡´Â Á¾Á¾ ºÎÁ·ÇÑ ±âÀúºÎÇÏ Àü·Â °ø±ÞÀÇ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù.

¿µ±¹, ij³ª´Ù, Çѱ¹, µ¿³²¾Æ½Ã¾Æ ÀϺΠÁö¿ª µî ¿¬¾È Á¶·ù°¡ °­Çϰí Á¶¼ö ÁøÆøÀÌ Å« Áö¿ªÀº ƯÈ÷ ÇØ¾ç ¼ö·Â ¹ßÀü °³¹ß¿¡ ÀûÇÕÇÕ´Ï´Ù. ±âÁ¸ÀÇ ¼ö·Â ¹ßÀü ´ï°ú ´Þ¸®, ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ´ë±Ô¸ð ÅäÁö ħ¼ö ¹× »ýÅÂ°è ÆÄ±«¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç, ȯ°æ Áؼö ¸ñÇ¥¿¡ ´õ ºÎÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, ÇØ»ó ¼ö·Â ¹ßÀü ÇÁ·ÎÁ§Æ®´Â Á¾Á¾ ÇØ»ó dz·Â ¹ßÀü¼Ò¿Í º´¼³µÉ ¼ö ÀÖÀ¸¸ç, ¼ÛÀü¸Á ÀÎÇÁ¶ó¿Í À¯Áöº¸¼ö ¹°·ù¸¦ °øÀ¯ÇÒ ¼ö Àֱ⠶§¹®¿¡ ÀÚº» ÁöÃâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. °èÅë ¿î¿µÀÚ´Â Àç»ý¿¡³ÊÁö Áß½ÉÀÇ Àü·Â ¹Í½º¸¦ ¾ÈÁ¤È­ÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ» ã°í ÀÖÀ¸¸ç, Á¶·Â ¿¡³ÊÁöÀÇ ¼ÛÀüÀÌ °¡´ÉÇϰí ÁÖ±âÀûÀ¸·Î ¿¹Ãø °¡´ÉÇÑ Æ¯¼ºÀº ÇØ¾ç ¼ö·Â ¹ßÀüÀ» º¸¿ÏÇÒ ¼ö ÀÖ´Â ±ÍÁßÇÑ ÀÚ»êÀÌ µÇ°í ÀÖ½À´Ï´Ù.

»õ·Î¿î ±â¼úÀº ¾î¶»°Ô ½Ã½ºÅÛÀÇ È¿À²¼º°ú ½ÇÇà °¡´É¼ºÀ» Çâ»ó½Ã۰í Àִ°¡?

ÇØ¾ç ¼ö·Â ¹ßÀü ºÐ¾ß´Â ÇØ¾ç ¿¡³ÊÁö ±â¼ú, ±¸Á¶ ¼³°è, ÇØÀú °øÇÐÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. Á¶·ù ¹ßÀü±â´Â Á¾Á¾ ¼öÁß Ç³·Â ÅÍºó¿¡ ºñÀ¯µÇÁö¸¸, ÀúÀ¯·® Á¶°ÇÀ̳ª º¯µ¿ÇÏ´Â Á¶·ù ¹æÇâ¿¡¼­ È¿À²ÀûÀ¸·Î ÀÛµ¿Çϵµ·Ï °³¼±µÇ¾ú½À´Ï´Ù. »õ·Î¿î µðÀÚÀÎÀº ÀÌÃà ·ÎÅÍ, Á÷Á¢ ±¸µ¿ ¹ßÀü±â, ÀúÇ×À» ÁÙÀÌ°í ¼ö¸íÀ» ¿¬ÀåÇϱâ À§ÇÑ º¹ÇÕÀç·á¸¦ Ư¡À¸·Î ÇÕ´Ï´Ù. Áøµ¿ ¼öÁßÀÍÀ̳ª ¾Æ¸£Å°¸Þµ¥½º ½ºÅ©·ù¿Í °°Àº ±â¼úÀº ±âÁ¸ÀÇ ÅͺóÀÌ È¿À²ÀûÀ¸·Î ÀÛµ¿ÇÏÁö ¾ÊÀ» ¼ö ÀÖ´Â ¾èÀº Çϱ¸¿¡¼­ µµÀԵǰí ÀÖ½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¸ðµâ½ÄÀ̸ç È®Àå °¡´ÉÇϸç, ´Ü°èÀû ¼³Ä¡ ¹× ÀûÀÀÇü ºÎÇÏ ºÐ»êÀÌ °¡´ÉÇÕ´Ï´Ù.

ÆÄ·Â ¿¡³ÊÁö º¯È¯(WEC) ½Ã½ºÅÛµµ ¹ßÀüÇϰí ÀÖÀ¸¸ç, Á¡ Èí¼ö±â, °¨¼è±â, Áøµ¿¼ö ±âµÕÀº ½ÇÇØ¿ª¿¡¼­ ½ÃÇè Áß¿¡ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÎÀ¯Ã¼ ¶Ç´Â ÇØÀú¿¡ ¼³Ä¡µÈ ÀåÄ¡´Â ÆÄµµÀÇ ¿òÁ÷ÀÓÀ» ±â°èÀû ¿¡³ÊÁö·Î º¯È¯Çϰí, À¯¾Ð½Ä ¶Ç´Â ¼±Çü ¹ßÀü±â¸¦ ÅëÇØ Àü±â Ãâ·ÂÀ¸·Î º¯È¯ÇÕ´Ï´Ù. AI ±â¹Ý Á¦¾î ½Ã½ºÅÛ, ½Ç½Ã°£ ÆÄµµ ¿¹Ãø, ÀûÀÀÇü °¨¼è ¾Ë°í¸®ÁòÀÇ »ç¿ëÀº ¿¡³ÊÁö ȹµæ ¹× ±×¸®µå Ãâ·Â ÃÖÀûÈ­¿¡ µµ¿òÀÌ µË´Ï´Ù. ÀÚ°¡ ¼ö¸® Àç·á, ºÎ½Ä ¹æÁö ÄÚÆÃ, ÆØÃ¢½Ä ºÎ·Â ºÎǰ°ú °°Àº ±¸Á¶Àû Çõ½ÅÀº ÇØ¾ç ȯ°æÀÌ Àåºñ¿¡ ¹ÌÄ¡´Â °¡È¤ÇÑ ¿µÇâ¿¡ ´ëóÇÏ°í ½Å·Ú¼º°ú ¼ö¸íÁֱ⠺ñ¿ëÀ» °³¼±ÇÕ´Ï´Ù.

¾î¶² Àü°³ ¸ðµ¨°ú ¿ëµµÀÌ »ó¾÷Àû ÁöÁö¸¦ ¹Þ°í Àִ°¡?

ÇØ¾ç ¼ö·Â ¹ßÀü ½Ã½ºÅÛÀÇ µµÀÔÀº °èÅë ¿¬°èÇü°ú ºÐ»êÇü ¿ëµµ ¸ðµÎ¿¡¼­ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¿µ±¹ÀÇ ÆæÆ²·£µå ¸¸À̳ª ij³ª´ÙÀÇ ÆÝµð ¸¸¿¡¼­ º¼ ¼ö ÀÖ´Â °Í°ú °°Àº ±×¸®µå ±Ô¸ðÀÇ ÇÁ·ÎÁ§Æ®´Â Á¶·ù ¿ë·®À» ÃÖ´ëÈ­ÇÏ´Â µ¥ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ¸¹Àº °æ¿ì ±¹°¡ÀÇ ¿¡³ÊÁö Àüȯ °èȹ¿¡ ÀÇÇØ µÞ¹ÞħµË´Ï´Ù. ÀÌ·¯ÇÑ ³ë·ÂÀº ¼ö ¸Þ°¡¿ÍÆ® Ãâ·ÂÀ» ¸ñÇ¥·Î Çϰí ÀÖÀ¸¸ç, ±â¼ú »ó¿ëÈ­ ¹× ȯ°æ ¿µÇâ Á¶»ç¸¦ À§ÇÑ ÆÄÀÏ·µ ÇÁ·Î±×·¥ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ¼Ò±Ô¸ð Off-grid ¿ëµµ´Â ¾ÈÁ¤ÀûÀÎ Àü·ÂÀÌ ÇÊ¿äÇÏÁö¸¸ ½Å·ÚÇÒ ¼ö ÀÖ´Â Àü·Â¸Á¿¡ Á¢±ÙÇÒ ¼ö ¾ø´Â ¼¶³ª¶ó, ÇØ¾È ¸¶À», ÇØ¾ç ¿¬±¸¼Ò¿¡¼­ Å« È£ÀÀÀ» ¾ò°í ÀÖ½À´Ï´Ù.

ÇØ»ó ¼ö·Â ¹ßÀü°ú ž籤, dz·Â, ¹èÅ͸® ½ºÅ丮Áö¸¦ °áÇÕÇÑ ºÎÀ¯½Ä ¿¡³ÊÁö Ç÷§Æû¿¡ ÀÇÇÑ ÇÏÀ̺긮µå ¿¡³ÊÁö ¸ðµ¨ÀÌ ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÏÀ̺긮µå ½Ã½ºÅÛÀº ¾ç½Ä¾÷, ÇØ¼ö´ã¼öÈ­, ±º»ç½Ã¼³, Àç³­±¸È£ Ȱµ¿¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­ÇÏ°í ¿¬·á ÀÇÁ¸µµ¸¦ ³·Ãá ¾ÈÁ¤ÀûÀÎ ¸¶ÀÌÅ©·Î±×¸®µå ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ¿¡³ÊÁö ±â¾÷µéÀº Æó·Î Àü·«ÀÇ ÀÏȯÀ¸·Î ±âÁ¸ ¼®À¯ ¹× °¡½º Ç÷§Æû¿¡ ÆÄ·Â ¿¡³ÊÁö ÀåÄ¡¸¦ º´¼³ÇÏ´Â ¹æ¾ÈÀ» ¸ð»öÇϰí ÀÖÀ¸¸ç, ºê¶ó¿îÇʵå ÀÚ»êÀ» Àç»ý¿¡³ÊÁö Çãºê·Î È¿°úÀûÀ¸·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ´Â º¸Á¶±Ý, °íÁ¤°¡°ÝÀÓº£µðµåÁ¦µµ, ÇØ¾ç°ø°£°èȹ ±ÔÁ¦ µîÀ» ÅëÇØ ÀÌ·¯ÇÑ Àüȯ¿¡ ´ëÇÑ Àμ¾Æ¼ºê¸¦ Á¦°øÇÔÀ¸·Î½á ÇØ¾ç¼ö·Â ¹ßÀüÀÇ »ó¿ëÈ­¸¦ ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

½ÃÀåÀÇ ¼ºÀå°ú Àå±âÀûÀÎ º¸±ÞÀ» ÃËÁøÇÏ´Â ÈûÀº ¹«¾ùÀΰ¡?

¼¼°è ÇØ¾ç¼ö·Â ½ÃÀåÀÇ ¼ºÀåÀº ¿¡³ÊÁö ¾Èº¸ ¼ö¿ä, ÇØ¾ç Àç»ý¿¡³ÊÁö·ÎÀÇ Á¤Ã¥ Àüȯ, ´Ù¸¥ ÇØ¾ç »ê¾÷°úÀÇ ÀÎÇÁ¶ó ½Ã³ÊÁö È¿°ú µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. °¢±¹ÀÌ Àü·Â ºÎ¹®ÀÇ Å»Åº¼ÒÈ­¸¦ À§ÇØ ³ë·ÂÇϰí ÀÖ´Â °¡¿îµ¥, ÇØ¾ç ¿¡³ÊÁö´Â Àç»ý¿¡³ÊÁö Æ÷Æ®Æú¸®¿À¿¡ ½Å·ÚÇÒ ¼ö ÀÖ´Â ´ë¾ÈÀ¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. Á¶¼®°ú ÆÄµµ ÁÖ±âÀÇ ¿¹Ãø °¡´É¼ºÀº º¯µ¿Çϴ ž籤°ú dz·Â ¹ßÀüÀ» º¸¿ÏÇÒ ¼ö ÀÖ´Â ¾ÈÁ¤ÀûÀÎ ¿¡³ÊÁö Ãâ·ÂÀ» Á¦°øÇϰí, ±×¸®µå ¹ë·±½Ì°ú ÀúÀå °èȹÀ» º¸´Ù È¿À²ÀûÀ¸·Î ¸¸µì´Ï´Ù. ÀÌ ¼ÛÀü¸ÁÀÇ ½Å·Ú¼ºÀ̶ó´Â ¿ä¼Ò´Â Àü ¼¼°è ûÁ¤¿¡³ÊÁö Àüȯ ¼Ó¿¡¼­ º¯µ¿¼º ¿ì·Á¿¡ Á÷¸éÇÑ Àü·Âȸ»ç ¹× ¼ÛÀü»ç¾÷ÀÚ¿¡°Ô ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

À¯·´¿¬ÇÕ(EU), ¿µ±¹, Áß±¹ÀÌ Àå±â ÇØ¾ç¿¡³ÊÁö ·Îµå¸ÊÀ» ¹ßÇ¥Çϰí ÇØ¾ç¿¡³ÊÁö ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ® Àü¿ë ÀÚ±ÝÁ¶´Þ ¸ÞÄ¿´ÏÁòÀ» ±¸ÃàÇÏ´Â µî Á¤Ã¥Àû ÃßÁø·ÂÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¹Î°ü ÆÄÆ®³Ê½ÊÀº ¿¬±¸, ½ÃÇè, »ó¾÷È­ ´Ü°è¸¦ Á¡Á¡ ´õ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÇØ»ódz·ÂÀÇ ¼º¼÷À¸·Î ÇØÀú ÄÉÀÌºí ¼³Ä¡, ¼öÁß °Ë»ç, ¿ø°Ý Á¶ÀÛ, ¹°·ù µî ÇØ»ó¼ö·Â ¹ßÀüÀ» À§ÇÑ ±âÃÊÀûÀÎ °ø±Þ¸Á°ú ±â¼ú ±â¹ÝÀÌ ±¸ÃàµÇ¾î ÇØ»ó¼ö·Â ÇÁ·ÎÁ§Æ®ÀÇ ÁøÀÔÀ庮ÀÌ ³·¾ÆÁö°í ÀÖ½À´Ï´Ù.

¼®À¯ ¹× °¡½º ¸ÞÀÌÀú¿Í ÇØ±º ¹æÀ§»ê¾÷üµéÀÇ °ü½ÉÀÌ ³ô¾ÆÁø °Íµµ ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌµé ±â¾÷Àº ÇØ¾ç¼ö·Â¹ßÀüÀ» ±âÁ¸ ÇØ¾ç ÀÎÇÁ¶óÀÇ Àü·«Àû È®Àå ¹× ¿î¿µ»óÀÇ Å»Åº¼ÒÈ­¸¦ À§ÇÑ µµ±¸·Î ÀνÄÇϰí ÀÖ½À´Ï´Ù. SIMEC Atlantis, Ocean Renewable Power Company, Orbital Marine, Minesto¿Í °°Àº ±â¾÷µéÀº »ó¾÷Àû ±Ô¸ðÀÇ ¹èÄ¡¸¦ ÃßÁøÇÏ´Â ÇÑÆí, ¼º´É º¥Ä¡¸¶Å· ¹× ȯ°æ ¿µÇâ ¸ð´ÏÅ͸µÀ» À§ÇØ Á¤ºÎ ¹× ´ëÇаú Çù·ÂÇϰí ÀÖ½À´Ï´Ù. ±â¼ú, ±ÔÁ¦, ±ÝÀ¶ »ýŰ谡 Á¤ºñµÊ¿¡ µû¶ó, ÇØ¾ç¼ö·Â ¹ßÀüÀº Æ´»õ ½Ã¹ü ÇÁ·ÎÁ§Æ®¿¡¼­ Żź¼ÒÈ­ ¾ÆÁ¨´ÙÀÇ ÁÖ·ù ¿¡³ÊÁö ÀÚ»êÀ¸·Î ÁøÈ­ÇÒ ¼ö ÀÖ´Â ÁÁÀº À§Ä¡¿¡ ÀÖ½À´Ï´Ù.

ºÎ¹®

±â¼ú(Á¶·ù, ÆÄ·Â ¿¡³ÊÁö º¯È¯, Áøµ¿ ¹°±âµÕ, Point Absorbers), ¿ë·®(30MW ÀÌ»ó ¹ßÀü¼Ò, 100kW-30MW ¹ßÀü¼Ò, 100kW ¹Ì¸¸ ¹ßÀü¼Ò)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Offshore Hydropower Market to Reach US$8.4 Billion by 2030

The global market for Offshore Hydropower estimated at US$5.7 Billion in the year 2024, is expected to reach US$8.4 Billion by 2030, growing at a CAGR of 6.8% over the analysis period 2024-2030. Tidal Current, one of the segments analyzed in the report, is expected to record a 4.9% CAGR and reach US$3.2 Billion by the end of the analysis period. Growth in the Wave Energy Converters segment is estimated at 8.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.5 Billion While China is Forecast to Grow at 6.7% CAGR

The Offshore Hydropower market in the U.S. is estimated at US$1.5 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.4 Billion by the year 2030 trailing a CAGR of 6.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 6.0% and 6.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 5.7% CAGR.

Global Offshore Hydropower Market - Key Trends & Drivers Summarized

What Makes Offshore Hydropower a Rising Force in Renewable Energy Diversification?

Offshore hydropower, a relatively underexplored segment of renewable energy, is gaining recognition for its potential to harness ocean currents, tidal streams, and wave motion to generate clean electricity. As onshore renewable energy sources like wind and solar reach capacity limitations in densely populated regions, attention is shifting toward offshore solutions that offer abundant space and higher energy density. Offshore hydropower includes tidal range systems (like barrage and lagoon setups), tidal stream generators (underwater turbines), and wave energy converters-each leveraging distinct marine kinetic or gravitational forces. These technologies can operate predictably and consistently, offering baseload power advantages that intermittent renewables like solar and wind often lack.

Geographies with strong coastal currents and high tidal amplitude-such as the UK, Canada, South Korea, and parts of Southeast Asia-are particularly conducive to offshore hydropower deployment. Unlike traditional hydroelectric dams, these systems avoid large-scale land inundation and ecological disruption, aligning better with environmental compliance goals. Moreover, offshore hydropower projects can often be co-located with offshore wind farms, sharing grid infrastructure and maintenance logistics, thus reducing capital expenditure. As grid operators seek solutions to stabilize renewable-heavy power mixes, the dispatchable and cyclically predictable nature of tidal energy makes offshore hydropower a valuable complementary asset.

How Are Emerging Technologies Driving System Efficiency and Viability?

The offshore hydropower sector is benefiting from rapid advancements in marine energy technology, structural design, and sub-sea engineering. Tidal stream generators, often likened to underwater wind turbines, are being refined to operate efficiently in low-flow conditions and variable current directions. Newer designs feature dual-axis rotors, direct-drive generators, and composite materials to reduce drag and extend service life. Technologies like oscillating hydrofoils and Archimedes screws are being deployed in shallow estuarine zones where traditional turbines may not function efficiently. These systems are modular and scalable, allowing phased installation and adaptive load balancing.

Wave energy conversion (WEC) systems are also progressing, with point absorbers, attenuators, and oscillating water columns undergoing real-world trials. These floating or seabed-mounted devices convert wave motion into mechanical energy, which is then transformed into electrical output via hydraulic or linear electric generators. The use of AI-driven control systems, real-time wave forecasting, and adaptive damping algorithms helps optimize energy capture and grid output. Structural innovations such as self-healing materials, corrosion-resistant coatings, and inflatable floatation components are addressing the marine environment’s punishing impact on equipment, thereby improving reliability and lifecycle costs.

Which Deployment Models and Applications Are Gaining Commercial Traction?

The deployment of offshore hydropower systems is expanding across both grid-connected and decentralized applications. Grid-scale projects, like those seen in the UK’s Pentland Firth or Canada’s Bay of Fundy, focus on maximizing tidal stream capacity and are often backed by national energy transition plans. These initiatives target multi-megawatt outputs and serve as pilot programs for technology commercialization and environmental impact studies. Meanwhile, smaller-scale, off-grid applications are gaining traction in island nations, coastal villages, and marine research stations that require consistent power but lack reliable grid access.

Hybrid energy models are emerging, where offshore hydropower is combined with solar, wind, and battery storage in floating energy platforms. These hybrid systems are ideal for aquaculture, desalination, military installations, and disaster relief operations. They offer stable microgrid solutions with minimal ecological disruption and reduced fuel dependency. Additionally, energy companies are exploring the co-location of wave energy devices on existing oil & gas platforms as part of decommissioning strategies, effectively transforming brownfield assets into renewable energy hubs. Governments are beginning to incentivize these transitions through grants, feed-in tariffs, and marine spatial planning regulations, further accelerating offshore hydropower commercialization.

What Forces Are Fueling Market Growth and Long-Term Adoption?

The growth in the global offshore hydropower market is driven by several factors, including energy security demands, policy shifts toward marine renewables, and infrastructure synergies with other offshore industries. As countries strive to decarbonize their power sectors, marine energy is emerging as a reliable addition to the renewable portfolio. Predictability of tidal and wave cycles offers a stable energy output that can complement variable solar and wind generation, making grid balancing and storage planning more efficient. This grid reliability factor is critical for utilities and transmission operators facing volatility concerns amid the global clean energy transition.

Policy-level momentum is accelerating, with the European Union, United Kingdom, and China announcing long-term marine energy roadmaps and establishing dedicated funding mechanisms for ocean energy pilot projects. Public-private partnerships are increasingly driving research, testing, and commercialization phases. Additionally, the maturing of offshore wind has laid a foundational supply chain and skill base for offshore hydropower-including sub-sea cable laying, underwater inspections, remote operations, and logistics-all of which lower the entry barriers for marine hydro projects.

Rising interest from oil and gas majors and naval defense contractors is another growth lever. These players view offshore hydropower as a strategic extension of existing maritime infrastructure and as a tool for operational decarbonization. Companies like SIMEC Atlantis, Ocean Renewable Power Company, Orbital Marine, and Minesto are pushing commercial-scale deployments while collaborating with governments and universities for performance benchmarking and environmental impact monitoring. As technological, regulatory, and financial ecosystems align, offshore hydropower is well-positioned to evolve from niche pilot projects to mainstream energy assets within the global decarbonization agenda.

SCOPE OF STUDY:

The report analyzes the Offshore Hydropower market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (Tidal Current, Wave Energy Converters, Oscillating Water Column, Point Absorbers); Capacity (Above 30MW Power Plants, 100 kW - 30 MW Power Plant, Below 100 kW Power Plant)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â