수력 터빈 시장 : 최종사용자별, 용도별, 설치 유형별, 터빈 용량별, 터빈 유형별 - 세계 예측(2025-2032년)
Hydropower Turbines Market by End User, Application, Installation Type, Turbine Capacity, Turbine Type - Global Forecast 2025-2032
상품코드 : 1870547
리서치사 : 360iResearch
발행일 : 2025년 09월
페이지 정보 : 영문 199 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,939 ₩ 5,844,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF 및 Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 4,249 ₩ 6,304,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF 및 Excel 보고서를 동일기업 내 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 5,759 ₩ 8,544,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF 및 Excel 보고서를 동일 기업 내 동일 지역 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 6,969 ₩ 10,339,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

수력 터빈 시장은 2032년까지 CAGR 5.16%로 51억 달러 규모로 성장할 것으로 예측되고 있습니다.

주요 시장 통계
기준연도 2024 34억 1,000만 달러
추정연도 2025 35억 9,000만 달러
예측연도 2032 51억 달러
CAGR(%) 5.16%

현대 수력 터빈의 동향, 주요 추진 요인, 새로운 리스크, 업계 리더의 전략적 과제에 대한 간략한 개요

수력 발전 터빈은 탈탄소화 목표와 안정적인 전력 공급의 균형을 맞추기 위한 전 세계적인 노력에서 여전히 핵심 기술입니다. 본 소개에서는 이 분야를 재정의하는 중요한 요소들을 통합하여 배경을 설명합니다. 구체적으로 터빈 설계의 기술적 진화, 환경 영향 및 어류 통과에 대한 규제 요건의 변화, 시스템 안정화 수단으로서 양수발전에 대한 관심 증가, 그리고 보수 주기에 접어든 노후화된 자산군에 대한 운영상의 문제 등이 있습니다. 기본적인 기계적 원리는 변함없지만, 재료, 디지털 제어 시스템, 모듈식 제조의 점진적인 혁신으로 수명주기 경제성과 프로젝트 납기를 재구성하고 있습니다.

기술, 규제, 자금 조달, 환경 관리 등 수력발전 터빈 도입을 재구성하는 변혁적 변화에 대한 심층적인 인사이트

수력발전 터빈의 상황은 부품 수준의 개선을 넘어 프로젝트의 경제성 및 이해관계자의 기대치에 대한 체계적인 변화로 이어지는 변혁적 전환이 진행되고 있습니다. 제어 시스템 및 상태 모니터링 기술의 발전으로 예지보전 및 가동률 향상이 가능해졌고, 재료과학의 발전으로 내마모성과 캐비테이션 저항성이 향상되었습니다. 동시에, 보다 장기적인 개보수 계획과 성능 기반 서비스 계약에 대응하기 위해 새로운 자금 조달 방식과 계약 구조가 등장하고 있습니다.

2025년까지 미국 관세 조치가 수력 터빈 공급망, 조달 및 프로젝트 일정에 미치는 누적 영향 평가

2025년까지 미국의 최근 관세 조치는 수력발전 터빈의 조달, 공급망 구조, 프로젝트 일정에 다방면으로 영향을 미치고 있습니다. 수입 부품에 대한 관세로 인한 비용 상승은 조달팀에 조달 전략 재평가를 촉구하고, 공급처 다변화, 현지 조달품 개발, 단계적 재고 버퍼 구축 등을 우선순위에 두고 납품 지연을 완화하기 위해 노력하고 있습니다. 이에 따라 많은 제조업체와 부품 공급업체들은 가격 경쟁력을 유지하고 리드타임을 단축하기 위해 특정 생산 활동의 현지화를 가속화하거나 현지 제조업체와의 전략적 제휴를 시작했습니다.

최종사용자 프로파일, 적용 유형, 설치 방법, 용량, 터빈 설계가 전략에 미치는 영향을 파악하기 위한 상세한 세분화 분석

세분화 기반 분석은 수력 터빈 산업 전반 수요 견인 요인과 운영 우선순위를 명확히 하고, 제조업체와 운영업체가 보다 타겟팅된 전략을 수립할 수 있도록 돕습니다. 최종사용자에 기반한 시장 조사에서는 산업용과 유틸리티용 부문을 명확하게 구분하고 있습니다. 산업용 설치의 경우 컴팩트하고 용도에 특화된 설계가 우선시되며, 유틸리티용은 계통규모의 신뢰성과 장기 서비스 계약이 중요시됩니다. 용도에 따른 조사에서는 기존과 양수발전 프로젝트를 구분하고, 기존에 대해는 저수지형과 유입형 구성을 추가 분석 대상으로 삼았습니다. 각 구성은 터빈 선정 및 제어 전략에 영향을 미치는 고유한 수문학적 특성, 환경적 고려사항, 운영 체제를 가지고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 수력 터빈 시장 : 최종사용자별

제9장 수력 터빈 시장 : 용도별

제10장 수력 터빈 시장 : 설치 유형별

제11장 수력 터빈 시장 : 터빈 용량별

제12장 수력 터빈 시장 : 터빈 유형별

제13장 수력 터빈 시장 : 지역별

제14장 수력 터빈 시장 : 그룹별

제15장 수력 터빈 시장 : 국가별

제16장 경쟁 구도

KSA
영문 목차

영문목차

The Hydropower Turbines Market is projected to grow by USD 5.10 billion at a CAGR of 5.16% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 3.41 billion
Estimated Year [2025] USD 3.59 billion
Forecast Year [2032] USD 5.10 billion
CAGR (%) 5.16%

A concise introduction outlining contemporary hydropower turbine dynamics, key drivers, emerging risks, and strategic imperatives for industry leaders

Hydropower turbines remain a foundational technology in global efforts to balance decarbonization objectives with reliable electricity supply. This introduction sets the stage by synthesizing the critical factors redefining the sector: technological evolution in turbine design, shifting regulatory expectations around environmental impacts and fish passage, accelerating interest in pumped storage as a system stability enabler, and the operational imperatives of ageing asset fleets that are entering refurbishment cycles. While foundational mechanical principles persist, incremental innovations in materials, digital control systems, and modular manufacturing are reshaping lifecycle economics and project delivery timelines.

Moreover, the industry landscape is being influenced by intersecting forces. Energy systems are increasingly integrating variable renewables, which elevates the role of hydropower in system flexibility and ancillary services. Simultaneously, environmental permitting regimes in many jurisdictions are tightening, prompting more sophisticated impact mitigation and stakeholder engagement. Supply chain resilience has become a dominant concern, driven by geopolitical developments and raw material considerations, which in turn affect procurement strategies and inventory policies. Taken together, these dynamics demand that operators, developers, and equipment suppliers reassess project risk profiles, procurement practices, and technology roadmaps to ensure sustained operational performance and regulatory compliance.

An in-depth exploration of transformative shifts reshaping hydropower turbine adoption including technology, regulation, financing, and environmental stewardship

The hydropower turbine landscape is undergoing transformative shifts that extend beyond component-level improvements to systemic changes in project economics and stakeholder expectations. Advances in control systems and condition monitoring are enabling predictive maintenance and higher availability, while materials science advancements are improving wear resistance and cavitation tolerance. Concurrently, new financing approaches and contract structures are emerging to accommodate longer refurbishment horizons and performance-based service arrangements.

Regulatory and environmental stewardship trends are also catalyzing change. Stricter habitat protection protocols and more rigorous environmental impact assessments are prompting innovation in low-impact turbine designs and operational regimes that reduce ecological disruption. In parallel, growing emphasis on grid flexibility is elevating pumped storage projects and hybridized installations that integrate batteries or other storage media. These shifts are reinforced by industry collaboration on standardization and certification, which are increasingly important as cross-border supply chains and component interoperability grow more complex. Consequently, stakeholders who align product development, service offerings, and investment strategies to these systemic shifts will be better positioned to capture long-term value and to support resilient, sustainable power systems.

Assessment of the cumulative impact of recent United States tariff actions through 2025 on hydropower turbine supply chains, procurement and project timelines

Recent United States tariff measures through 2025 have exerted a multifaceted influence on hydropower turbine procurement, supply chain architecture, and project timelines. Tariff-induced cost inflation for imported components has prompted procurement teams to re-evaluate sourcing strategies, prioritizing supplier diversification, local content development, and tiered inventory buffers to mitigate delivery disruptions. As a result, many original equipment manufacturers and component suppliers have accelerated localization of select production activities or entered strategic partnerships with local fabricators to preserve price competitiveness and shorten lead times.

In addition, tariffs have influenced contractual risk allocation. Project owners and EPC contractors are increasingly embedding escalation clauses, longer lead windows, and alternative sourcing contingencies into procurement contracts to reduce exposure to sudden trade policy shifts. These adjustments have downstream effects on project scheduling and financing discussions, as lenders and investors scrutinize procurement risk more closely. On the other hand, some suppliers have responded by redesigning component assemblies to reduce tariff exposure or by relocating specific manufacturing stages to jurisdictions with more favorable trade treatments. In sum, the cumulative effect of tariff actions through 2025 has been to accelerate supply chain resilience measures, reshape sourcing footprints, and heighten the strategic importance of procurement agility across the hydropower turbine ecosystem.

Granular segmentation insights revealing how end user profiles, application types, installation methods, capacities, and turbine designs influence strategy

Segmentation-driven analysis provides clarity on demand drivers and operational priorities across the hydropower turbine landscape, facilitating targeted strategy development for manufacturers and operators. Based on End User, market study delineates Industrial and Utilities segments, where Industrial installations prioritize compact, application-specific designs and Utilities prioritize grid-scale reliability and long-term service arrangements. Based on Application, the study distinguishes Conventional and Pumped Storage projects, with Conventional further studied across Reservoir and Run Of River configurations, each presenting distinct hydrological characteristics, environmental considerations, and operational regimes that inform turbine selection and control strategies.

Based on Installation Type, the study contrasts New Installation and Refurbishment requirements, highlighting the technical and contractual complexities of retrofits and life-extension projects relative to greenfield deliveries. Based on Turbine Capacity, the study examines Large Scale, Medium Scale, and Small Scale deployments, demonstrating how scale influences configuration choices, civil works integration, and grid interconnection challenges. Finally, based on Turbine Type, the study evaluates Francis, Kaplan, and Pelton designs, outlining performance envelopes, typical use cases, and maintenance implications. Together, these segmentation perspectives enable stakeholders to align product development, aftermarket services, and commercial models with the specific needs and risk profiles of each segment, thereby improving procurement accuracy and operational outcomes.

Comprehensive regional insights exploring demand drivers, policy frameworks, and operational priorities across the Americas, EMEA, and Asia-Pacific markets

Regional dynamics shape project pipelines, regulatory frameworks, and procurement strategies in distinct ways across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, legacy hydropower fleets in certain geographies are driving a sustained refurbishment and modernization focus, with project owners prioritizing upgrade packages that enhance efficiency, reduce maintenance downtime, and meet emerging environmental compliance requirements. North American markets are also prioritizing pumped storage opportunities to complement growing variable renewable generation.

In Europe, Middle East & Africa, policy-driven decarbonization and environmental safeguards are tightly interwoven, requiring developers to engage early with regulators and communities to secure permits. In several EMEA jurisdictions, small and run-of-river projects are attractive due to lower civil works footprints and reduced social impact, while larger storage projects face more complex stakeholder landscapes. Asia-Pacific remains a center of capacity growth and technology deployment, with large-scale installations continuing in some markets and significant investments in modernization across aging assets in others. Across all regions, supply chain considerations, local content requirements, and financing models vary substantially, underscoring the need for region-specific strategies that reconcile technical objectives with regulatory and commercial realities.

Strategic insights on innovation pathways, aftermarket service expansion, partnership models, and competitive positioning among turbine providers

Company-level dynamics reflect a competitive environment where original equipment manufacturers, engineering procurement and construction firms, component suppliers, digital solution providers, and independent service operators each play a pivotal role. Leading suppliers are expanding service portfolios to include lifecycle management, long-term performance agreements, and digital condition monitoring, thereby shifting revenue composition toward recurring aftermarket streams. At the same time, specialized component manufacturers are investing in advanced materials and fabrication techniques to offer competitive differentiation on durability and efficiency.

Strategic partnerships and joint ventures are increasingly common as companies seek to combine technology strengths with regional execution capabilities. Mergers and acquisitions are often driven by the desire to secure service networks, access local content capabilities, or acquire complementary technological assets such as control system intellectual property. Moreover, new entrants focusing on digital twins, predictive analytics, and automated inspection are challenging incumbents by offering modular solutions that can be integrated into legacy systems. Consequently, competitive positioning now relies on a balanced mix of technological innovation, service excellence, regional presence, and flexible commercial models that align incentives across the project lifecycle.

Actionable recommendations for industry leaders to navigate supply chain constraints, regulatory complexity, and technology transitions across hydropower projects

Industry leaders should adopt a forward-looking posture that integrates supply chain resilience, technical modernization, and stakeholder engagement into core strategies. First, prioritize supplier diversification and nearshoring where feasible to reduce lead-time volatility and tariff exposure; concurrently, invest in vendor qualification programs that elevate local suppliers to meet OEM standards. Second, accelerate the deployment of digital monitoring and predictive maintenance across fleets to optimize asset availability and to shift toward performance-oriented contracting. These moves reduce unplanned downtime and support more transparent performance metrics in commercial negotiations.

Third, incorporate environmental and social governance considerations into project planning from the outset, using early engagement with regulators, indigenous communities, and NGOs to de-risk permitting and to identify mitigation pathways that expedite approval. Fourth, design refurbishment offerings that balance capital efficiency with incremental performance gains, enabling phased upgrades that deliver measurable operational benefits without necessitating full replacement. Fifth, reevaluate contracting models to include flexible escalation terms, alternative sourcing contingencies, and shared-risk mechanisms that align incentives across owners, contractors, and equipment suppliers. Finally, develop targeted regional strategies that reflect local regulatory landscapes, financing structures, and capacity needs, ensuring that product portfolios and commercial models are tailored to regional market realities and stakeholder expectations.

Transparent overview of research methodology combining primary interviews, technical validation, regulatory analysis, and data triangulation to validate insights

The underlying research methodology combines primary engagement, technical validation, and rigorous data synthesis to produce robust insights. Primary research included structured interviews with project developers, utility engineers, OEM product managers, EPC contractors, and regulatory specialists to capture firsthand perspectives on operational challenges, design preferences, and procurement behavior. These inputs were complemented by validation workshops with technical advisors to stress-test assumptions about turbine performance, refurbishment scopes, and integration of digital solutions.

Secondary sources were reviewed to contextualize regulatory trajectories, technology adoption patterns, and historical procurement practices. Data triangulation techniques were applied to reconcile qualitative inputs with observed procurement trends and published technical specifications. Supply chain mapping identified critical nodes and potential pinch points, while scenario analysis examined plausible responses to trade policy shifts and technology disruptions. Throughout the process, efforts were made to maintain transparency in data provenance, to document expert consensus and dissent, and to flag areas where evidence is evolving rapidly. This methodology ensures that the study's conclusions are grounded in verifiable evidence and practical industry experience.

A conclusive synthesis emphasizing strategic implications, readiness priorities, and the path forward for stakeholders in hydropower turbine ecosystems

In conclusion, hydropower turbines continue to play an essential role in decarbonized energy systems by providing reliable baseload capability and flexible services that support high renewable penetrations. The sector is in a period of pragmatic transformation: incremental technical innovation, intensified environmental and regulatory scrutiny, and heightened supply chain sensitivity are reshaping how assets are specified, procured, and maintained. Operators and manufacturers that embrace digitalization, diversify sourcing, and tailor offerings to segment-specific demands will be better equipped to navigate operational and commercial uncertainties.

Looking ahead, the interplay between regulatory ambition, stakeholder expectations, and technology advancement will determine which projects progress and which face protracted timelines. Therefore, strategic alignment across technical, commercial, and environmental domains is critical. Decision-makers should treat the insights in this study as a framework for action-prioritizing resilience in procurement, clarity in environmental engagement, and agility in technical adoption. By doing so, stakeholders can safeguard performance, reduce risk exposure, and position their organizations to capitalize on opportunities presented by the evolving hydropower landscape.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Hydropower Turbines Market, by End User

9. Hydropower Turbines Market, by Application

10. Hydropower Turbines Market, by Installation Type

11. Hydropower Turbines Market, by Turbine Capacity

12. Hydropower Turbines Market, by Turbine Type

13. Hydropower Turbines Market, by Region

14. Hydropower Turbines Market, by Group

15. Hydropower Turbines Market, by Country

16. Competitive Landscape

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기