¼¼°èÀÇ ¿¬·áÀüÁö ½ºÅà ÀçȰ¿ë ¹× ÀçÀÌ¿ë ½ÃÀå
Fuel Cell Stack Recycling and Reuse
»óǰÄÚµå : 1799129
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 182 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,215,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,647,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¿¬·áÀüÁö ½ºÅà ÀçȰ¿ë ¹× ÀçÀÌ¿ë ½ÃÀåÀº 2030³â±îÁö 3¾ï 5,130¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 1¾ï 1,410¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¿¬·áÀüÁö ½ºÅà ÀçȰ¿ë ¹× ÀçÀÌ¿ë ½ÃÀåÀº 2030³â¿¡´Â 3¾ï 5,130¸¸ ´Þ·¯¿¡ À̸£°í, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 20.6%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ °íü °íºÐÀÚÇü ¿¬·áÀüÁö´Â CAGR17.9%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1¾ï 2,680¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °íü »êÈ­¹° ¿¬·áÀüÁö ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 21.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ¾à 3,000¸¸ ´Þ·¯, Áß±¹Àº CAGR 19.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¿¬·áÀüÁö ½ºÅà ÀçȰ¿ë ¹× ÀçÀÌ¿ë ½ÃÀåÀº 2024³â¿¡ 3,000¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ 2024-2030³â°£ CAGR 19.7%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿©, 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð 5,430¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 18.4%¿Í 18.0%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 14.4%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ¿¬·áÀüÁö ½ºÅà ÀçȰ¿ë ¹× ÀçÀÌ¿ë ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¿¬·áÀüÁö ½ºÅÃÀÇ ÀçȰ¿ë°ú Àç»ç¿ëÀ» ¼­µÑ·¯¾ß ÇÏ´Â ÀÌÀ¯´Â?

¿¬·áÀüÁö ±â¼úÀÌ ¸ðºô¸®Æ¼, °íÁ¤½Ä ¿¡³ÊÁö, »ê¾÷¿ëµµ¿¡ ³Î¸® º¸±ÞµÊ¿¡ µû¶ó ¿¬·áÀüÁö ½ºÅÃÀÇ »ç¿ë ÈÄ °ü¸®°¡ ¿ì¼±¼øÀ§·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ºÅÿ¡´Â ¹é±ÝÁ· ±Ý¼Ó(PGM), ź¼Òº¹ÇÕÀç, ¸âºê·¹ÀÎ, ÄÚÆÃÆÇ µî ±ÍÁßÇϰí Áß¿äÇÑ Àç·á°¡ Æ÷ÇԵǾî ÀÖ¾î ÀçȰ¿ëÀº °æÁ¦ÀûÀ¸·Î³ª ȯ°æÀûÀ¸·Î ¸Å¿ì Áß¿äÇÕ´Ï´Ù. °íü °íºÐÀÚ ¿¬·áÀüÁö(PEMFC)ÀÇ µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó, ƯÈ÷ ÀÚµ¿Â÷ ¹× ´ëÇü ¿î¼Û¼ö´Ü¿¡¼­ °í°¡ÀÇ Àç·á¸¦ ȸ¼öÇÏ¿© Àç»ç¿ëÇÒ Çʿ伺ÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ±¸Á¶È­µÈ ÀçȰ¿ëÀÌ ¾ø´Ù¸é ¼ö¼Ò ¿¬·áÀüÁö ½Ã½ºÅÛÀÇ Àå±âÀûÀÎ Áö¼Ó°¡´É¼º°ú ºñ¿ë È¿À²¼ºÀº ½É°¢ÇÑ ÇѰ迡 Á÷¸éÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼øÈ¯Çü °æÁ¦·ÎÀÇ ÀüȯÀº ÀÌÇØ°ü°èÀڵ鿡°Ô ¼³°è ´Ü°èºÎÅÍ È¸¼ö Àü·«À» °ËÅäÇÒ °ÍÀ» Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ÁÖ¹®ÀÚ »óÇ¥ ºÎÂø Á¦Ç° Á¦Á¶¾÷ü(OEM), Àç·á °ø±Þ¾÷ü, ÀçȰ¿ë ±â¾÷Àº ½ºÅà ±¸¼º ¿ä¼Ò¿¡ ÀçȰ¿ë¼ºÀ» ÅëÇÕÇϰí ȸ¼ö ¿ä¼ÒÀÇ ÃßÀû °¡´É¼ºÀ» º¸ÀåÇϱâ À§ÇØ Çù·ÂÇϰí ÀÖ½À´Ï´Ù. ¹é¾÷ ½Ã½ºÅÛÀ̳ª ¿ÀÇÁ ±×¸®µå Àü¿ø °ø±Þ ÀåÄ¡¿Í °°Àº ´ú ±î´Ù·Î¿î 2Â÷ ¿ëµµÀÇ ½ºÅà ¹× ¼±ÅÃÀû ±¸¼º ¿ä¼ÒÀÇ Àç»ç¿ëµµ Áõ°¡ÇÏ´Â Ãß¼¼ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Àç»ç¿ë Àü·«Àº Àç·á ¼ö¿ä¸¦ ÁÙÀÏ »Ó¸¸ ¾Æ´Ï¶ó ½ºÅÿ¡ ´ëÇÑ Ãʱâ ÅõÀÚ ¼ö¸íÀ» ¿¬ÀåÇϰí Żź¼ÒÈ­ ¸ñÇ¥¸¦ Áö¿øÇÕ´Ï´Ù.

È¿À²ÀûÀÎ ½ºÅà ȸ¼ö¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ±â¼úÀº ¾î¶»°Ô ÁøÈ­Çϰí Àִ°¡?

Ã˸Š¹× ÄÚÆÃ¸·¿¡¼­ ¹é±Ý ¹× ±âŸ ±Í±Ý¼ÓÀ» ÃßÃâÇϱâ À§ÇÑ °í±Þ ȸ¼ö °øÁ¤ÀÌ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ½À½Ä ¾ß±Ý ¹× Àü±â È­ÇÐÀû ÃßÃâ ¹æ¹ýÀº ±âÁ¸ÀÇ Á¦·ÃÀ» ´ëüÇÒ ¼ö ÀÖ´Â ´õ ±ú²ýÇÑ ¹æ¹ýÀ¸·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, ¹èÃâÀ» ÁÙÀ̸鼭 ¼±ÅÃÀû ȸ¼ö¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °øÁ¤Àº Á¾Á¾ PGMÀ» ºÐ¸®Çϰí Àç·á ¼Õ½ÇÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ Á¦¾î µÈ Á¶°Ç¿¡¼­ »ê ħÃâ, ÀüÇØ Á¤Á¦ ¶Ç´Â ¿ë¸Å ÃßÃâÀ» ¼ö¹ÝÇÏ¿© PGMÀ» ºÐ¸®ÇÕ´Ï´Ù. ÀϺΠ½Ã¼³¿¡¼­´Â ¼±º° °³¼±, ±³Â÷ ¿À¿° °¨¼Ò, ȸ¼öÀ² ÃÖÀûÈ­¸¦ À§ÇØ ÀÚµ¿È­¿Í AI¸¦ Ȱ¿ëÇÑ Ç°Áú °ËÃâÀ» ÅëÇÕÇÏ¿© ¼±º°À» °³¼±Çϰí ÀÖ½À´Ï´Ù.

ºÎǰ ¼öÁØÀÇ Àç»ç¿ëÀº ƯÈ÷ Ãâ·Â ¹Ðµµ ¼º´É ÀúÇϰ¡ Çã¿ëµÇ´Â ¿ëµµ¿¡¼­ °ü½ÉÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¿¬·áÀüÁö Ç÷¹ÀÌÆ®, ¿£µå Ç÷¹ÀÌÆ®, ¸Å´ÏÆúµå´Â ½ºÅà ºÐÇØ ÈÄ °Ë»ç ÈÄ Àç»ç¿ëµË´Ï´Ù. ¸âºê·¹ÀÎ Àü±Ø Á¢ÇÕü(MEA)´Â ¿©ÀüÈ÷ ÀÛµ¿ÇÒ °æ¿ì ÀçÁ¶Á¤µÇ°Å³ª ±³À°¿ë ŰƮ, °æºÎÇÏ ½Ã½ºÅÛ, ¿¬±¸¿ë Ç÷§Æû¿¡ »ç¿ëµÇ±âµµ ÇÕ´Ï´Ù. ÀçȰ¿ë ºÎǰÀÌ ±â¼ú ¿ä±¸ »çÇ×°ú ½Å·Ú¼º ±âÁØÀ» ÃæÁ·Çϵµ·Ï º¸ÀåÇϱâ À§ÇØ Ä¡·á Àü ¹× ȸ¼ö ÈÄ Ç°Áú º¸Áõ ÇÁ·ÎÅäÄÝÀÌ Ç¥ÁØÈ­µÇ°í ÀÖ½À´Ï´Ù.

½ºÅà ¶óÀÌÇÁ»çÀÌŬ °ü¸®¸¦ µÞ¹ÞħÇÏ´Â »ê¾÷ ¹× ±ÔÁ¦ µ¿ÇâÀº?

Á¤Ã¥ ÇÁ·¹ÀÓ¿öÅ©´Â Àå±âÀûÀΠûÁ¤¿¡³ÊÁö ¸ñÇ¥ ´Þ¼º¿¡ ÀÖ¾î ¿¬·áÀüÁö ÀçȰ¿ëÀÇ Á߿伺À» ÀνÄÇϱ⠽ÃÀÛÇß½À´Ï´Ù. Áß¿ä ¹°Áú ȸ¼ö, »ý»êÀÚÃ¥ÀÓÀçȰ¿ë(EPR), Áö¼Ó°¡´ÉÇÑ Á¦Ç° ¼³°è¿¡ ´ëÇÑ Á¤ºÎ ÁÖµµÀÇ ÀÌ´Ï¼ÅÆ¼ºê°¡ ¼ö¼Ò ¹× ¿¬·áÀüÁö ±â¼ú ºÐ¾ß·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¬ÇÕ, ÀϺ» µîÀÇ Áö¿ª ±ÔÁ¦¿¡´Â »ç¿ë ÈÄ ¿¡³ÊÁö ±â±â Ãë±Þ¿¡ ´ëÇÑ °¡À̵å¶óÀÎÀÌ Æ÷ÇԵǾî ÀÖÀ¸¸ç, ÀçȰ¿ë ÀÎÇÁ¶ó ±¸Ãà ¹× È¸¼ö ±â¼ú ¿¬±¸ °³¹ß Àμ¾Æ¼ºê¸¦ Àå·ÁÇϰí ÀÖ½À´Ï´Ù.

OEM ¹× ½Ã½ºÅÛ ÅëÇÕ»ç¾÷ÀÚ´Â Àμö ÇÁ·Î±×·¥, ½Ã¹ü ÀçȰ¿ë ¶óÀÎ, ½ºÅà ȸ¼ö¸¦ À§ÇÑ ¼­ºñ½º ³×Æ®¿öÅ©¸¦ ±¸ÃàÇϰí ÀÖ½À´Ï´Ù. Àü¹® ÀçȰ¿ë ȸ»ç¿ÍÀÇ °è¾àÀº Àç·á¸¦ ȸ¼öÇϰí ä±¼¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̱â À§ÇØ ÃßÀû °¡´ÉÇÑ Æó¼âÇü ·çÇÁ ½Ã½ºÅÛÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀçȰ¿ë ÇÔ·® ÀÎÁõ ¹× Áö¼Ó°¡´É¼º ¶óº§Àº ƯÈ÷ °ø°ø Á¶´Þ ¹× Â÷·® ±¸¸Å¿¡¼­ ´õ¿í Áß¿äÇÑ ÃßÁø·ÂÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü, À¯Æ¿¸®Æ¼ Á¦°ø¾÷ü, Àç·á °úÇÐÀÚ µî ¼ö¼Ò »ýŰè Àü¹ÝÀÇ ¾÷°è ÆÄÆ®³Ê½ÊÀº ½ºÅà ÀçȰ¿ë ¹× Àç»ç¿ëÀÇ ¸ð¹ü »ç·Ê¿Í °æÁ¦ ¸ðµ¨À» Á¤ÀÇÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù.

¿¬·áÀüÁö ½ºÅà ÀçȰ¿ë ¹× Àç»ç¿ë ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµË´Ï´Ù.

¿¬·áÀüÁö ½ºÅà ÀçȰ¿ë ¹× Àç»ç¿ë ½ÃÀåÀÇ ¼ºÀåÀº Àç·á ºÎÁ·, ºñ¿ë ¾Ð¹Ú, »õ·Î¿î ±ÔÁ¤ÀÇ Àϰü¼º°ú °ü·ÃµÈ ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¿¬·áÀüÁö¿¡¼­ ¹é±ÝÁ· ±Ý¼Ó ¹× ź¼Ò Áý¾àÇü ºÎǰÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÚ¿ø °í°¥À» ÃÖ¼ÒÈ­ÇÏ´Â È¿À²ÀûÀΠȸ¼ö ¹æ¹ý¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¬·áÀüÁö·Î ±¸µ¿µÇ´Â ÀÚµ¿Â÷ ¹× ÀåºñÀÇ È®´ë·Î ÀÎÇØ ±¸Á¶È­µÈ ȸ¼ö ¹× ºÐÇØ°¡ ÇÊ¿äÇÑ »ç¿ë ÈÄ ½ºÅÃÀÇ ¾çÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Àü±âÈ­ÇÐÀû ¹× ½À½Ä ¾ß±ÝÇÐÀû ȸ¼ö ±â¼úÀÇ ±â¼úÀû Çâ»óÀ¸·Î ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̸鼭 ´õ ³ôÀº Àç·á ¼öÀ²À» ´Þ¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ºÎǰ ¼öÁØÀÇ Àç»ç¿ë, ƯÈ÷ Ç÷¹ÀÌÆ® ¹× ÁÖº¯ ¿ä¼Ò¸¦ 2Â÷ ¿¡³ÊÁö ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ¿© Ãʱ⠹èÄ¡¸¦ ³Ñ¾î ±â´ÉÀû °¡Ä¡¸¦ ´õÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ö¼Ò °æÁ¦ÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ±¹°¡Àû ¸ñÇ¥¿Í ÇÔ²² ÀçȰ¿ëÀ» À§ÇÑ ¼³°è ¿øÄ¢ÀÇ µµÀÔÀº È®Àå °¡´ÉÇÑ È¸¼ö ¸ðµ¨À» Áö¿øÇÕ´Ï´Ù. »ê¾÷°è°¡ ¼øÈ¯Çü »çȸ·Î ÀüȯÇÏ´Â °¡¿îµ¥, ¿¬·áÀüÁö ½ºÅÃÀÇ Á¾ÇÕÀûÀÎ ¼ö¸íÁÖ±â Àü·«Àº Â÷¼¼´ë ¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼­ ȯ°æÀû, °æÁ¦Àû º¹¿ø·ÂÀ» È®º¸Çϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.

ºÎ¹®

À¯Çü(°íü °íºÐÀÚÇü ¿¬·áÀüÁö, °íü »êÈ­¹° ¿¬·áÀüÁö, ¿ëÀ¶ ź»ê¿° ÇüÅ ¿¬·áÀüÁö, ÀλêÇü ¿¬·áÀüÁö, ±âŸ À¯Çü), ÀçȰ¿ë ÇÁ·Î¼¼½º(°Ç½Ä ÀçȰ¿ë, ½À½Ä ÀçȰ¿ë, ±â°èÀû ÀçȰ¿ë, ±âŸ ÀçȰ¿ë ÇÁ·Î¼¼½º), ÃÖÁ¾»ç¿ëÀÚ(¿î¼Û¿ë ÃÖÁ¾»ç¿ëÀÚ, °íÁ¤Çü ¹ßÀü¿ë ÃÖÁ¾»ç¿ëÀÚ, ÈÞ´ëÇü ¹ßÀü¿ë ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Fuel Cell Stack Recycling and Reuse Market to Reach US$351.3 Million by 2030

The global market for Fuel Cell Stack Recycling and Reuse estimated at US$114.1 Million in the year 2024, is expected to reach US$351.3 Million by 2030, growing at a CAGR of 20.6% over the analysis period 2024-2030. Proton Exchange Membrane Fuel Cells, one of the segments analyzed in the report, is expected to record a 17.9% CAGR and reach US$126.8 Million by the end of the analysis period. Growth in the Solid Oxide Fuel Cells segment is estimated at 21.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$30.0 Million While China is Forecast to Grow at 19.7% CAGR

The Fuel Cell Stack Recycling and Reuse market in the U.S. is estimated at US$30.0 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$54.3 Million by the year 2030 trailing a CAGR of 19.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 18.4% and 18.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.4% CAGR.

Global Fuel Cell Stack Recycling and Reuse Market - Key Trends & Drivers Summarized

What Is Prompting Urgent Focus on Recycling and Reuse of Fuel Cell Stacks?

As fuel cell technologies gain traction in mobility, stationary energy, and industrial applications, end-of-life management of fuel cell stacks has become a priority. These stacks contain valuable and critical materials such as platinum-group metals (PGMs), carbon composites, membranes, and coated plates, making recycling both economically and environmentally important. With increasing deployment of proton exchange membrane fuel cells (PEMFCs), especially in automotive and heavy-duty transport, the need to recover and repurpose high-cost materials is accelerating. Without structured recycling, the long-term sustainability and cost-effectiveness of hydrogen fuel cell systems could face serious limitations.

The push toward a circular economy is encouraging stakeholders to consider recovery strategies as early as the design phase. Original equipment manufacturers (OEMs), materials suppliers, and recycling firms are collaborating to integrate recyclability into stack components and ensure traceability of recovered elements. Reuse of stacks or selective components in less demanding secondary applications-such as backup systems or off-grid power-also represents a growing trend. These reuse strategies not only reduce material demand but also extend the life value of initial stack investments, supporting decarbonization targets.

How Are Technologies Evolving to Enable Efficient Stack Recovery?

Advanced recovery processes are being developed to extract platinum and other precious metals from catalysts and coated membranes. Hydrometallurgical and electrochemical extraction methods are emerging as cleaner alternatives to traditional smelting, allowing selective recovery with reduced emissions. These processes often involve acid leaching, electrorefining, or solvent extraction under controlled conditions to isolate PGMs and minimize material loss. Some facilities are incorporating automation and AI-enabled quality detection to improve sorting, reduce cross-contamination, and optimize recovery yields.

Component-level reuse is gaining interest, especially in applications where performance degradation in power density is acceptable. For instance, fuel cell plates, end plates, and manifolds are being inspected and repurposed after stack disassembly. Membrane-electrode assemblies (MEAs), if still functional, may be reconditioned or used in educational kits, light-duty systems, or research platforms. Pre-treatment and post-recovery quality assurance protocols are being standardized to ensure that recycled components meet technical requirements and reliability standards.

What Industry and Regulatory Trends Are Supporting Stack Lifecycle Management?

Policy frameworks are beginning to acknowledge the importance of fuel cell recycling in achieving long-term clean energy targets. Government-led initiatives on critical material recovery, extended producer responsibility (EPR), and sustainable product design are being expanded to include hydrogen and fuel cell technologies. Regulations in regions such as the European Union and Japan now include guidelines for handling end-of-life energy devices, encouraging recycling infrastructure development and R&D incentives for recovery technologies.

OEMs and system integrators are setting up take-back programs, pilot recycling lines, and service networks for stack retrieval. Agreements with specialized recycling firms enable traceable, closed-loop systems for recovering materials and reducing reliance on mining. Certifications for recycled content and sustainability labels are emerging as additional drivers, particularly in public procurement and fleet acquisition. Industry partnerships across the hydrogen ecosystem-automakers, utility providers, and material scientists-are helping define best practices and economic models for stack recycling and reuse.

Growth in the Fuel Cell Stack Recycling and Reuse Market Is Driven by Several Factors…

Growth in the fuel cell stack recycling and reuse market is driven by several factors linked to material scarcity, cost pressures, and emerging regulatory alignment. Rising use of platinum-group metals and carbon-intensive components in fuel cells is pushing demand for efficient recovery methods to minimize resource depletion. Expansion of fuel cell-powered vehicles and equipment creates growing volumes of end-of-life stacks requiring structured collection and disassembly. Technological improvements in electrochemical and hydrometallurgical recovery techniques enable higher material yields with reduced environmental impact. Integration of component-level reuse-particularly plates and peripheral elements-into secondary energy systems adds functional value beyond original deployment. Introduction of design-for-recycling principles, coupled with national targets for hydrogen economy sustainability, supports scalable recovery models. As industry shifts toward circular practices, comprehensive lifecycle strategies for fuel cell stacks are becoming essential to ensure environmental and economic resilience in next-generation energy systems.

SCOPE OF STUDY:

The report analyzes the Fuel Cell Stack Recycling and Reuse market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Proton Exchange Membrane Fuel Cells, Solid Oxide Fuel Cells, Molten Carbonate Fuel Cells, Phosphoric Acid Fuel Cells, Other Types); Recycling Process (Pyrometallurgical Recycling, Hydrometallurgical Recycling, Mechanical Recycling, Other Recycling Processes); End-Use (Transportation End-Use, Stationary Power Generation End-Use, Portable Power Generation End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â