¼¼°èÀÇ ÀΰøÁö´É(AI) µ¥ÀÌÅͼ¾ÅÍ ½ºÀ§Ä¡ ½ÃÀåÀº 2030³â±îÁö 190¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á
2024³â¿¡ 40¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀΰøÁö´É(AI) µ¥ÀÌÅͼ¾ÅÍ ½ºÀ§Ä¡ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 29.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 190¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ InfiniBand ½ºÀ§Ä¡´Â CAGR 26.8%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 111¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´õ³Ý ½ºÀ§Ä¡ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 35.3%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 10¾ï ´Þ·¯, Áß±¹Àº CAGR 28.5%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ ÀΰøÁö´É(AI) µ¥ÀÌÅͼ¾ÅÍ ½ºÀ§Ä¡ ½ÃÀåÀº 2024³â¿¡ 10¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 29¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 28.5%·Î ÁÖ¾îµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 26.8%¿Í 26.1%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR 21.0%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.
¼¼°èÀÇ ÀΰøÁö´É(AI) µ¥ÀÌÅͼ¾ÅÍ ½ºÀ§Ä¡ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
AI µ¥ÀÌÅͼ¾ÅÍ ½ºÀ§Ä¡°¡ °í¼º´É ÄÄÇ»ÆÃÀÇ ¹Ì·¡¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀϱî?
AI ¿ëµµÀÌ Ã³¸®ÇÏ´Â µ¥ÀÌÅÍÀÇ ¾ç, ¼Óµµ, º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀΰøÁö´É(AI) µ¥ÀÌÅͼ¾ÅÍ ½ºÀ§Ä¡´Â Çö´ë ÄÄÇ»ÆÃ ÀÎÇÁ¶óÀÇ ±âº» ±¸¼º¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ ½ºÀ§Ä¡´Â ÃÊÀúÁö¿¬, °í¼Ó ³×Æ®¿öÅ©¸¦ ÅëÇØ ¹æ´ëÇÑ ¾çÀÇ Á¤º¸¸¦ ¶ó¿ìÆÃÇÏ´Â ¿ªÇÒÀ» Çϸç, »óÈ£ ¿¬°áµÈ ¼¹ö, GPU, ½ºÅ丮Áö ¾î·¹ÀÌ¿¡¼ ½ÇÇàµÇ´Â ¼öõ °³ÀÇ AI ¿öÅ©·Îµå °£ÀÇ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¿Í ¿øÈ°ÇÑ Åë½ÅÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Åë½ÅÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ±âÁ¸ µ¥ÀÌÅͼ¾ÅÍ ½ºÀ§Ä¡¿Í ´Þ¸® AI¿¡ ÃÖÀûÈµÈ ½ºÀ§Ä¡´Â µö·¯´× ¸ðµ¨, Æ®·¹ÀÌ´× ¾Ë°í¸®Áò, Ãß·Ð ½Ã½ºÅÛ¿¡¼ »ý¼ºµÇ´Â ³ôÀº 󸮷®°ú È®Á¤ÀûÀÎ ¼º´ÉÀ» ¿ä±¸ÇÏ´Â µö·¯´× ¸ðµ¨, Æ®·¹ÀÌ´× ¾Ë°í¸®Áò, Ãß·Ð ½Ã½ºÅÛ¿¡¼ »ý¼ºµÇ´Â °Ý·ÄÇÑ µ¥ÀÌÅÍ È帧À» ó¸®ÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ¼³°èµÇ¾î ÀÖ½À´Ï´Ù. À̹ÌÁö ÀνÄ, ¾ð¾î ¸ðµ¨¸µ, ºÎÁ¤ÇàÀ§ °¨Áö, ¿¹Ãø ºÐ¼® µî ´Ù¾çÇÑ ±â¾÷µéÀÌ AI¸¦ µµÀÔÇÏ¸é¼ º´·Ä ÄÄÇ»ÆÃ°ú ºÐ»ê ¾ÆÅ°ÅØÃ³¸¦ Áö¿øÇÏ´Â Àü¿ë ³×Æ®¿öÅ· ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ºÀ§Ä¡´Â µ¥ÀÌÅͼ¾ÅÍ ³» Ⱦ¹æÇâ µ¥ÀÌÅÍ ¸¶À̱׷¹À̼ÇÀ» ÀǹÌÇÏ´Â µ¿¼¹æÇâ Æ®·¡ÇÈÀ» °ü¸®ÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, AI¸¦ ¸¹ÀÌ »ç¿ëÇϴ ȯ°æ¿¡¼´Â ÀÌ Æ®·¡ÇÈ ÆÐÅÏÀÌ Áö¹èÀûÀÏ °ÍÀÔ´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅͼ¾ÅÍ ½ºÀ§Ä¡´Â ÃֽŠÇÏÀÌÆÛ½ºÄÉÀÏ µ¥ÀÌÅͼ¾ÅÍ¿Í ¿§Áö µ¥ÀÌÅͼ¾ÅÍÀÇ ÁßÃ߸¦ Çü¼ºÇϰí ÀÖÀ¸¸ç, Ŭ¶ó¿ìµå ±â¹Ý AI ¼ºñ½º¿¡ ´ëÇÑ Àü ¼¼°è ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ ÇöÀç ºü¸£°Ô ±¸ÃàµÇ°í ÀÖ½À´Ï´Ù. °ø±Þ¾÷ü´Â ´õ ³ôÀº Æ÷Æ® ¹Ðµµ, 400G ¹× 800G ¼Óµµ Áö¿ø, ¿ÀǼҽº ¼ÒÇÁÆ®¿þ¾î ¹× ÇÁ·Î±×·¡¹Ö °¡´ÉÇÑ ÇÁ·ÎÅäÄݰúÀÇ È£È¯¼ºÀ» Á¦°øÇÏ´Â ½ºÀ§Ä¡¸¦ ¼³°èÇϰí ÀÖ½À´Ï´Ù. AI ¸ðµ¨ÀÇ ±Ô¸ð¿Í ¿¬»ê·®ÀÌ Æø¹ßÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó, ±â¹ÝÀÌ µÇ´Â ³×Æ®¿öÅ© ÀÎÇÁ¶óÀÇ ¼º´ÉÀº ÇÁ·Î¼¼¼ ¹× ½ºÅ丮Áö ½Ã½ºÅÛÀÇ ¼º´É¸¸ÅÀ̳ª Áß¿äÇØÁö°í ÀÖÀ¸¸ç, AI µ¥ÀÌÅͼ¾ÅÍ ½ºÀ§Ä¡´Â µðÁöÅÐ Àüȯ ÀÌ´Ï¼ÅÆ¼ºêÀÇ Á߽ɿ¡ ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.
È®Àå °¡´ÉÇÑ AI ¿öÅ©·Îµå¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ½ºÀ§Ä¡ ¾ÆÅ°ÅØÃ³ ¹× ÇÁ·ÎÅäÄÝ ¼³°èÀÇ Çõ½ÅÀº ¹«¾ùÀΰ¡?
½ºÀ§Ä¡ ¾ÆÅ°ÅØÃ³, ÀÎÅÍÆäÀ̽º ¼³°è, Åë½Å ÇÁ·ÎÅäÄÝÀÇ Çõ½ÅÀº µ¥ÀÌÅͼ¾ÅͰ¡ AI ¿öÅ©·Îµå¸¦ ´ë±Ô¸ð·Î °ü¸®ÇÏ´Â ¹æ½ÄÀ» ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù. AI ÇнÀ ¹× Ãß·Ð ¿öÅ©·ÎµåÀÇ ¹æ´ëÇÑ µ¥ÀÌÅÍ ¸¶À̱׷¹ÀÌ¼Ç ¿ä±¸ »çÇ×À» ÃæÁ·Çϱâ À§ÇØ ÇöÀç µ¥ÀÌÅͼ¾ÅÍ ½ºÀ§Ä¡´Â ÃÊ´ç ¼ö½Ê¾ï °³ÀÇ ÆÐŶÀ» ÃÖ¼ÒÇÑÀÇ Áö¿¬À¸·Î ó¸®ÇÒ ¼ö ÀÖ´Â ¸ÓõƮ ½Ç¸®ÄÜ ¹× Ä¿½ºÅÒ ASIC µî ÷´Ü ½Ç¸®ÄÜ ±â¼úÀ» žÀçÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº µö ¹öÆÛ¸µ, È¥Àâ Á¦¾î, ¹«¼Õ½Ç ÀÌ´õ³Ý µîÀÇ ±â´ÉÀ» Áö¿øÇϸç, AI ¿öÅ©·Îµå ÇÇÅ© ½Ã ÀϰüµÈ 󸮷®À» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÎ ±â´ÉÀÔ´Ï´Ù. »õ·Î¿î ½ºÀ§Ä¡ ÆÐºê¸¯Àº ³ëµå °£ È© ¼ö¸¦ ÁÙÀÌ°í ±âÁ¸ÀÇ º´¸ñÇö»óÀ» ÇØ¼ÒÇÏ´Â ½ºÆÄÀÎ ¸®ÇÁ(Spine Leaf) ¹× ÀáÀÚ¸®(Dragonfly) ±¸¼º°ú °°Àº º¸´Ù ÆòźÇÑ ³×Æ®¿öÅ© ÅäÆú·ÎÁö¸¦ Áö¿øÇϱâ À§ÇØ °³¹ßµÇ¾ú½À´Ï´Ù. ÇÁ·ÎÅäÄÝ ·¹º§¿¡¼´Â RDMA over Converged Ethernet(RoCE), P4 ÇÁ·Î±×·¡¸Óºí µ¥ÀÌÅÍ Ç÷¹ÀÎ µîÀÇ Ç¥ÁØÀÌ ÅëÇÕµÇ¾î º¸´Ù Áö´ÉÀûÀÎ Æ®·¡ÇÈ °ü¸®¿Í ÀϺΠÇÁ·Î¼¼½º°¡ ½ºÀ§Ä¡ ³»¿¡¼ Á÷Á¢ ½ÇÇàµÇ´Â ÀÎ-³×Æ®¿öÅ© ÄÄÇ»ÆÃÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. °¡ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº ´ë±Ô¸ð ¾ð¾î ¸ðµ¨À̳ª ½Å°æ¸Á ÇнÀÀ» À§ÇØ ¿©·¯ ³ëµå¿¡ °ÉÄ£ GPU°¡ °ÅÀÇ ½Ç½Ã°£À¸·Î Åë½ÅÇØ¾ß ÇÏ´Â ºÐ»ê ÄÄÇ»ÆÃ ȯ°æ¿¡ ÀÇÁ¸ÇÏ´Â AI ÇÁ·¹ÀÓ¿öÅ©¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ, Äí¹ö³×Ƽ½º(Kubernetes) ¹× ±âŸ ¿ÀÄɽºÆ®·¹ÀÌ¼Ç Ç÷§ÆûÀ» »ç¿ëÇÏ¿© ÄÁÅ×À̳ÊÈ ¹× °¡»óÈµÈ AI ¿öÅ©·Îµå¸¦ ¹èÆ÷ÇÏ´Â »ç·Ê°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ¿öÅ©·Îµå º¯È¿¡ µ¿ÀûÀ¸·Î ÀûÀÀÇÏ°í ³×Æ®¿öÅ© ¿§Áö¿¡¼ Á¤Ã¥À» Àû¿ëÇÒ ¼ö ÀÖ´Â ½ºÀ§Ä¡¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °ø±Þ¾÷üµéÀº ÅÚ·¹¸ÞÆ®¸® ¹× ºÐ¼® ±â´ÉÀ» ½ºÀ§Ä¡¿¡ ÅëÇÕÇÏ¿© ³×Æ®¿öÅ© »óÅÂ, Æ®·¡ÇÈ ÆÐÅÏ, ¼º´É ¸ÞÆ®¸¯À» ½Ç½Ã°£À¸·Î ÆÄ¾ÇÇÒ ¼ö ÀÖ´Â °¡½Ã¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¾ÆÅ°ÅØÃ³¿Í ÇÁ·ÎÅäÄÝÀÇ Çõ½ÅÀº ³×Æ®¿öÅ© ¿ë·®°ú ¼Óµµ¸¦ Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó Â÷¼¼´ë AI ÀÎÇÁ¶ó¸¦ Áö¿øÇÏ´Â µ¥ ÇÊ¿äÇÑ À¯¿¬¼º°ú ÀÎÅÚ¸®Àü½º¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.
½ÃÀå °³Ã´, Ŭ¶ó¿ìµå È®´ë, »ýÅÂ°è »óÈ£¿î¿ë¼ºÀº Á¦Ç° °³¹ß¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¥±î?
AI Áö¿ø µ¥ÀÌÅͼ¾ÅÍ ½ºÀ§Ä¡¿¡ ´ëÇÑ ¼ö¿ä´Â Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ ±Þ¼ÓÇÑ È®Àå, AI-as-a-service Ç÷§ÆûÀÇ È®»ê, °³¹æÇü »óÈ£¿î¿ë °¡´ÉÇÑ »ýŰ迡 ´ëÇÑ Á߿伺 Áõ°¡¿¡ µû¶ó Å« ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¾Æ¸¶Á¸ À¥ ¼ºñ½º, ¸¶ÀÌÅ©·Î¼ÒÇÁÆ® Azure, ±¸±Û Ŭ¶ó¿ìµå, ¾Ë¸®¹Ù¹Ù Ŭ¶ó¿ìµå¸¦ ºñ·ÔÇÑ ÁÖ¿ä Ŭ¶ó¿ìµå ¼ºñ½º Á¦°ø¾÷üµéÀº AI ÀÎÇÁ¶ó¸¦ Àü·Ê ¾ø´Â ¼Óµµ·Î È®ÀåÇϰí, °í¹Ðµµ, °í¼Ó, °í½Å·Ú¼º ½ºÀ§Äª ¼Ö·ç¼ÇÀ» ÇÊ¿ä·Î ÇÏ´Â ÇÏÀÌÆÛ½ºÄÉÀÏ µ¥ÀÌÅͼ¾Å͸¦ ±¸ÃàÇϰí ÀÖ½À´Ï´Ù. ÀÌµé ¾÷üµéÀº ¼º´É, ºñ¿ë È¿À²¼º, ¿¡³ÊÁö ÃÖÀûÈ¿¡ ´ëÇÑ º¥Ä¡¸¶Å©¸¦ ¼³Á¤Çϰí, ½ÃÀå Àü¹ÝÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀÌ AI ÀÌ´Ï¼ÅÆ¼ºê¸¦ Áö¿øÇϱâ À§ÇØ ÇÁ¶óÀ̺ø Ŭ¶ó¿ìµå ¹× ÇÏÀ̺긮µå Ŭ¶ó¿ìµå ¸ðµ¨À» äÅÃÇÔ¿¡ µû¶ó, º¥´õµéÀº ÀÚ»ç ½ºÀ§Ä¡°¡ À̱âÁ¾ ȯ°æ ¹× ´Ù¾çÇÑ ÄÄÇ»ÆÃ ¹× ½ºÅ丮Áö Ç÷§Æû°ú ¿øÈ°ÇÏ°Ô ÅëÇÕµÉ ¼ö ÀÖµµ·Ï ÇØ¾ß ÇÕ´Ï´Ù. ÅëÇÕÇÒ ¼ö ÀÖ¾î¾ß ÇÕ´Ï´Ù. ¿ÀÇ ÄÄǻƮ ÇÁ·ÎÁ§Æ®(OCP), SONiC(Software for Open Networking in the Cloud) µîÀÌ ÃßÁøÇÏ´Â °³¹æÇü ³×Æ®¿öÅ· Ç¥ÁØÀº º¥´õ Á¾¼ÓÀ» ÇÇÇϰí, ¸ÂÃãÇü ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ³×Æ®¿öÅ· ¼Ö·ç¼ÇÀ» µµÀÔÇϰíÀÚ ÇÏ´Â ±¸¸ÅÀڵ鿡°Ô Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ³×Æ®¿öÅ· ¼Ö·ç¼ÇÀ» µµÀÔÇϰíÀÚ ÇÏ´Â ±¸¸ÅÀڵ鿡°Ô Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¡³ÊÁö ¼Òºñ¿Í Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó Á¦Á¶¾÷üµéÀº Àü¼Û ±â°¡ºñÆ®´ç Àü·Â »ç¿ë·®À» ÁÙÀ̰í, ¿ È¿À²À» ³ôÀ̸ç, ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ´Â ±â´ÉÀÌ ³»ÀåµÈ ½ºÀ§Ä¡¸¦ °³¹ßÇϵµ·Ï Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷, ½º¸¶Æ®½ÃƼ, »ê¾÷ ÀÚµ¿È µî »õ·Î¿î ¿§Áö AI ¿ëµµ´Â ±âÁ¸ µ¥ÀÌÅͼ¾ÅÍ È¯°æ ¹Û¿¡¼ ¿£ÅÍÇÁ¶óÀÌÁî±Þ ¼º´ÉÀ» Á¦°øÇÒ ¼ö ÀÖ´Â ÄÄÆÑÆ®ÇÏ°í °ß°íÇÑ ½ºÀ§Ä¡¿¡ ´ëÇÑ »õ·Î¿î ¿ä±¸»çÇ×À» âÃâÇϰí ÀÖ½À´Ï´Ù. AI, Ŭ¶ó¿ìµå, ¿§Áö ÄÄÇ»ÆÃÀÇ À¶ÇÕÀ¸·Î º¥´õµéÀº Á¦Ç° ·Îµå¸Ê¿¡¼ »óÈ£¿î¿ë¼º, È®À强, ÀÚµ¿È¸¦ ¿ì¼±¼øÀ§¿¡ µÎ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀ¸·Î ÀÎÇØ µ¥ÀÌÅͼ¾ÅÍ ½ºÀ§Ä¡´Â Á¤º¸ÀÇ °í¼Ó Àü¼Û °æ·ÎÀÏ »Ó¸¸ ¾Æ´Ï¶ó ±¤¹üÀ§ÇÑ µðÁöÅÐ ÀÎÇÁ¶ó »ýŰ迡 ±ä¹ÐÇÏ°Ô ÅëÇÕµÈ ÇÁ·Î±×·¡¹ÖÀÌ °¡´ÉÇÑ Áö´ÉÇü ±¸¼º ¿ä¼Ò·Î º¯¸ðÇϰí ÀÖ½À´Ï´Ù.
AI µ¥ÀÌÅͼ¾ÅÍ ½ºÀ§Ä¡ ½ÃÀåÀÇ ¼¼°è Àå±â ¼ºÀå µ¿·ÂÀº?
AI µ¥ÀÌÅͼ¾ÅÍ ½ºÀ§Ä¡ ½ÃÀåÀÇ ¼ºÀåÀº µðÁöÅÐ °æÁ¦ÀÇ ±¤¹üÀ§ÇÑ º¯È¸¦ ¹Ý¿µÇÏ´Â ¸î °¡Áö ¼ö·Å ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀÚ¿¬¾î ó¸®, ÀÚÀ² ½Ã½ºÅÛ, ÇÉÅ×Å©, ÇコÄɾî Áø´Ü, ½Ç½Ã°£ ÄÁÅÙÃ÷ Ãßõ µîÀÇ ºÐ¾ß¿¡¼ AI¸¦ Ȱ¿ëÇÑ ¼ºñ½º ¼ö¿ä°¡ ±ÞÁõÇÏ¸é¼ ±âÁ¸ µ¥ÀÌÅÍ ÀÎÇÁ¶ó¿¡ Å« ºÎ´ãÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ±× °á°ú, Ãʰí´ë¿ªÆø, ÀúÁö¿¬, È®Àå °¡´ÉÇÑ »óÈ£ ¿¬°áÀ» Áö¿øÇÏ´Â µ¥ÀÌÅͼ¾ÅÍ ½ºÀ§Ä¡¿¡ ´ëÇÑ Àü·Ê ¾ø´Â ¼ö¿ä°¡ ¹ß»ýÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ CPU Áß½ÉÀÇ ÄÄÇ»ÆÃ¿¡¼ GPU, TPU, AI ĨÀ» ÀÌ¿ëÇÑ °¡¼Ó ÄÄÇ»ÆÃÀ¸·ÎÀÇ ÀüȯÀº ¸ðµ¨ ÇнÀ ¹× Ãß·Ð °úÁ¤¿¡¼ ¹ß»ýÇÏ´Â ¹æ´ëÇÑ µ¿¼ Æ®·¡ÇÈÀ» ó¸®ÇÒ ¼ö ÀÖ´Â ³×Æ®¿öÅ© Çϵå¿þ¾îÀÇ Çʿ伺À» Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ ÁÖ¿ä ¼ºÀå ¿äÀÎÀº ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç µî Áö¿ªÀ» Áß½ÉÀ¸·Î ÇÏÀÌÅ×Å© ´ë±â¾÷°ú Á¤ºÎÀÇ ÇÏÀÌÆÛ½ºÄÉÀÏ µ¥ÀÌÅͼ¾ÅÍ ÅõÀÚ ºÕÀÌ ÀϾ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã¼³Àº AI ¿öÅ©·Îµå¸¦ ´ë±Ô¸ð·Î È£½ºÆÃÇϵµ·Ï ¼³°èµÇ¾úÀ¸¸ç, ¼º´É°ú °¡µ¿ ½Ã°£À» À¯ÁöÇϱâ À§ÇØ ´ë¿ë·® ½ºÀ§Äª ÆÐºê¸¯¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ÁÖ±Ç µ¥ÀÌÅÍ Á¤Ã¥°ú µðÁöÅÐ ÀÎÇÁ¶óÀÇ ÀÚÀ²¼ºÀÌ °Á¶µÇ¸é¼ °¢±¹ÀÇ AI µ¥ÀÌÅͼ¾ÅÍ¿¡ ´ëÇÑ ÅõÀÚ°¡ ÃËÁøµÇ¾î ½ºÀ§Ä¡ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. 400G ¹× 800G ÀÌ´õ³Ý, ¾çÀÚ Áö¿ø ¾ÆÅ°ÅØÃ³, ³×Æ®¿öÅ© ºÐ¸® µîÀÇ ±â¼ú ¹ßÀüÀ¸·Î Á¦Ç° °³¹ß ¹× ¹èÆ÷ ÁֱⰡ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ÀÌ¿Í ÇÔ²² ±â¾÷µéÀº ºñÁî´Ï½º ÇÁ·Î¼¼½º ÃÖÀûȸ¦ À§ÇØ AI¸¦ µµÀÔÇÏ´Â °æÇâÀÌ °ÇØÁö°í ÀÖÀ¸¸ç, ¿£ÅÍÇÁ¶óÀÌÁî ´ëÀÀ°ú AI ÃÖÀûȸ¦ ¸ðµÎ Áö¿øÇÏ´Â ½ºÀ§Ä¡¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Software-Defined Networking, º¸¾È ÅëÇÕ, ¿î¿µ ÀÚµ¿ÈÀÇ Áö¼ÓÀûÀÎ °³¼±µµ ½ÃÀå ¸ð¸àÅÒ¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. AI°¡ ºñÁî´Ï½º, Á¤ºÎ, »çȸÀÇ °ÅÀÇ ¸ðµç Ãø¸é¿¡ ÅëÇյǴ °¡¿îµ¥, AIÀÇ ¼º´É, È®À强, ¾ÈÁ¤¼ºÀ» ±¸ÇöÇÏ´Â µ¥ÀÌÅͼ¾ÅÍ ½ºÀ§Ä¡ÀÇ Áß¿äÇÑ ¿ªÇÒÀº ¼¼°è ½ÃÀåÀÇ Áö¼ÓÀûÀÌ°í °ß°íÇÑ ¼ºÀåÀ» º¸ÀåÇÕ´Ï´Ù.
ºÎ¹®
Á¦Ç° À¯Çü(InfiniBand ½ºÀ§Ä¡, ÀÌ´õ³Ý ½ºÀ§Ä¡);Á¶Á÷ ±Ô¸ð(´ë±â¾÷, Áß¼Ò±â¾÷)
AI ÅëÇÕ
´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.
Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Global Artificial Intelligence (AI) Data Center Switches Market to Reach US$19.0 Billion by 2030
The global market for Artificial Intelligence (AI) Data Center Switches estimated at US$4.0 Billion in the year 2024, is expected to reach US$19.0 Billion by 2030, growing at a CAGR of 29.9% over the analysis period 2024-2030. InfiniBand Switch, one of the segments analyzed in the report, is expected to record a 26.8% CAGR and reach US$11.1 Billion by the end of the analysis period. Growth in the Ethernet Switch segment is estimated at 35.3% CAGR over the analysis period.
The U.S. Market is Estimated at US$1.0 Billion While China is Forecast to Grow at 28.5% CAGR
The Artificial Intelligence (AI) Data Center Switches market in the U.S. is estimated at US$1.0 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.9 Billion by the year 2030 trailing a CAGR of 28.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 26.8% and 26.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 21.0% CAGR.
Global Artificial Intelligence (AI) Data Center Switches Market - Key Trends & Drivers Summarized
Why Are AI Data Center Switches Crucial to the Future of High-Performance Computing?
Artificial Intelligence (AI) data center switches are becoming foundational components in modern computing infrastructure due to the increasing volume, velocity, and complexity of data processed by AI applications. These switches are responsible for routing vast amounts of information across high-speed networks with ultra-low latency, enabling real-time data processing and seamless communication between thousands of AI workloads running on interconnected servers, GPUs, and storage arrays. Unlike traditional data center switches, AI-optimized switches are designed to handle the intense data flow generated by deep learning models, training algorithms, and inferencing systems that demand consistent high throughput and deterministic performance. As organizations across sectors adopt AI for use cases like image recognition, language modeling, fraud detection, and predictive analytics, the need for purpose-built networking solutions that support parallel computing and distributed architectures has grown exponentially. These switches are critical for managing east-west traffic, which refers to the lateral data movement within a data center, a traffic pattern that becomes dominant in AI-heavy environments. Moreover, data center switches form the backbone of modern hyperscale and edge data centers, which are now being constructed at an accelerated pace to meet global demand for cloud-based AI services. Vendors are engineering switches that provide higher port density, support for 400G and 800G speeds, and compatibility with open-source software and programmable protocols. With the explosive growth in AI model size and compute intensity, the performance of the underlying network infrastructure has become just as important as the performance of processors and storage systems, placing AI data center switches at the heart of digital transformation initiatives.
How Are Innovations in Switch Architecture and Protocol Design Enabling Scalable AI Workloads?
Innovations in switch architecture, interface design, and communication protocols are redefining how data centers manage AI workloads at scale. To meet the massive data movement requirements of AI training and inference workloads, data center switches are now being equipped with advanced silicon technologies, including merchant silicon and custom ASICs that are capable of processing billions of packets per second with minimal delay. These innovations support features like deep buffering, congestion control, and lossless Ethernet, all of which are vital for maintaining consistent throughput during peak AI workloads. New switch fabrics are being developed to support flatter network topologies such as spine-leaf and dragonfly configurations, which reduce the number of hops between nodes and eliminate traditional bottlenecks. At the protocol level, standards like RDMA over Converged Ethernet (RoCE) and P4 programmable data planes are being integrated to allow more intelligent traffic management and in-network computing, where some processing is performed directly within the switch itself. These capabilities are crucial for AI frameworks that rely on distributed computing environments where GPUs across multiple nodes must communicate in near real time to train large language models and neural networks. Additionally, the increasing deployment of containerized and virtualized AI workloads using Kubernetes and other orchestration platforms has prompted the need for switches that can dynamically adapt to shifting workloads and enforce policy at the network edge. Vendors are also integrating telemetry and analytics features into switches, providing real-time visibility into network health, traffic patterns, and performance metrics. These architectural and protocol innovations are not only increasing network capacity and speed but also creating the flexibility and intelligence required to support next-generation AI infrastructure.
How Do Market Demands, Cloud Expansion, and Ecosystem Interoperability Influence Product Development?
The demand for AI-capable data center switches is being strongly influenced by the rapid expansion of cloud computing, the proliferation of AI-as-a-service platforms, and the growing emphasis on open and interoperable ecosystems. Major cloud service providers including Amazon Web Services, Microsoft Azure, Google Cloud, and Alibaba Cloud are scaling their AI infrastructure at unprecedented rates, building out hyperscale data centers that require dense, high-speed, and highly reliable switching solutions. These providers are setting the benchmark for performance, cost-efficiency, and energy optimization, which drives innovation across the broader market. As enterprises seek to adopt private and hybrid cloud models to support their own AI initiatives, vendors must ensure that their switches can integrate smoothly with heterogeneous environments and diverse compute and storage platforms. Open networking standards, including those promoted by the Open Compute Project (OCP) and SONiC (Software for Open Networking in the Cloud), are becoming increasingly important for buyers looking to avoid vendor lock-in and to deploy customizable, software-defined networking solutions. Moreover, growing concerns around energy consumption and sustainability are prompting manufacturers to develop switches with reduced power usage per gigabit transferred, enhanced thermal efficiency, and built-in support for monitoring environmental impact. Emerging edge AI applications such as autonomous vehicles, smart cities, and industrial automation are creating new requirements for compact, ruggedized switches that can deliver enterprise-grade performance outside the traditional data center environment. The convergence of AI, cloud, and edge computing is pushing vendors to prioritize interoperability, scalability, and automation in their product roadmaps. This market dynamic ensures that data center switches are not only high-speed conduits for information but also programmable and intelligent components that are tightly integrated into the broader digital infrastructure ecosystem.
What Is Fueling the Long-Term Growth of the AI Data Center Switches Market Globally?
The growth in the AI data center switches market is driven by several converging factors that reflect the broader transformation of the digital economy. The surging demand for AI-powered services in areas such as natural language processing, autonomous systems, fintech, healthcare diagnostics, and real-time content recommendation is placing enormous strain on existing data infrastructure. This, in turn, is creating unprecedented demand for data center switches that can support ultra-high bandwidth, low-latency, and scalable interconnectivity. The shift from traditional CPU-centric computing to accelerated computing using GPUs, TPUs, and AI chips is amplifying the need for networking hardware that can handle the massive east-west traffic generated during model training and inference. Another key growth driver is the investment boom in hyperscale data centers by tech giants and governments alike, particularly in regions such as North America, Europe, and Asia-Pacific. These facilities are designed to host AI workloads at scale and rely heavily on high-capacity switching fabrics to maintain performance and uptime. Meanwhile, the growing emphasis on sovereign data policies and digital infrastructure autonomy is encouraging national investments in local AI data centers, further stimulating switch demand. Technological advancements such as the adoption of 400G and 800G Ethernet, quantum-ready architectures, and network disaggregation are accelerating product development and deployment cycles. In parallel, enterprises are increasingly embracing AI for business process optimization, creating demand for switches that are both enterprise-ready and AI-optimized. Continuous improvements in software-defined networking, security integration, and operational automation are also contributing to market momentum. As AI becomes embedded in nearly every aspect of business, government, and society, the critical role of data center switches as enablers of AI performance, scalability, and reliability ensures their continued and robust global market growth.
SCOPE OF STUDY:
The report analyzes the Artificial Intelligence (AI) Data Center Switches market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Product Type (InfiniBand Switch, Ethernet Switch); Organization Size (Large Enterprises, SMEs)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 39 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.