¼¼°èÀÇ ¼öÁ÷Ãà dz·Â Åͺó ½ÃÀå
Vertical Axis Wind Turbines
»óǰÄÚµå : 1798294
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 370 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,204,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,612,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¼öÁ÷Ãà dz·Â Åͺó ½ÃÀåÀº 2030³â±îÁö 29¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 18¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ¼öÁ÷Ãà dz·Â Åͺó ½ÃÀåÀº 2024-2030³â¿¡ CAGR 8.2%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 29¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ·ÎÅÍ ÄÄÆ÷³ÍÆ®´Â CAGR 6.1%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 11¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ÿ¿ö ÄÄÆ÷³ÍÆ® ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 10.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4¾ï 8,640¸¸ ´Þ·¯, Áß±¹Àº CAGR 12.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¼öÁ÷Ãà dz·Â Åͺó ½ÃÀåÀº 2024³â¿¡ 4¾ï 8,640¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 6¾ï 320¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 12.4%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 4.3%¿Í 7.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 5.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¼öÁ÷Ãà dz·Â Åͺó ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¼öÁ÷Ãà dz·Â ÅͺóÀÌ µµ½Ã ¹× Off-grid ¿¡³ÊÁö ½ÃÀå¿¡¼­ ºÎ»óÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

¼öÁ÷Ãà dz·Â Åͺó(VAWT)Àº ƯÈ÷ µµ½Ã, ÁÖ°Å, ºÐ»êÇü ¿¡³ÊÁö ȯ°æ¿¡¼­ ±âÁ¸ÀÇ ¼öÆòÃà ÅͺóÀ» ´ëüÇÒ ¼ö ÀÖ´Â À¯·ÂÇÑ ´ë¾ÈÀ¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ÇÑ ¹æÇâÀÇ ¹Ù¶÷°ú ³ÐÀº °£±ØÀÌ ÇÊ¿äÇÑ ¼öÆòÃà Åͺó°ú ´Þ¸®, VAWT´Â ³­·ù³ª ´Ù¹æÇâ ¹Ù¶÷ÀÇ È帧 ¼Ó¿¡¼­ È¿À²ÀûÀ¸·Î ÀÛµ¿Çϸç, Áö¸é¿¡ °¡±î¿î °÷À̳ª ÁöºØ À§ ¶Ç´Â ÄÄÆÑÆ®ÇÑ ±¸¿ª¿¡ ¼³Ä¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ µµ½Ã, ¼¶, »ê¾÷´ÜÁö, Off-grid Ä¿¹Â´ÏƼÀÇ ºÐ»êÇü Àç»ý¿¡³ÊÁö ¹ßÀü¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¸¶ÀÌÅ©·Î±×¸®µå, ¿¡³ÊÁö º¹¿ø·Â, °Ç¹° ÅëÇÕ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó VAWT ½Ã½ºÅÛ¿¡ ´ëÇÑ ½ÃÀåÀÇ °ü½ÉÀÌ Àü ¼¼°è¿¡¼­ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

VAWTÀÇ »ê¾÷º° ¼³°è ¾ÆÅ°ÅØÃ³´Â ·ÎÅÍ »þÇÁÆ®¸¦ ¹Ù¶÷°ú ¼öÁ÷À¸·Î À¯ÁöÇÏ¿© ±â°èÀû Àü´Þ ¹× À¯Áöº¸¼ö¸¦ ´Ü¼øÈ­ÇÕ´Ï´Ù. ¼ÒÀ½ÀÌ ¾ø°í, Á¶·ù ģȭÀûÀ̸ç, Áøµ¿ÀÌ Àû´Ù´Â Ư¼ºÀº ƯÈ÷ °Ç¹° ÀÏüÇü ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. µµ½Ã°¡ ¼ø Á¦·Î ¿¡³ÊÁö Àǹ«È­¸¦ Ãß±¸ÇÏ´Â °¡¿îµ¥, °Ç¹° ¼ÒÀ¯ÁÖ¿Í ÁöÀÚü´Â ž籤¹ßÀü ¼³ºñ¸¦ º¸¿ÏÇÏ°í µðÁ© ¹é¾÷¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ã߸ç LEED ¹× BREEAM°ú °°Àº Áö¼Ó°¡´É¼º ÀÎÁõ ±âÁØÀ» ÃæÁ·Çϱâ À§ÇØ VAWT¸¦ ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ³×´ú¶õµå, ÀϺ», ¾Æ¶ø¿¡¹Ì¸®Æ® µîÀÇ ±¹°¡¿¡¼­´Â VAWT¸¦ ½º¸¶Æ® ½ÃƼ ÀÎÇÁ¶ó¿¡ Á¢¸ñÇÏ´Â ¿òÁ÷ÀÓÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

VAWTÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­ÇÏ´Â ±â¼úÀû °­È­´Â ¹«¾ùÀΰ¡?

ºí·¹ÀÌµå ¼³°è, º¹ÇÕÀç·á, ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ ¹ßÀüÀ¸·Î VAWTÀÇ È¿À², ³»±¸¼º, Ãâ·ÂÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. Àü»êÀ¯Ã¼¿ªÇÐ(CFD)¿¡ ÀÇÇØ ÃÖÀûÈ­µÈ ·ÎÅÍ ÇÁ·ÎÆÄÀϰú ÇÏÀ̺긮µå Darrieus-Savonius ¼³°è¸¦ ÅëÇØ ½Ãµ¿ ÅäÅ©¿Í ÄÆÀÎ ¼Óµµ¸¦ Çâ»ó½ÃÄ×½À´Ï´Ù. ¶ÇÇÑ °æ·® ź¼Ò¼¶À¯ ¹× °­È­ Æú¸®¸Ó ºí·¹À̵带 »ç¿ëÇÏ¿© ±¸Á¶Àû ÇÏÁßÀ» ÁÙÀ̰í ÇØ¾È°¡ ¹× °í½Àµµ ¼³Ä¡¿¡ ÇʼöÀûÀÎ ³»½Ä¼ºÀ» ³ô¿´½À´Ï´Ù. ÷´Ü ÀιöÅÍ ¹× MPPT(ÃÖ´ë Àü·ÂÁ¡ ÃßÁ¾) ¾Ë°í¸®Áò°ú ÅëÇÕÇÏ¿© º¯µ¿ÀÌ ½ÉÇÑ Ç³È²¿¡¼­µµ ¾ÈÁ¤ÀûÀÎ °èÅ뿬°è¿Í È¿À²ÀûÀÎ ¿¡³ÊÁö ÃßÃâÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

dz¼Ó, ·ÎÅÍ È¸Àü¼ö, º£¾î¸µ »óÅÂ, ¹ßÀü·®À» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÏ´Â IoT ¼¾¼­¸¦ žÀçÇÑ ½º¸¶Æ® VAWT°¡ ½ÃÀå¿¡ Ãâ½ÃµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍ ½ºÆ®¸²Àº ¿¹Áöº¸Àü°ú ¿ø°Ý Áø´ÜÀ» °¡´ÉÇÏ°Ô ÇÏ¿© °¡µ¿½Ã°£°ú ¿î¿µ °æÁ¦¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ¶ÇÇÑ VAWT¿Í žçÀüÁöÆÇ ¹× ¿¡³ÊÁö ÀúÀå ÀåÄ¡¸¦ °áÇÕÇÑ ÇÏÀ̺긮µå ½Ã½ºÅÛÀº ÀçÇØ°¡ ¸¹Àº Áö¿ª°ú ³óÃÌ Áö¿ªÀÇ Àü±âÈ­ ÇÁ·ÎÁ§Æ®¿¡ µµÀԵǰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ¶ÇÇÑ »ó¾÷¿ë °Ç¹°, Åë½Å Ÿ¿ö, °í¼Óµµ·Î Áß¾Ó ºÐ¸®´ë µî ¼ÒÇüÀÇ ÀÚÀ²ÀûÀÎ Àç»ý¿¡³ÊÁö ¼Ö·ç¼ÇÀÌ °¡´ÉÇÑ ¸ðµç Àå¼Ò¿¡ Àû¿ëµÉ ¼ö ÀÖµµ·Ï ¸ðµâÇü À¯´ÖÀÇ ±Ô¸ð¸¦ È®ÀåÇϰí ÀÖ½À´Ï´Ù.

¼öÁ÷Ãà dz·Â Åͺó ½ÃÀåÀÌ °¡Àå Å« °ßÀηÂÀ» °¡Áö°í ÀÖ´Â °÷Àº ¾îµðÀΰ¡?

VAWT°¡ °¡Àå ¸¹ÀÌ º¸±ÞµÈ °÷Àº À¯·´À¸·Î, ƯÈ÷ Àç»ý¿¡³ÊÁö °ü·Ã ¹ý±Ô°¡ ¼º¼÷ÇÏ°í ´ë±Ô¸ð ¼³Ä¡¸¦ À§ÇÑ °ø°£Àû Á¦¾àÀÌ ÀÖ´Â ±¹°¡µéÀÔ´Ï´Ù. ÇÁ¶û½º, µ¶ÀÏ, ¿µ±¹¿¡¼­´Â VAWT°¡ °ø°ø½Ã¼³, Çб³, ±âÂ÷¿ª, Á¶¸í ±âµÕ¿¡ ¼³Ä¡µÇ¾î ÀÖ½À´Ï´Ù. ÁöÀÚü ¿¡³ÊÁö ºÎ¹®Àº EV ÃæÀü±â ¹× ¿ø°Ý ¸ð´ÏÅ͸µ ÀåÄ¡ÀÇ Àü·Â Áõ°­¿¡ VAWT¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾Æ¿¡¼­´Â Çѱ¹, ÀϺ» µîÀÇ ±¹°¡µéÀÌ ¼ÒÀ½ ±ÔÁ¦¿Í ÅäÁö ºÎÁ·À¸·Î ÀÎÇØ ¼öÆòÃà ÅͺóÀ» »ç¿ëÇÒ ¼ö ¾ø´Â ¼Ò±Ô¸ð dz·Â¹ßÀü ÇÁ·ÎÁ§Æ®¸¦ °³¹ßÇϰí ÀÖ½À´Ï´Ù.

¾ÆÇÁ¸®Ä«¿Í ¶óƾ¾Æ¸Þ¸®Ä«´Â ³óÃÌ Àü±âÈ­, ³ó¾÷ °ü°³, Åë½Å ÀÎÇÁ¶ó¿¡ VAWT°¡ µµÀԵǰí ÀÖ´Â ÁÖ¿ä ½ÅÈï ½ÃÀåÀÔ´Ï´Ù. ÄÉ³Ä¿Í Æä·ç¿¡¼­´Â ÇöÁö ±â¾÷ÀÌ¿Í NGO°¡ 3D ÇÁ¸°ÆÃ ºÎǰ°ú »ó¿ë ÀüÀÚÁ¦Ç°À» »ç¿ëÇÏ¿© Àúºñ¿ë VAWT ŰƮ¸¦ Á¶¸³Çϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì¿¡¼­´Â ¾Ë·¡½ºÄ«¿Í ij³ª´Ù ºÏºÎ¿¡¼­ ¿øÁֹΠ°øµ¿Ã¼¿Í ¿Üµý °÷ÀÇ Ã¤±¼ ÀÛ¾÷¿¡ »ç¿ëµÇ´Â dz·Â°ú ž籤ÀÇ ÇÏÀ̺긮µåÇü Off-grid ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ ÀÖ½À´Ï´Ù. VAWT´Â ¸ðµâ½ÄÀ̸ç È®À强ÀÌ ÀÖÀ¸¸ç, Off-grid ¾ÖÈ£°¡, Áö¼Ó°¡´ÉÇÑ ÁÖÅà °³¹ßÀÚ, »ýŰü±¤ ÇÁ·ÎÁ§Æ® µî¿¡°Ô ¸Å·ÂÀûÀÎ Á¦Ç°ÀÔ´Ï´Ù.

dz·Â¹ßÀüÀÌ È®´ëµÇ°í ÀÖ´Â °¡¿îµ¥, VAWT ¼¼°è ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¼öÁ÷Ãà dz·Â Åͺó ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¸î °¡Áö ¿äÀÎÀº ºÐ»êÇü Àç»ý¿¡³ÊÁö¿¡ ´ëÇÑ °ü½É Áõ°¡, µµ½Ã Áö¿ªÀÇ Áö¼Ó°¡´É¼º Àǹ«È­ Áõ°¡, ¼ÒÇü dz·Â ÅÍºó ¼³°è Çõ½Å µî ¿©·¯ °¡Áö ¿äÀο¡ ±âÀÎÇÕ´Ï´Ù. ¿¡³ÊÁöÀÇ ºÐ»êÈ­¿Í ½º¸¶Æ® ¸¶ÀÌÅ©·Î±×¸®µå·ÎÀÇ Àüȯ¿¡ µû¶ó ¼ÒÇü Àú¼ÒÀ½ dz·Â ÅͺóÀÇ ¿ªÇÒÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ´Â ¼ø°è·® Á¤Ã¥, ±×¸° ºôµù ¿ì´ëÁ¤Ã¥, µµ½Ã Àç»ý¿¡³ÊÁö ÅëÇÕ¿¡ ÃÊÁ¡À» ¸ÂÃá ¿¬±¸ º¸Á¶±Ý µîÀ» ÅëÇØ ¼ÒÇü dz·Â¹ßÀü ½Ã½ºÅÛÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù.

±â¼úÀû È®À强°ú ÇÏÀ̺긮µå ½Ã½ºÅÛ È£È¯¼ºÀº VAWTÀÇ °¡Ä¡ Á¦¾ÈÀ» ´õ¿í °­È­ÇÕ´Ï´Ù. ±â¾÷Àº ¼³Ä¡ÀÇ º¹À⼺À» ÁÙ¿©ÁÖ´Â Ç÷¯±× ¾Ø Ç÷¹ÀÌ ½Ã½ºÅÛÀ» Á¦°øÇϰí, Å©¶ó¿ìµåÆÝµù°ú Ä¿¹Â´ÏƼ ¿¡³ÊÁö Ç÷§ÆûÀº »õ·Î¿î ÀÚ±Ý Á¶´Þ ¸ðµ¨À» Á¦°øÇÕ´Ï´Ù. ±³À°±â°ü, °ø°ø °ø¿ø, ±â¾÷ Ä·ÆÛ½º, ȯ°æ ºê·£µù ¹× STEM Âü¿© ÇÁ·Î±×·¥ÀÇ ÀÏȯÀ¸·Î VAWT°¡ äÅõǰí ÀÖ½À´Ï´Ù. ±âÈÄ º¯È­¿¡ ´ëÇÑ º¹¿ø·Â, ¿¡³ÊÁö ÀÚ¸³¼º, ģȯ°æ ¹ÌÇÐÀÌ Áß¿ä½ÃµÇ´Â °¡¿îµ¥, ¼öÁ÷Ãà dz·Â ÅͺóÀº ´Ù¾çÈ­µÈ Àúź¼Ò ¿¡³ÊÁö ¹Ì·¡·ÎÀÇ Àüȯ¿¡ ÀÖÀ¸¸ç, Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµÇ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(·ÎÅÍ ÄÄÆ÷³ÍÆ®, Ÿ¿ö ÄÄÆ÷³ÍÆ®, ³ª¼¿ ÄÄÆ÷³ÍÆ®, ±âŸ ÄÄÆ÷³ÍÆ®), ¼³Ä¡(À°»ó ¼³Ä¡, ÇØ»ó ¼³Ä¡), ¿ëµµ(ÁÖÅà ¿ëµµ, »ó¾÷ ¿ëµµ, »ê¾÷ ¿ëµµ, À¯Æ¿¸®Æ¼ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Vertical Axis Wind Turbines Market to Reach US$2.9 Billion by 2030

The global market for Vertical Axis Wind Turbines estimated at US$1.8 Billion in the year 2024, is expected to reach US$2.9 Billion by 2030, growing at a CAGR of 8.2% over the analysis period 2024-2030. Rotor Component, one of the segments analyzed in the report, is expected to record a 6.1% CAGR and reach US$1.1 Billion by the end of the analysis period. Growth in the Tower Component segment is estimated at 10.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$486.4 Million While China is Forecast to Grow at 12.4% CAGR

The Vertical Axis Wind Turbines market in the U.S. is estimated at US$486.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$603.2 Million by the year 2030 trailing a CAGR of 12.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.3% and 7.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 5.4% CAGR.

Global Vertical Axis Wind Turbines Market - Key Trends & Drivers Summarized

Why Are Vertical Axis Wind Turbines Gaining Ground in Urban and Off-Grid Energy Markets?

Vertical axis wind turbines (VAWTs) are emerging as a compelling alternative to conventional horizontal axis turbines, particularly in urban, residential, and distributed energy environments. Unlike horizontal turbines that require unidirectional wind and large clearances, VAWTs operate efficiently in turbulent, multidirectional wind flows and can be installed closer to the ground, on rooftops, or in compact zones. This makes them ideal for decentralized renewable power generation in cities, islands, industrial estates, and off-grid communities. The increasing demand for microgrids, energy resilience, and architectural integration is propelling market interest in VAWT systems globally.

The architecture of VAWTs-typically Darrieus or Savonius designs-allows the rotor shaft to remain vertical and perpendicular to the wind, simplifying mechanical transmission and maintenance. Their noise-free, bird-friendly, and low-vibration attributes make them especially suitable for building-integrated applications. As cities pursue net-zero energy mandates, building owners and municipalities are exploring VAWTs to supplement solar installations, reduce reliance on diesel backup, and meet sustainability certification criteria such as LEED or BREEAM. Countries such as the Netherlands, Japan, and UAE are increasingly incorporating VAWTs into smart city infrastructure.

What Technological Enhancements Are Accelerating the Adoption of VAWTs?

Advancements in blade design, composite materials, and power electronics are significantly enhancing the efficiency, durability, and output of VAWTs. Computational fluid dynamics (CFD)-optimized rotor profiles and hybrid Darrieus-Savonius designs are improving start-up torque and cut-in speeds. Moreover, the use of lightweight carbon fiber or reinforced polymer blades reduces structural loads and enhances corrosion resistance, critical for coastal and high-humidity installations. Integration with advanced inverters and MPPT (Maximum Power Point Tracking) algorithms allows for stable grid interfacing and efficient energy extraction under variable wind conditions.

Smart VAWTs are entering the market, equipped with IoT sensors that monitor wind speeds, rotor RPM, bearing conditions, and power generation in real-time. These data streams enable predictive maintenance and remote diagnostics, improving uptime and operational economics. Additionally, hybrid systems combining VAWTs with solar panels and energy storage are being deployed in disaster-prone or rural electrification projects. Manufacturers are also scaling modular units to cater to commercial buildings, telecom towers, and even highway medians-anywhere a compact, autonomous renewable solution is viable.

Where Is the Vertical Axis Wind Turbines Market Finding the Most Traction?

The highest penetration of VAWTs is currently observed in Europe, particularly in countries with mature renewable mandates and space constraints for large-scale installations. In France, Germany, and the UK, VAWTs are being deployed on public buildings, schools, rail stations, and lighting poles. Municipal energy departments are using them to augment power for EV chargers and remote surveillance units. In Asia, countries such as South Korea and Japan are pioneering small-scale wind projects where noise limitations and land scarcity prevent the use of horizontal axis turbines.

Africa and Latin America are key emerging markets where VAWTs are being deployed for rural electrification, agricultural irrigation, and telecom infrastructure. In Kenya and Peru, local entrepreneurs and NGOs are assembling low-cost VAWT kits using 3D-printed parts and off-the-shelf electronics. North America is witnessing demand in Alaska and northern Canada for hybrid wind-solar off-grid systems used in indigenous communities and remote mining operations. The modular and scalable nature of VAWTs is making them attractive to off-grid enthusiasts, sustainable housing developers, and eco-tourism projects alike.

What Is Fueling Growth in the Global VAWT Market Amidst Wind Power Expansion?

The growth in the vertical axis wind turbines market is driven by several factors, including rising interest in distributed renewable energy, increasing urban sustainability mandates, and innovations in small-scale wind turbine design. With the global shift toward energy decentralization and smart microgrids, the role of compact, low-noise wind turbines is expanding. Governments are supporting small wind systems through net metering policies, green building incentives, and research grants focused on urban renewable integration.

Technological scalability and hybrid system compatibility further strengthen the VAWT value proposition. Companies are offering plug-and-play systems that reduce installation complexity, while crowdfunding and community energy platforms are unlocking new financing models. Educational institutions, public parks, and corporate campuses are adopting VAWTs as part of environmental branding and STEM engagement programs. As climate resilience, energy independence, and green aesthetics gain importance, vertical axis wind turbines are positioned to play a crucial role in the global transition to a diversified, low-carbon energy future.

SCOPE OF STUDY:

The report analyzes the Vertical Axis Wind Turbines market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Rotor Component, Tower Component, Nacelle Component, Other Components); Installation (Onshore Installation, Offshore Installation); Application (Residential Application, Commercial Application, Industrial Application, Utility Application)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â