¼¼°èÀÇ ·Îº¿ Áö¿ø ¼ö¼ú ½Ã½ºÅÛ ½ÃÀå
Robotic Assisted Surgery Systems
»óǰÄÚµå : 1798237
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 390 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,209,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,629,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ·Îº¿ Áö¿ø ¼ö¼ú ½Ã½ºÅÛ ½ÃÀåÀº 2030³â±îÁö 210¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 96¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ·Îº¿ Áö¿ø ¼ö¼ú ½Ã½ºÅÛ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 13.9%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 210¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ½Ã½ºÅÛ ¿ÀÆÛ¸µÀº CAGR 15.0%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 136¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼Ò¸ðǰ & ¾×¼¼¼­¸® Á¦°ø ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 12.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 26¾ï ´Þ·¯, Áß±¹Àº CAGR 18.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ·Îº¿ Áö¿ø ¼ö¼ú ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 26¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 45¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 18.7%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 10.1%¿Í 12.5%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 11.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ·Îº¿ Áö¿ø ¼ö¼ú ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

·Îº¿ ¼ö¼ú ½Ã½ºÅÛÀÌ º¹ÀâÇÑ ¼ö¼úÀÇ »õ·Î¿î Ç¥ÁØÀÌ µÇ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

·Îº¿ º¸Á¶ ¼ö¼ú ½Ã½ºÅÛÀº µ¶º¸ÀûÀÎ ¼öÁØÀÇ Á¤È®¼º, Á¦¾î ¹× ÀÎü°øÇÐÀû À¯¿¬¼ºÀ» µµÀÔÇÏ¿© ´Ù¾çÇÑ ¼ö¼ú ºÐ¾ßÀÇ ¼ö¼ú ±âÁØÀ» ºü¸£°Ô ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù. Ã˰¢ Çǵå¹é, 3D °íÈ­Áú ½Ã°¢È­, ½Ç½Ã°£ ±â±â ¿¬°á µîÀ» Ȱ¿ëÇÑ ÀÌ ½Ã½ºÅÛÀº ¿Ü°ú Àǻ簡 Àΰ£ÀÇ ¼ÕÀçÁÖ ÇѰ踦 ¶Ù¾î³Ñ´Â ¸Å¿ì ¼¶¼¼ÇÑ Á¶ÀÛÀ» ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. Intuitive Surgical»çÀÇ da Vinci Surgical System, CMR Surgical»çÀÇ Versius System µîÀÇ ±â¼úÀº ºñ´¢±â°ú, ºÎÀΰú, ´ëÀåÇ×¹®¿Ü°ú, ÈäºÎÁßÀç¼ú µîÀÇ ºÐ¾ß¿¡¼­ º¥Ä¡¸¶Å· ´ë»óÀÌ µÇ°í ÀÖ½À´Ï´Ù. ·Îº¿ÆÈÀ» ÅëÇØ ¿Ü°úÀÇ»çÀÇ ¼ÕÀÇ ¿òÁ÷ÀÓÀ» ÀçÇöÇÏ°í °­È­Çϸç, ¶³¸²À» ÇÊÅ͸µÇÏ´Â ±â´ÉÀ» ÅëÇØ º¹ÀâÇÑ ÇØºÎÇÐÀû ºÎÀ§¿¡¼­µµ ¼ö¼úÀÇ Àϰü¼ºÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

·Îº¿ ½Ã½ºÅÛÀº ¼ö¼ú Áß CT, MRI, Åõ½Ã µî ÷´Ü ¿µ»ó Áø´Ü ±â¹ý°ú ÅëÇÕµÇ¾î ¼ö¼ú Áß Å½»öÀ» °­È­Çϰí Á¾¾ç ´Ü¸éÀÇ °¡½Ã¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. Á¤Çü¿Ü°ú¼ö¼ú¿¡¼­´Â StrykerÀÇ MAKO³ª Zimmer BiometÀÇ ROSA¿Í °°Àº ·Îº¿ º¸Á¶ Ç÷§ÆûÀÌ ÀÓÇöõÆ® ½Ä¸³À» À§ÇÑ ¹Ð¸®¹ÌÅÍ ´ÜÀ§ÀÇ Á¤·ÄÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ¼ö¼ú ÈÄ ÇÕº´ÁõÀ» Å©°Ô °¨¼Ò½Ã۰í ÀÖ½À´Ï´Ù. ¿£µå ÀÌÆåÅÍ ¼³°è¿Í ¸ÖƼ Äõµå·±Æ® ¾×¼¼½ºÀÇ Çõ½ÅÀ¸·Î ¿Ü°úÀÇ»ç´Â ÇϳªÀÇ Æ÷Æ®¿¡¼­ ¿©·¯ Àå±â¸¦ ¼ö¼úÇÒ ¼ö ÀÖÀ¸¸ç, Àý°³ Ƚ¼ö¿Í ¼ö¼ú ÈÄ ¿Ü»óÀ» ÁÙÀÏ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ ÀÌ ½Ã½ºÅÛ¿¡´Â ¼ö¼ú µ¥ÀÌÅÍ, ¿À·ùÀ², Åø »ç¿ë ÆÐÅÏÀ» ÃßÀûÇÏ´Â AI ±â¹Ý ºÐ¼® ±â´ÉÀÌ ³»ÀåµÇ¾î ÀÖÀ¸¸ç, ¿Ü°ú ÀÇ»çÀÇ ¼º´É º¥Ä¡¸¶Å·°ú ±â¼ú ÃÖÀûÈ­¸¦ µ½½À´Ï´Ù.

º´¿øÀÌ ¼³ºñÅõÀÚ¸¦ Àç°ËÅäÇÏ°í ¼ö¼ú·Îº¿À» ¿ì¼±¼øÀ§¿¡ µÎ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

¸¹Àº º´¿øµéÀÌ ¼³ºñÅõÀÚ ¿ì¼±¼øÀ§¸¦ ·Îº¿¼ö¼ú ½Ã½ºÅÛ ÂÊÀ¸·Î ÀçÆíÇϰí ÀÖ½À´Ï´Ù. ±¸¸Å ¹× Á¤ºñ¿¡ µå´Â Ãʱ⠺ñ¿ëÀº ¿©ÀüÈ÷ ³ôÁö¸¸, ¸¹Àº 3Â÷ ÀÇ·á±â°ü°ú ¼ö¼ú¼¾ÅÍ´Â ÀÔ¿ø ±â°£ ´ÜÃà, ÇÕº´Áõ ¹ß»ý·ü °¨¼Ò, ºü¸¥ ȸº¹ µîÀ» ÅëÇØ ÅõÀÚ¸¦ Á¤´çÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½ÅÈï ½ÃÀåÀÇ º¸Çè ÁöºÒÀÚ ¹× °ø°ø ÀÇ·á ½Ã½ºÅÛµµ ÀçÀÔ¿ø ¹æÁö ¹× ¼ö¼ú ó¸® ´É·Â Çâ»óÀ̶ó´Â Ãø¸é¿¡¼­ ·Îº¿ º¸Á¶ ¼ö¼úÀÇ Àå±âÀûÀÎ ºñ¿ë È¿À²¼ºÀ» ÀνÄÇϱ⠽ÃÀÛÇß½À´Ï´Ù. ÀÌ¿¡ µû¶ó ÀÇ·á½Ã¼³µéÀº ·Îº¿ ¼ö¼ú ±â´ÉÀ» ÇÙ½É ¼­ºñ½º Æ÷Æ®Æú¸®¿À¿¡ Æ÷ÇÔ½ÃŰ·Á°í ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº ÷´Ü Àúħ½ÀÀû ´ëü ¼ö¼ú¿¡ ´ëÇÑ È¯ÀÚµé ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ƯÈ÷ Å»À庹¿ø¼ú, ÀÚ±ÃÀûÃâ¼ú, Àü¸³¼± ÀûÃâ¼ú µî ¼±ÅÃÀû ¼ö¼úÀ» ¹Þ´Â ȯÀÚµéÀº ·Îº¿¼ö¼ú ¿É¼ÇÀ» Á¦°øÇÏ´Â º´¿øÀ» Àû±ØÀûÀ¸·Î ¼±ÅÃÇϰí ÀÖ½À´Ï´Ù. µû¶ó¼­ ·Îº¿¼ö¼úÀº º´¿øÀÇ ºê·£µù°ú ȯÀÚ À¯Ä¡ Àü·«¿¡ ÀÖÀ¸¸ç, Áß¿äÇÑ Â÷º°È­ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù. ¹Ì±¹, ÀϺ», µ¶ÀÏ µîÀÇ ±¹°¡¿¡¼­´Â º´¿ø ¸¶ÄÉÆÃ¿¡¼­ ·Îº¿ ¼ö¼ú½ÇÀ» °­Á¶ÇÏ´Â °æ¿ì°¡ ¸¹¾ÆÁö°í ÀÖÀ¸¸ç, ¿Ü°úÀÇ»çµéÀº °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ ·Îº¿ ¼ö¼ú¿¡ ´ëÇÑ Àü¹® ±³À°À» ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´ë±Ô¸ð ¼¾ÅÍÀÇ º¹ÀâÇÑ ¼ö¼úÀÇ Áß¾Ó ÁýÁßÈ­´Â ·Îº¿ ¼ö¼ú ÀÎÇÁ¶óÀÇ ÅëÇÕÀ¸·Î À̾îÁö°í ÀÖÀ¸¸ç, ÀϺΠÀÇ·á ³×Æ®¿öÅ©´Â Á¦ÈÞ Å¬¸®´Ð°ú À§¼º º´¿ø Àüü¿¡ ¹üÀ§¸¦ È®ÀåÇϱâ À§ÇØ ¸ð¹ÙÀÏ ·Îº¿ ½Ã½ºÅÛÀ» ¹èÄ¡Çϰí ÀÖ½À´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î °­È­¿Í AI ÅëÇÕÀº ¼ö¼ú ¿öÅ©Ç÷ο츦 ¾î¶»°Ô º¯È­½Ãų °ÍÀΰ¡?

ÃÖ±Ù ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¼ö¼ú ·Îº¿ °øÇÐÀÇ ¹ßÀüÀº ·Îº¿ ½Ã½ºÅÛÀÇ ±â´ÉÀû ¹üÀ§¿Í Áö´ÉÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÇöÀç °¢ ¾÷üµéÀº ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú ÄÄÇ»ÅÍ ºñÀüÀ» ¼ö¼ú Ç÷§Æû¿¡ ÅëÇÕÇÏ¿© ÇØºÎÇÐÀû ·£µå¸¶Å©¸¦ ÀνÄÇϰí, ÃÖÀûÀÇ Àý°³ ºÎÀ§¸¦ Á¦¾ÈÇϸç, ±â±¸°¡ Áß¿äÇÑ ±¸Á¶¹°¿¡ Á¢±ÙÇÏ¸é ½Ç½Ã°£À¸·Î °æ°í¸¦ º¸³»´Â µî ´Ù¾çÇÑ ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ AI ÁÖµµ ±â´ÉÀº ÇØºÎÇÐÀû ±¸Á¶°¡ º¯È­Çϱ⠽¬¿î ¿¬ºÎÁ¶Á÷ ¼ö¼ú¿¡¼­ ƯÈ÷ Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù. ¶ÇÇÑ ¼öõ °ÇÀÇ °ú°Å ¼ö¼ú »ç·Ê¸¦ ±â¹ÝÀ¸·Î ÇнÀµÈ AI ±â¹Ý ÇнÀ ¸ðµ¨Àº ¼ö¼ú Áß °¡ÀÌ´ø½º »ý¼º¿¡µµ »ç¿ëµÇ¾î ¿Ü°úÀǻ簡 ½ÇÁ¦ ¼ö¼ú Áß ´õ ³ªÀº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÆÇ´ÜÀ» ³»¸± ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù.

¿ø°Ý Á¶ÀÛ ¹× Ŭ¶ó¿ìµå·Î ¿¬°áµÈ ·Îº¿ Ç÷§ÆûÀÇ ÃâÇöÀº ¿ø°Ý ¼ö¼ú ¹× Çù¾÷ ÁßÀçÀÇ »õ·Î¿î ½Ã´ë¸¦ ¿¹°íÇϰí ÀÖ½À´Ï´Ù. 5G ¿¬°á°ú ¾ÏȣȭµÈ Ŭ¶ó¿ìµå ÀÎÅÍÆäÀ̽º¸¦ °®Ãá ·Îº¿ ½Ã½ºÅÛÀº Àü¹® ¿Ü°ú Àǻ簡 ½Ç½Ã°£ ¸ð´ÏÅ͸µ°ú ·Îº¿ ¾ÏÀÇ ¿ø°Ý Á¶ÀÛÀ» ÅëÇØ ½Ã¼³ °£ ¼ö¼ú Áöµµ¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. À̴ ƯÈ÷ ³óÃÌ Áö¿ªÀ̳ª ÀÚ¿øÀÌ ºÎÁ·ÇÑ ÀÇ·á ȯ°æ¿¡¼­´Â ±× À¯¿ë¼ºÀÌ ÀÔÁõµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àΰ£ Àå±âÀÇ µðÁöÅÐ Æ®À© ¸ðµ¨°ú ȯÀÚº° ÇØºÎÇÐ ¸ðµ¨ÀÌ ¼ö¼ú Àü °èȹ ¹× ½Ã¹Ä·¹À̼ǿ¡ »ç¿ëµÇ¾î ·Îº¿ ½Ã½ºÅÛÀº ¿¹ÃøµÈ ½Ã¼ú °æ·Î¸¦ ±â¹ÝÀ¸·Î ±Ëµµ¸¦ Á¶Á¤ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀº ƯÈ÷ ¹Ð¸®¹ÌÅÍ ´ÜÀ§ÀÇ ¿ÀÂ÷°¡ Ä¡¸íÀûÀÏ ¼ö ÀÖ´Â ½Å°æ¿Ü°ú ¹× ½ÉÀå ¼ö¼ú¿¡¼­ ¼ö¼úÀÇ ÀçÇö¼º°ú °á°ú ¿¹Ãø °¡´É¼ºÀ» ȹ±âÀûÀ¸·Î Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

·Îº¿ ¼ö¼ú ½Ã½ºÅÛ ½ÃÀåÀÇ ¸ð¸àÅÒÀ» °¡¼ÓÈ­ÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

·Îº¿ º¸Á¶ ¼ö¼ú ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú Çõ½Å, ÁøÈ­ÇÏ´Â ÀÓ»ó ¼ö¿ä, Áö¿øÀûÀÎ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ© µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¿ì¼±, ¾Ï, ºñ¸¸, ½ÉÇ÷°ü Áúȯ, °üÀý ÅðÇ༺ Áúȯ µî ¸¸¼ºÁúȯÀÇ ¼¼°èÀû ºÎ´ãÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ·Î ÀÎÇØ ¿¬°£ ¼ö¼ú °Ç¼ö°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Àúħ½À ·Îº¿ ¼ö¼úÀº ƯÈ÷ ȸº¹ ½Ã°£°ú ÇÕº´Áõ À§ÇèÀ» ÃÖ¼ÒÈ­ÇØ¾ß ÇÏ´Â °í·ÉÈ­ »çȸ¿¡¼­ ÀÌ·¯ÇÑ ÁúȯÀ» °ü¸®Çϱ⿡ ÀûÇÕÇÑ ¼ö¼ú ¹æ¹ýÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¼ö¼ú °Ç¼ö°¡ Áõ°¡ÇÔ¿¡ µû¶ó º´¿øÀº ¼ö¼ú½Ç È¿À²À» °³¼±ÇÏ°í ¼ö¼ú Áö¿¬À» ÁÙÀÌ´Â ±â¼úÀ» äÅÃÇØ¾ß ÇÒ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù.

µÎ ¹øÂ° ÁÖ¿ä ÃËÁø¿äÀÎÀº FDA ½ÂÀÎ ¹× CE ¸¶Å©¸¦ ȹµæÇÑ ·Îº¿ Ç÷§Æû ½ÃÀå Ãâ½Ã°¡ È®´ëµÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ´õ ¸¹Àº ¼ö¼ú Àü¹® ºÐ¾ß°¡ ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎÀ» ¹ÞÀ¸¸é¼­ ±â¾÷ °£ÀÇ °æÀïÀÌ Ä¡¿­ÇØÁ® Á¦Ç° Çõ½Å°ú °¡°Ý °æÀïÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ½Å±Ô ÁøÃâ±â¾÷Àº Áß°ß º´¿ø ¹× ¿Ü·¡¼ö¼ú¼¾ÅÍ(ASC)¸¦ ´ë»óÀ¸·Î ÀÛÀº ¼³Ä¡ °ø°£, »óÈ£ ¿î¿ë °¡´ÉÇÑ Àåºñ, »ç¿ëÀÚ Á¤ÀÇ °¡´ÉÇÑ UI/UX ÀÎÅÍÆäÀ̽º¸¦ Á¦°øÇÏ´Â ¸ðµâ½Ä Ç÷§ÆûÀ» Á¦°øÇÕ´Ï´Ù. º¸Çè ȯ±Þµµ À¯¸®ÇØÁö°í ÀÖ½À´Ï´Ù. ¹Ì±¹¿¡¼­´Â CMS°¡ ÀϹݿܰú ¹× Á¤Çü¿Ü°ú ·Îº¿¼ö¼úÀÇ ÄÚµù°ú Àû¿ë ¹üÀ§¸¦ Á¡Â÷ È®´ëÇϰí ÀÖÀ¸¸ç, Çѱ¹, È£ÁÖ µî ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀå¿¡¼­´Â ¹Î°£ º¸ÇèÁ¦µµ¿¡ ·Îº¿¼ö¼úÀÌ Æ÷ÇԵǴ Ãß¼¼ÀÔ´Ï´Ù.

¶Ç ´Ù¸¥ °è±â´Â ·Îº¿ ¼ö¼úÀ» µÑ·¯½Ñ ÀÓ»ó ±³À° ¹× ±³À° ÀÎÇÁ¶ó Áõ°¡ÀÔ´Ï´Ù. ÇöÀç Àǰú´ëÇаú ¿Ü°ú Æç·Î¿ì½ÊÀº ·Îº¿ Ç÷§ÆûÀ» Ä¿¸®Å§·³¿¡ ÅëÇÕÇϰí ÀÖÀ¸¸ç, ±× °á°ú °æ·Â Ãʱ⠴ܰèºÎÅÍ ·Îº¿ ±â¼ú¿¡ ´É¼÷ÇÑ »õ·Î¿î ¼¼´ëÀÇ ¿Ü°úÀǻ簡 ź»ýÇϰí ÀÖ½À´Ï´Ù. Àü¿ë ½Ã¹Ä·¹ÀÌ¼Ç ·¦, °¡»óÇö½Ç ±³À° ¸ðµâ, ±×¸®°í ÇÁ·ÏÅÍ½Ê ÇÁ·Î±×·¥Àº ÀÌ·¯ÇÑ ±â¼ú µµÀÔ °î¼±À» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÈÆ·ÃµÈ ·Îº¿ ¿Ü°ú ÀÇ»çÀÇ ¼ö°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¼³Ä¡µÈ ½Ã½ºÅÛÀÇ °¡µ¿·üÀÌ Çâ»óµÇ°í, ·Îº¿ Ç÷§ÆûÀÌ º´¿ø¿¡ ´õ °æÁ¦ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ ·Îº¿ Ç÷§ÆûÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

·Îº¿°øÇÐ, AI, IoT, ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®ÀÇ À¶ÇÕÀ» ÅëÇØ ÀÇ»ç°áÁ¤ÀÌ °­È­µÇ°í, Ä¡·á °á°ú°¡ Ç¥ÁØÈ­µÇ¸ç, ÀÇ·á Á¦°øÀÌ È®Àå °¡´ÉÇÑ ÇÏÀÌÆÛ Ä¿³ØÆ¼µå ¼ö¼ú »ýŰ谡 ±¸ÃàµÇ°í ÀÖ½À´Ï´Ù. Àü ¼¼°è¿¡¼­ ÀÇ·á ½Ã½ºÅÛÀÌ °¡Ä¡ ±â¹Ý Ä¡·á ¸ðµ¨·Î ÀüȯÇÏ´Â °¡¿îµ¥, ·Îº¿ º¸Á¶ ¼ö¼úÀº Á¤È®¼º, °³ÀÎÈ­, ¿ì¼ö¼ºÀ» °®Ãá ¼ö¼úÀ» °¡´ÉÇÏ°Ô ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀº ºÏ¹Ì¿Í À¯·´ÀÌ ¾ó¸®¹«¹öÀÇ ¿ìÀ§¸¦ À¯ÁöÇÏ´Â °¡¿îµ¥, ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ±Þ¼ÓÇÑ ÀÇ·á Çö´ëÈ­, ¹Î°ü ÆÄÆ®³Ê½Ê, ÀÇ·á ±â¼ú Çõ½ÅÀ» Áö¿øÇÏ´Â Á¤ºÎ Àμ¾Æ¼ºê¿¡ ÈûÀÔ¾î °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â Áö¿ªÀÌ µÇ¾ú°í, ¿©·¯ Áö¿ª¿¡¼­ °ß°íÇÑ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù.

ºÎ¹®

Á¦°ø(½Ã½ºÅÛ, ¼Ò¸ðǰ¡¤¾×¼¼¼­¸®, ¼ÒÇÁÆ®¿þ¾î & ¼­ºñ½º), ¿ëµµ(ºÎÀΰú ¼ö¼ú, ½ÉÀåÇ÷°ü, ½Å°æ¿Ü°ú¼ö¼ú, Á¤Çü¿Ü°ú¼ö¼ú, º¹°­°æ ¼ö¼ú, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(º´¿ø, ¿Ü·¡ ¼ö¼ú ¼¾ÅÍ, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Robotic Assisted Surgery Systems Market to Reach US$21.0 Billion by 2030

The global market for Robotic Assisted Surgery Systems estimated at US$9.6 Billion in the year 2024, is expected to reach US$21.0 Billion by 2030, growing at a CAGR of 13.9% over the analysis period 2024-2030. System Offering, one of the segments analyzed in the report, is expected to record a 15.0% CAGR and reach US$13.6 Billion by the end of the analysis period. Growth in the Consumables & Accessories Offering segment is estimated at 12.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.6 Billion While China is Forecast to Grow at 18.7% CAGR

The Robotic Assisted Surgery Systems market in the U.S. is estimated at US$2.6 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$4.5 Billion by the year 2030 trailing a CAGR of 18.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 10.1% and 12.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 11.1% CAGR.

Global Robotic Assisted Surgery Systems Market - Key Trends & Drivers Summarized

What Makes Robotic Surgical Systems the New Gold Standard in Complex Procedures?

Robotic assisted surgery systems are rapidly redefining procedural standards in various surgical disciplines by introducing unparalleled levels of precision, control, and ergonomic flexibility. Leveraging a blend of haptic feedback, 3D high-definition visualization, and real-time instrument articulation, these systems enable surgeons to execute highly delicate maneuvers beyond the limits of human dexterity. Technologies such as the da Vinci Surgical System by Intuitive Surgical and the Versius System by CMR Surgical are setting benchmarks in areas like urology, gynecology, colorectal surgery, and thoracic interventions. Their capability to replicate and enhance the motion of a surgeon’s hand through robotic arms while filtering out tremors ensures surgical consistency even in complex anatomical regions.

Robotic systems are increasingly integrating with advanced imaging modalities such as intraoperative CT, MRI, and fluoroscopy, allowing for augmented surgical navigation and improved tumor margin visualization. In orthopedic procedures, robot-assisted platforms like MAKO by Stryker and ROSA by Zimmer Biomet are enabling sub-millimeter alignment for implant placement, significantly reducing post-operative complications. Innovations in end-effector designs and multi-quadrant access have enabled surgeons to conduct multi-organ surgeries through a single port, decreasing incision counts and post-surgical trauma. These systems are also being embedded with AI-powered analytics that track procedural data, error rates, and tool usage patterns to assist surgeons in performance benchmarking and skill optimization.

Why Are Hospitals Rethinking Capital Investments to Prioritize Surgical Robotics?

A growing number of hospitals are realigning their capital expenditure priorities toward robotic surgery systems, driven by the procedural economics and clinical efficiencies these systems enable. While upfront costs of acquisition and maintenance remain high, many tertiary care institutions and surgical centers are justifying the investment through reduced length of hospital stays, lower complication rates, and quicker recovery trajectories. Insurance payers and public health systems in developed markets are also beginning to recognize the long-term cost-effectiveness of robotic-assisted procedures in terms of readmission avoidance and improved surgical throughput. This is encouraging healthcare facilities to build robotic surgical capabilities into their core service portfolios.

Another crucial factor is the heightened demand from patients seeking advanced and minimally invasive surgical alternatives. Patients-especially those undergoing elective procedures in areas like hernia repair, hysterectomy, or prostatectomy-are actively choosing facilities that offer robotic options. This has made robotic surgery a key differentiator in hospital branding and patient acquisition strategies. In countries like the U.S., Japan, and Germany, robotic surgery suites are increasingly being highlighted in hospital marketing, and surgeons are undergoing specialized robotic training to remain competitive. Furthermore, the centralization of complex surgeries in high-volume centers is leading to the consolidation of robotic surgical infrastructure, with some healthcare networks deploying mobile robotic systems to extend reach across affiliated clinics and satellite hospitals.

How Are Software Enhancements and AI Integration Transforming Surgical Workflows?

Recent advances in software-defined surgical robotics are accelerating the functional scope and intelligence of robotic systems. Companies are now embedding machine learning algorithms and computer vision into surgical platforms, enabling them to recognize anatomical landmarks, suggest optimal incision sites, and provide real-time alerts when instruments approach critical structures. These AI-driven features are particularly relevant in soft tissue procedures, where variable anatomy presents significant challenges. AI-based learning models trained on thousands of previous procedures are also being used to generate intraoperative guidance, helping surgeons make better-informed decisions during live operations.

The emergence of teleoperated and cloud-connected robotic platforms is ushering in a new era of remote surgery and collaborative interventions. Robotic systems equipped with 5G connectivity and encrypted cloud interfaces are enabling cross-institutional surgical mentoring, where expert surgeons can provide real-time oversight or even control robotic arms remotely. This is proving especially beneficial in rural or under-resourced healthcare settings. Additionally, digital twins of human organs and patient-specific anatomical models are now being used in pre-surgical planning and simulation, with robotic systems aligning their trajectories based on the predicted procedural pathway. These integrations are drastically improving surgical reproducibility and outcome predictability, especially in neurosurgery and cardiac surgery where millimetric errors can be catastrophic.

What’s Fueling the Market Momentum Behind Robotic Surgery Systems?

The growth in the robotic assisted surgery systems market is driven by several factors that span technological innovation, evolving clinical demand, and supportive regulatory frameworks. First and foremost is the rising global burden of chronic diseases-such as cancer, obesity, cardiovascular disorders, and joint degeneration-which is significantly increasing the number of surgical interventions performed annually. Minimally invasive robotic solutions are emerging as the preferred surgical modality for managing these conditions, especially in aging populations where recovery time and complication risk need to be minimized. As procedural volumes grow, hospitals are under pressure to adopt technologies that improve operating room efficiency and reduce the surgical backlog.

A second major driver is the expanding portfolio of FDA-cleared and CE-marked robotic platforms entering the market. As more surgical specialties receive regulatory green lights, competition among players is intensifying, leading to faster product innovation and price competitiveness. For instance, newer entrants are offering modular platforms with lower footprint, interoperable instruments, and customizable UI/UX interfaces, targeting mid-tier hospitals and ambulatory surgical centers. Reimbursement is also becoming more favorable. In the U.S., CMS is gradually expanding coding and coverage for robotic procedures across general surgery and orthopedics, while Asia-Pacific markets like South Korea and Australia are including robotic surgeries in private insurance schemes.

Another catalyst is the increase in clinical training and education infrastructure around robotic surgery. Medical schools and surgical fellowships are now embedding robotic platforms into their curricula, resulting in a new generation of surgeons who are proficient in robotic techniques from the start of their careers. Dedicated simulation labs, virtual reality training modules, and proctorship programs are accelerating this skill adoption curve. As the number of trained robotic surgeons grows, the capacity utilization of installed systems improves, making robotic platforms more economically viable for hospitals.

The convergence of robotics, AI, IoT, and real-time data analytics is creating a hyper-connected surgical ecosystem where decision-making is augmented, outcomes are standardized, and care delivery becomes scalable. As healthcare systems globally shift toward value-based care models, robotic-assisted surgery is poised to play a critical role in enabling precision, personalization, and procedural excellence. The market is expected to witness robust multi-regional growth, with North America and Europe maintaining early-mover dominance while Asia-Pacific emerges as the fastest-growing region due to rapid healthcare modernization, public-private partnerships, and government incentives supporting med-tech innovation.

SCOPE OF STUDY:

The report analyzes the Robotic Assisted Surgery Systems market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Offering (System Offering, Consumables & Accessories Offering, Software & Services Offering); Application (Gynecological Surgery Application, Cardiovascular Application, Neurosurgery Application, Orthopedic Surgery Application, Laparoscopy Application, Other Applications); End-Use (Hospitals End-Use, Ambulatory Surgery Centers End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â