¼¼°èÀÇ °¨¾Ð ¹ëºê ½ÃÀå
Pressure Reducing Valves
»óǰÄÚµå : 1798217
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 378 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,701,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ °¨¾Ð ¹ëºê ½ÃÀåÀº 2030³â±îÁö 49¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 39¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ °¨¾Ð ¹ëºê ½ÃÀåÀº 2024-2030³â¿¡ CAGR 3.8%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 49¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ Á÷µ¿½Ä ¹ëºê´Â CAGR 4.5%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 35¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù. ÆÄÀÏ·µ Á¶ÀÛ ¹ëºê ºÎ¹®Àº ºÐ¼® ±â°£ Áß CAGR 2.0%ÀÇ ¼ºÀåÀÌ Àü¸ÁµË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 11¾ï ´Þ·¯, Áß±¹Àº CAGR 7.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ °¨¾Ð ¹ëºê ½ÃÀåÀº 2024³â¿¡ 11¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀ» 7.1%·Î, 2030³â±îÁö 9¾ï 9,370¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 1.5%¿Í 2.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ °¨¾Ð ¹ëºê ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Çö´ë À¯Ã¼ Á¦¾î ½Ã½ºÅÛ¿¡¼­ °¨¾Ð ¹ëºê°¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

°¨¾Ð ¹ëºê(PRV)´Â ¾÷½ºÆ®¸² °ø±Þ º¯µ¿¿¡ °ü°è¾øÀÌ ÇÏ·ù ¾Ð·ÂÀ» ÀÏÁ¤ÇÏ°Ô À¯ÁöÇϵµ·Ï ¼³°èµÈ À¯Ã¼ ½Ã½ºÅÛÀÇ Çʼö ±¸¼º ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ ¹ëºê´Â ¹° ºÐ¹è, Áõ±â ½Ã½ºÅÛ, ¼®À¯ ¹× °¡½º ÆÄÀÌÇÁ¶óÀÎ, HVAC ³×Æ®¿öÅ©, È­ÇРó¸®, ½Äǰ ¹× À½·á Á¦Á¶ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. PRVÀÇ ÇÙ½É ±â´ÉÀº Àåºñ¸¦ ¼Õ»ó½ÃŰ°Å³ª ½Ã½ºÅÛ ¼º´ÉÀ» ÀúÇϽÃų ¼ö ÀÖ´Â °úµµÇÑ ÀÔ±¸ ¾Ð·ÂÀ» Á¦¾îÇÏ¿© ¾ÈÀü, ÀÛ¾÷ È¿À²¼º ¹× °øÁ¤ Àϰü¼ºÀ» º¸ÀåÇÏ´Â °ÍÀÔ´Ï´Ù.

¹° ºÐ¹è ½Ã½ºÅÛ¿¡¼­ PRV´Â µµ½Ã º»°üÀ» Á¶Á¤Çϰí, ÁÖ°Å ¹× »ó¾÷¿ë ¹è°ü ¼³ºñ¸¦ º¸È£Çϰí, ÆÄÀÌÇÁ ÆÄ¿­ À§ÇèÀ» ÁÙÀÔ´Ï´Ù. »ê¾÷ ȯ°æ¿¡¼­´Â ¾Ð·Â¿¡ ¹Î°¨ÇÑ °øÁ¤À» Á¤È®ÇÏ°Ô Á¦¾îÇÏ°í ¿ÀÅäŬ·¹À̺ê, ¿øÀÚ·Î, Áõ·ùž µîÀÇ ¿ëµµ¿¡¼­ ¾ÈÁ¤¼ºÀ» º¸ÀåÇÕ´Ï´Ù. Áõ±â PRV´Â ¶ÇÇÑ ÃÖÀûÀÇ ¿¡³ÊÁö »ç¿ëÀ» À¯ÁöÇϰí Åͺó°ú ¿­±³È¯±â¿¡ ÇØ¸¦ ³¢Ä¥ ¼ö ÀÖ´Â ¾Ð·Â ¼­Áö¸¦ ¹æÁöÇÏ´Â µ¥µµ Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ º´¿øÀÇ ÀÇ·á¿ë °¡½º °ø±Þ ½Ã½ºÅÛÀ̳ª °íÁ¤¹Ð Á¦Á¶ ȯ°æ¿¡¼­ »ç¿ëµÇ´Â ¾ÐÃà°ø±â ¶óÀο¡µµ ÇʼöÀûÀÔ´Ï´Ù.

¼¼°è ÀÎÇÁ¶óÀÇ Çö´ëÈ­, ƯÈ÷ µµ½Ã ¹° °ü¸® ¹× »ê¾÷ À¯Æ¿¸®Æ¼ÀÇ ¾÷±×·¹À̵尡 °¨¾Ð ¹ëºêÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÚ»êÀÇ ¼ö¸íÀ» ¿¬ÀåÇϰí, À¯Áöº¸¼ö Áß´ÜÀ» ÃÖ¼ÒÈ­Çϸç, À¯Ã¼ ½Ã½ºÅÛÀÇ ¾ÈÀü¼ºÀ» ³ô¿©¾ß ÇÒ Çʿ伺ÀÌ ³ô¾ÆÁö¸é¼­ PRV´Â ´õ ÀÌ»ó ¼±ÅÃÀÌ ¾Æ´Ñ ÇʼöÀÔ´Ï´Ù.

PRV ½Ã½ºÅÛÀÇ È¿À²¼º°ú Áö´ÉÀ» ³ôÀÌ´Â ±â¼úÀ̶õ?

ÃÖ±Ù ¹ëºê ¼³°è, Àç·á ¹× ½º¸¶Æ® ¸ð´ÏÅ͸µÀÇ ¹ßÀüÀ¸·Î °¨¾Ð ¹ëºêÀÇ ±â´É°ú ½Å·Ú¼ºÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. ±âÁ¸ÀÇ PRV´Â ½ºÇÁ¸µÀ̳ª ´ÙÀ̾îÇÁ·¥À¸·Î ÀÛµ¿µÇ´Â ¸ÞÄ¿´ÏÁòÀ» ÅëÇØ ¼øÀüÈ÷ ±â°èÀû Çǵå¹éÀ¸·Î ÀÛµ¿Çß½À´Ï´Ù. ±×·¯³ª ¿À´Ã³¯¿¡´Â ÀüÀÚ½Ä ¾×Ãß¿¡ÀÌÅÍ, ³»Àå ¼¾¼­, Á¦¾î ¸ðµâÀ» °®Ãá µðÁöÅÐ PRV°¡ µµÀÔµÇ¾î ½Ç½Ã°£ ¾Ð·Â Á¦¾î ¹× ½Ã½ºÅÛ Áø´ÜÀÌ °¡´ÉÇØÁ³½À´Ï´Ù.

ÀÌ·¯ÇÑ ½º¸¶Æ® PRV´Â À¯·®, ÇÏ·ù ¾Ð·Â, ¹ëºê À§Ä¡, ¿Âµµ¿¡ ´ëÇÑ µ¥ÀÌÅ͸¦ SCADA ½Ã½ºÅÛ ¹× »ê¾÷¿ë IoT Ç÷§ÆûÀ¸·Î Àü¼ÛÇÒ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, °íÀåÀÌ ¹ß»ýÇϱâ ÈξÀ Àü¿¡ ´©¼ö, ijºñÅ×À̼Ç, ¸¶¸ð¸¦ ½Äº°ÇÏ¿© ¿¹Áöº¸ÀüÀ» Áö¿øÇÕ´Ï´Ù. ½º¸¶Æ® PRV´Â Áö¹æ ÀÚÄ¡ ´ÜüÀÇ ¼öµµ ½Ã½ºÅÛ¿¡¼­ ÆÄÀÌÇÁ¶óÀÎ ÆÄ¿­ ¹× ¹° ¼Õ½ÇÀÇ ÀϹÝÀûÀÎ ÀüÁ¶ÀÎ °úµµ±âÀû ¾Ð·Â ½ºÆÄÀÌÅ©¸¦ °¨ÁöÇÏ´Â µ¥ »ç¿ëµÇ¾î À¯Æ¿¸®Æ¼ ȸ»ç°¡ ¹«¸ÅÃâ ¹° ¹®Á¦¸¦ »çÀü¿¡ °ü¸®ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

Àç·á Ãø¸é¿¡¼­´Â ³»½Ä ÇÕ±Ý, °í±Þ Æú¸®¸Ó, ¿¤¶ó½ºÅä¸Ó°¡ ÇØ¼ö, È­Çй°Áú, °í¿Â Áõ±â µî ºÎ½Ä¼ºÀÌ °­ÇÑ ¸Åü¿¡¼­ ¹ëºêÀÇ ¼ö¸í°ú ¼º´ÉÀ» ¿¬ÀåÇϱâ À§ÇØ »ç¿ëµË´Ï´Ù. Àüü ¹ëºêÀÇ ¾Ð·Â ¼Õ½ÇÀ» ÁÙÀÌ´Â ¿¡³ÊÁö Àý¾à ¼³°è´Â ƯÈ÷ ´ë¿ë·® ½Ã½ºÅÛ¿¡¼­ ¿ì¼±ÀûÀ¸·Î äÅõ˴ϴÙ. ¶ÇÇÑ ¾×Ãß¿¡ÀÌÅÍ, ½ÃÆ® ¶Ç´Â Æ®¸² ±¸¼ºÇ°ÀÇ À¯Áöº¸¼ö ¹× ÇöÀå ¾÷±×·¹À̵尡 ¿ëÀÌÇÑ ¸ðµâ½Ä ±¸¼ºµµ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù.

°¡Àå °­·ÂÇÑ ¼ö¿ä¸¦ âÃâÇÏ´Â ÃÖÁ¾ ¿ëµµ ºÎ¹®°ú Áö¿ªÀº ¾îµðÀΰ¡?

°ÇÃà ¹× °Ç¼³ ºÎ¹®Àº PRVÀÇ ¼¼°è ÃÖ´ë ¼ö¿äó·Î, ÁÖÅÃ, »ó¾÷¿ë °Ç¹°, °íÃþ ºôµù¿¡ ±¤¹üÀ§ÇÏ°Ô Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿©±â¼­ ¹ëºê´Â Àüü ±¸¿ªÀÇ ¼ö¾ÐÀ» Á¶ÀýÇÏ¿© ¼³ºñ ¹× °¡ÀüÁ¦Ç°ÀÇ ¼Õ»óÀ» ¹æÁöÇÕ´Ï´Ù. ¹ßÀü, È­ÇÐ, ½Äǰ °¡°ø, Á¦¾à µîÀÇ »ê¾÷ ºÐ¾ß¿¡¼­´Â Áõ±â, °¡½º, °øÁ¤ À¯Ã¼ÀÇ Á¤È®ÇÑ Á¦¾î°¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

¼®À¯ ¹× °¡½º »ê¾÷¿¡¼­ °í¼º´É PRV´Â ÆÄÀÌÇÁ¶óÀÎÀÇ À¯·® Á¶Àý, ºÐ¸®±â ½Ã½ºÅÛÀÇ ¾Ð·Â ÇØÁ¦, ¿øÀ¯ ÁõÁø ȸ¼ö¿¡¼­ Áõ±â ÁÖÀÔ¿¡ »ç¿ëµË´Ï´Ù. HVAC ¹× Áö¿ª ³­¹æ ½Ã½ºÅÛ¿¡¼­ PRV´Â ¿Âµµ ¿µ¿ªÀÇ ±ÕÇüÀ» ¸ÂÃß°í ½Ã½ºÅÛ È¿À²À» ÃÖÀûÈ­ÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. µµ½Ã Áö¿ª ¼öµµ »ç¾÷ÀÚµéÀº ´©¼ö¸¦ ÇØ°áÇϰí, °ø±ÞÀÇ Àϰü¼ºÀ» °³¼±Çϱâ À§ÇØ °í±Þ PRV¸¦ »ç¿ëÇÏ¿© ¾Ð·Â °ü¸® ±¸¿ª(PMZ)À¸·Î ºü¸£°Ô ¾÷±×·¹À̵åÇϰí ÀÖ½À´Ï´Ù.

Áö¿ªº°·Î´Â ºÏ¹Ì¿Í ¼­À¯·´ÀÌ ¼º¼÷ÇÑ ½ÃÀåÀ¸·Î ³²¾Æ ÀÖÀ¸¸ç, ÁöÀÚü¿Í »ê¾÷ ½Ã½ºÅÛ¿¡¼­ ½º¸¶Æ® PRVÀÇ Ã¤ÅÃÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. Áß±¹, Àεµ, µ¿³²¾Æ½Ã¾Æ°¡ ÁÖµµÇÏ´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀº ½º¸¶Æ® ½ÃƼ ÀÎÇÁ¶ó, ¿¡³ÊÁö, ¹° °ø±Þ¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î ¼ºÀåÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¶óƾ¾Æ¸Þ¸®Ä«¿Í ¾ÆÇÁ¸®Ä«¿¡¼­´Â µµ½ÃÈ­¿Í ¹° °ü¸® ÇÁ·ÎÁ§Æ®°¡ È®´ëµÇ¸é¼­ Áö¿ª ÀÎÇÁ¶ó¿¡ ¸Â´Â ºñ¿ë È¿À²ÀûÀÎ ±â°è½Ä PRV ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¼¼°è °¨¾Ð ¹ëºê ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?

¼¼°è °¨¾Ð ¹ëºê ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº ÀÎÇÁ¶ó ¾÷±×·¹À̵å, »ê¾÷ ÀÚµ¿È­, ¹° Àý¾à ¹× ¿¡³ÊÁö È¿À²È­ÀÇ ¼¼°è ÃßÁøÀÔ´Ï´Ù. Á¤ºÎ¿Í °ø±â¾÷Àº ³ëÈÄÈ­µÈ ÀÎÇÁ¶ó, µµ½Ã Àα¸ Áõ°¡, ±âÈÄ °ü·Ã ¹° ½ºÆ®·¹½º¿¡ ´ëÀÀÇϱâ À§ÇØ ½º¸¶Æ® ¿öÅÍ ±×¸®µå ¹× ¾Ð·Â °ü¸® ÇÁ·Î±×·¥¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. PRV´Â ÀÌ·¯ÇÑ ÇÁ·Î±×·¥À» ½ÇÇöÇÏ´Â Áß¿äÇÑ ÀåÄ¡ÀÔ´Ï´Ù.

»ê¾÷ ¿ëµµÀÇ °æ¿ì, »ý»ê Áß´Ü, ÀÚ»ê º¸È£, ¾ÈÀü ±ÔÁ¤ ÁؼöÀÇ Çʿ伺 ¶§¹®¿¡ ±â¾÷Àº ½Å·ÚÇÒ ¼ö ÀÖ°í À¯Áöº¸¼ö°¡ ÀûÀº ¹ëºê ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® PRV´Â ½Ã½ºÅÛÀÇ °¡½Ã¼º°ú Á¦¾î¸¦ °­È­Çϸç, Àδõ½ºÆ®¸® 4.0°ú µðÁöÅÐ Æ®À©ÀÇ µµÀÔ¿¡ ´ëÇÑ ±¤¹üÀ§ÇÑ µ¿Çâ°ú ÀÏÄ¡ÇÕ´Ï´Ù. ¶ÇÇÑ ºÐ»êÇü ±Þ¼ö ½Ã½ºÅÛ ¹× Àç»ýÇÑ ³­¹æ ³×Æ®¿öÅ©ÀÇ ºÎ»óÀ¸·Î ÀÎÇØ ÄÄÆÑÆ®Çϰí ÇÁ·Î±×·¡¹Ö °¡´ÉÇÑ ¹ëºê ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

°æÀï·Â ÀÖ´Â °¡°Ý, ¸ðµâ½Ä ¼³°èÀÇ °¡¿ë¼º, ´©¼ö °¨Áö ¹× ¿¹¹æÀû À¯Áöº¸¼ö¿¡ ´ëÇÑ Á߿伺 Áõ°¡·Î ÀÎÇØ PRV´Â Áß°ß ÁöÀÚü ¹× »ê¾÷ ºÐ¾ß¿¡¼­ ¸Å·ÂÀûÀÎ Á¦Ç°ÀÔ´Ï´Ù. Á¦Á¶¾÷üµéÀÌ ¿¡³ÊÁö È¿À²ÀûÀÎ µðÁöÅÐ ÅëÇÕ ¼Ö·ç¼ÇÀ» Áö¼ÓÀûÀ¸·Î °³¹ßÇÔ¿¡ µû¶ó °¨¾Ð ¹ëºê ½ÃÀåÀº ÀÎÇÁ¶ó º¹¿ø·Â, À¯Æ¿¸®Æ¼ ÃÖÀûÈ­, »ê¾÷ °øÁ¤ÀÇ ¹«°á¼ºÀ» Áö¿øÇϸ鼭 Áö¼ÓÀûÀ¸·Î È®´ëµÉ ż¼¸¦ °®Ãß°í ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(Á÷µ¿½Ä ¹ëºê, ÆÄÀÏ·µ Á¶ÀÛ ¹ëºê); »ç¿ë ¾Ð·Â(300PSIG ¹Ì¸¸, 301-600PSIG, 600PSIG ÀÌ»ó); ÃÖÁ¾»ç¿ëÀÚ(¼®À¯ ¹× °¡½º, ¹ßÀü, È­ÇÐ, »óÇϼöµµ, ±Ý¼Ó¡¤±¤¾÷, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Pressure Reducing Valves Market to Reach US$4.9 Billion by 2030

The global market for Pressure Reducing Valves estimated at US$3.9 Billion in the year 2024, is expected to reach US$4.9 Billion by 2030, growing at a CAGR of 3.8% over the analysis period 2024-2030. Direct-Acting Valve, one of the segments analyzed in the report, is expected to record a 4.5% CAGR and reach US$3.5 Billion by the end of the analysis period. Growth in the Pilot-Operated Valve segment is estimated at 2.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.1 Billion While China is Forecast to Grow at 7.1% CAGR

The Pressure Reducing Valves market in the U.S. is estimated at US$1.1 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$993.7 Million by the year 2030 trailing a CAGR of 7.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.5% and 2.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.2% CAGR.

Global Pressure Reducing Valves Market - Key Trends & Drivers Summarized

Why Are Pressure Reducing Valves Essential Across Modern Fluid Control Systems?

Pressure reducing valves (PRVs) are integral components in fluid systems designed to maintain consistent downstream pressure regardless of fluctuations in upstream supply. These valves are deployed in a wide range of sectors, including water distribution, steam systems, oil & gas pipelines, HVAC networks, chemical processing, and food & beverage manufacturing. Their core function is to ensure safety, operational efficiency, and process consistency by controlling excessive inlet pressures that could otherwise damage equipment or compromise system performance.

In water distribution systems, PRVs help regulate city mains, safeguard residential and commercial plumbing fixtures, and reduce the risk of pipe bursts. In industrial settings, they enable precise control over pressure-sensitive processes, ensuring stability in applications like autoclaves, reactors, and distillation columns. Steam PRVs are also critical in maintaining optimal energy use and preventing pressure surges that could harm turbines or heat exchangers. Moreover, they are vital to medical gas delivery systems in hospitals and in compressed air lines used in high-precision manufacturing environments.

Global infrastructure modernization, especially in urban water management and industrial utility upgrades, is boosting the adoption of pressure reducing valves. With the rising need to extend asset life, minimize maintenance disruptions, and enhance fluid system safety, PRVs are no longer optional-they are foundational to fluid dynamics in both legacy and digitalized systems.

How Is Technology Enhancing the Efficiency and Intelligence of PRV Systems?

Recent advances in valve design, materials, and smart monitoring have significantly elevated the functionality and reliability of pressure reducing valves. Traditional PRVs operated purely on mechanical feedback through spring-loaded or diaphragm-actuated mechanisms. Today, however, digital PRVs equipped with electronic actuators, embedded sensors, and control modules are being introduced to provide real-time pressure control and system diagnostics.

These smart PRVs can transmit data on flow rate, downstream pressure, valve position, and temperature to SCADA systems or industrial IoT platforms. As a result, they support predictive maintenance by identifying leakages, cavitation, or wear long before failure occurs. In municipal water systems, smart PRVs are being used to detect transient pressure spikes-common precursors to pipeline bursts or water loss-enabling utilities to proactively manage non-revenue water issues.

On the material front, corrosion-resistant alloys, advanced polymers, and elastomers are being used to extend valve life and performance under aggressive media such as saltwater, chemicals, or high-temperature steam. Energy-saving designs that reduce pressure loss across the valve are being prioritized, especially in high-volume systems. Modular configurations are also gaining popularity, allowing easy maintenance and field upgrades of actuators, seats, or trim components.

Which End-Use Segments and Regions Are Generating the Strongest Demand?

The building & construction sector remains the largest consumer of PRVs globally, with extensive deployment in residential, commercial, and high-rise buildings. Here, valves regulate water pressure across zones and prevent damage to fixtures and appliances. Industrial sectors such as power generation, chemicals, food processing, and pharmaceuticals follow closely, where precise control of steam, gases, or process fluids is mission-critical.

The oil & gas industry utilizes high-performance PRVs for regulating pipeline flow, pressure relief in separator systems, and steam injection in enhanced oil recovery. In HVAC and district heating systems, PRVs are used to balance temperature zones and optimize system efficiency. Water utilities across urban municipalities are rapidly upgrading to pressure management zones (PMZs) using advanced PRVs to combat leakage and improve delivery consistency.

Regionally, North America and Western Europe remain mature markets with strong adoption of smart PRVs in municipal and industrial systems. Asia-Pacific, led by China, India, and Southeast Asia, is experiencing accelerated growth due to rising investments in smart city infrastructure, energy, and water supply. In Latin America and Africa, expanding urbanization and water management projects are creating opportunities for cost-effective mechanical PRV solutions tailored to local infrastructure.

What Is Driving Growth in the Global Pressure Reducing Valves Market?

The growth in the global pressure reducing valves market is driven by infrastructure upgrades, industrial automation, and the global push toward water conservation and energy efficiency. Governments and utilities are investing in smart water grids and pressure management programs to address aging infrastructure, rising urban populations, and climate-related water stress. PRVs are critical enablers of such programs.

In industrial applications, the need for uninterrupted production, asset protection, and compliance with safety regulations is prompting companies to invest in reliable, low-maintenance valve solutions. Smart PRVs enhance system visibility and control, aligning with broader trends toward Industry 4.0 and digital twin implementation. Furthermore, the rise of decentralized water systems and renewable heating networks supports demand for compact and programmable valve systems.

Competitive pricing, availability of modular designs, and increased emphasis on leak detection and preventive maintenance are making PRVs attractive across mid-tier municipalities and industrial segments. As manufacturers continue to develop energy-efficient and digitally integrated solutions, the market for pressure reducing valves is poised for sustained expansion-supporting infrastructure resilience, utility optimization, and industrial process integrity.

SCOPE OF STUDY:

The report analyzes the Pressure Reducing Valves market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Direct-Acting Valve, Pilot-Operated Valve); Operating Pressure (Below 300 PSIG Pressure, 301 - 600 PSIG Pressure, Above 600 PSIG Pressure); End-User (Oil & Gas End-User, Power Generation End-User, Chemical End-User, Water & Wastewater End-User, Metals & Mining End-User, Other End-Users)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 39 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â