¼¼°èÀÇ Â÷¼¼´ë À½±Ø Àç·á ½ÃÀå
Next-Generation Anode Materials
»óǰÄÚµå : 1795965
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 470 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,701,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Â÷¼¼´ë À½±Ø Àç·á ¼¼°è ½ÃÀåÀº 2030³â±îÁö 73¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 33¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Â÷¼¼´ë À½±Ø Àç·á ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 14.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 73¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ½Ç¸®Äܰè Àç·á´Â CAGR 15.6%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 45¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¸®Æ¬ Ƽź »êÈ­¹° Àç·á ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 12.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8¾ï 8,810¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ÇÑÆí Áß±¹Àº CAGR 19.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ´Â

¹Ì±¹ÀÇ Â÷¼¼´ë À½±Ø Àç·á ½ÃÀåÀº 2024³â¿¡ 8¾ï 8,810¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 16¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 19.3%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 10.4%¿Í 12.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 11.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Â÷¼¼´ë À½±Ø Àç·á ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Â÷¼¼´ë À½±Ø Àç·á°¡ ¿¡³ÊÁö ÀúÀåÀÇ ÁøÈ­¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Â÷¼¼´ë À½±Ø Àç·á´Â ¸®Æ¬À̿ ¹èÅ͸®¿Í ¸®Æ¬ ¹èÅ͸®¸¦ ¶Ù¾î³Ñ´Â ¹èÅ͸® ¼º´É Çâ»óÀ» À§ÇÑ ¼¼°è °æÀïÀÇ Á߽ɿ¡ ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ Èæ¿¬ À½±ØÀº ³Î¸® »ç¿ëµÇ´Â Èæ¿¬ À½±ØÀº ÀÌ·ÐÀû ¿¡³ÊÁö ¹ÐµµÀÇ ÇѰ迡 µµ´ÞÇÏ¿© Àü±âÀÚµ¿Â÷(EV), Àç»ý °¡´ÉÇÑ Àü·Â¸Á ÀúÀå ¹× Ã·´Ü °¡Àü Á¦Ç°ÀÇ ¼ö¿ä¿¡ ÃæºÐÇÏÁö ¾Ê½À´Ï´Ù. ½Ç¸®ÄÜ, ¸®Æ¬ ±Ý¼Ó, ±×·¡ÇÉ, ÀüÀÌ ±Ý¼Ó »êÈ­¹° µîÀÇ ½Å¼ÒÀç´Â ¿¡³ÊÁö ¹Ðµµ¸¦ ³ôÀ̰í, ÃæÀü ¼Óµµ¸¦ Çâ»ó½Ã۸ç, »çÀÌŬ ¼ö¸íÀ» ¿¬ÀåÇϱâ À§ÇØ °³¹ßµÇ°í ÀÖ½À´Ï´Ù.

ƯÈ÷ ½Ç¸®Äܰè À½±ØÀº À̷лó ¿ë·®ÀÌ Èæ¿¬ÀÇ 10¹è¿¡ °¡±î¿ö ¹èÅ͸® ±â¼ú Çõ½ÅÀÇ ¼±µÎÁÖÀÚ·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª Ãæ¹æÀü »çÀÌŬ Áß ºÎÇÇ ÆØÃ¢ÀÌ Ä¿¼­ ±â¼úÀû À庮ÀÌ ³ô¾Ò½À´Ï´Ù. ³ª³ë ±¸Á¶È­, °íºÐÀÚ ¹ÙÀδõ, ź¼º º¹ÇÕ ¸ÅÆ®¸¯½ºÀÇ ¹ßÀüÀ¸·Î ÀÌ·¯ÇÑ ¹®Á¦°¡ ¿ÏÈ­µÇ¾î ½Ç¸®ÄÜ ¾ç±ØÀÇ »ó¿ëÈ­°¡ °¡´ÉÇØÁ³½À´Ï´Ù. ÇÑÆí, ¸®Æ¬ ±Ý¼Ó À½±ØÀº °íü ÀüÇØÁú°ú °áÇÕÇÏ¿© Ãʰí¿ë·®°ú ¾ÈÀü¼º Çâ»óÀ» ½ÇÇöÇÏ¿© °íü ÀüÁö¿ëÀ¸·Î ¿¬±¸°¡ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.

°í¼º´É ¿¡³ÊÁö ÀúÀå¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇÏ´Â °¡¿îµ¥, Â÷¼¼´ë À½±Ø Àç·á´Â ƯÈ÷ ÁÖÇà°Å¸®, ¾ÈÀü¼º, ºñ¿ëÀÌ Ã¤ÅÃÀÇ °áÁ¤ÀûÀÎ ¿ä¼ÒÀÎ EV¿¡¼­ ¹èÅ͸® ¼³°èÀÇ ÇÙ½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. Àü ¼¼°è ¹èÅ͸® ½ÃÀåÀÌ ±âÁ¸ ½Ã½ºÅÛÀ» ³Ñ¾î ´Ù¾çÈ­µÇ´Â °¡¿îµ¥, °íü ÀüÁö, ¸®Æ¬À¯È²ÀüÁö, ³ªÆ®·ýÀÌ¿ÂÀüÁöÀÇ È­ÇÐÀû ÀáÀç·ÂÀ» ±Ø´ëÈ­Çϱâ À§Çؼ­´Â À½±Ø ·¹º§¿¡¼­ÀÇ ¼ÒÀç Çõ½ÅÀÌ ÇʼöÀûÀÔ´Ï´Ù.

À½±Ø °³¹ßÀÇ ´ÙÀ½ ¹°°áÀ» Çü¼ºÇÒ ±â¼ú Çõ½ÅÀº ¹«¾ùÀϱî?

Àç·á °úÇаú ³ª³ë °øÇÐÀÇ Çõ½ÅÀº ¿¡³ÊÁö ¹Ðµµ, »çÀÌŬ ¼ö¸í ¹× ¾ÈÀü¼ºÀÇ ÀüÅëÀûÀÎ Æ®·¹À̵å¿ÀÇÁ¸¦ ±Øº¹ÇÏ°í º¸´Ù ¾ÈÁ¤ÀûÀÎ °í¿ë·® À½±ØÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ½Ç¸®ÄÜ ³ª³ëÀÔÀÚ, ½Ç¸®ÄÜ-ź¼Ò º¹ÇÕÀç, ½Ç¸®ÄÜ »êÈ­¹° ¾ç±ØÀº ÆØÃ¢ ¿ÏÃæÀÌ °¡´ÉÇϵµ·Ï ¼³°èµÈ ³ª³ë ±¸Á¶·Î ÆØÃ¢¿¡ ÀÇÇÑ ¿­È­¸¦ ÁÙ¿´½À´Ï´Ù. ½Ç¸®Äܰú Èæ¿¬ ¶Ç´Â ±×·¡ÇÉÀ» °áÇÕÇÑ ÇÏÀ̺긮µå À½±ØÀº ¼º´É Çâ»ó°ú Á¦Á¶ °¡´É¼ºÀÇ ±ÕÇüÀ» ¸ÂÃ߸鼭 EV µî±Þ ¹èÅ͸®¿¡¼­ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù.

¸®Æ¬ ±Ý¼Ó À½±ØÀº ºñ±³ÇÒ ¼ö ¾ø´Â ºñ¿¡³ÊÁö¿Í ³ôÀº Àü±â È­ÇÐÀû ¼º´ÉÀ¸·Î ÀÎÇØ °íü ¹èÅ͸® °³¹ßÀÚµéÀÌ Ãß±¸Çϰí ÀÖ½À´Ï´Ù. ±×·¯³ª, µ§µå¶óÀÌÆ®ÀÇ Çü¼º°ú °è¸éÀÇ ºÒ¾ÈÁ¤¼ºÀÌ ¿©ÀüÈ÷ °úÁ¦·Î ³²¾ÆÀÖ½À´Ï´Ù. ¿¬±¸ÁøÀº º¸È£ ÄÚÆÃ, È£½ºÆ® ÇÁ·¹ÀÓ¿öÅ©, ÇÏÀ̺긮µå ÀüÇØÁúÀ» Ȱ¿ëÇÏ¿© µ§µå¶óÀÌÆ® ¹ß»ýÀ» ¾ïÁ¦ÇÏ°í ¾ç±Ø-ÀüÇØÁú °è¸éÀÇ ÀûÇÕ¼ºÀ» Çâ»ó½ÃÄ×½À´Ï´Ù. ¸¶Âù°¡Áö·Î, »êÈ­ÁÖ¼®, ÀÌ»êȭƼŸ´½, ÀÌȲȭ ¸ô¸®ºêµ§°ú °°Àº ±Ý¼Ó »êÈ­¹° ¹× ÁúÈ­¹°µµ ³ôÀº ÀÌ·ÐÀû ¿ë·®°ú ±¸Á¶Àû ¾ÈÁ¤¼ºÀ¸·Î ÀÎÇØ ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù.

Á¦Á¶ÀÇ È®À强 ¶ÇÇÑ ÁÖ¸ñ¹Þ°í ÀÖ´Â ºÐ¾ßÀÔ´Ï´Ù. ·ÑÅõ·Ñ ÄÚÆÃ ±â¼ú, 3D ÇÁ¸°ÆÃ, È®Àå °¡´ÉÇÑ CVD °øÁ¤Àº °æÀï·Â ÀÖ´Â ºñ¿ëÀ¸·Î ÷´Ü ¾ç±ØÀ» Á¦Á¶ÇÏ´Â µ¥ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶óÀÌÇÁ»çÀÌŬÀÇ Áö¼Ó°¡´É¼ºÀº »ý¹° À¯·¡ ź¼ÒÁú ¼ÒÀç¿Í ÀçȰ¿ë °¡´ÉÇÑ º¹ÇÕ±¸Á¶¸¦ ¸ð»öÇÏ´Â °ÍÀ¸·Î ÇØ°áÇϰí ÀÖ½À´Ï´Ù. ½Ç½Ã°£ Áø´Ü ¹× ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS)µµ Â÷¼¼´ë ¾ç±ØÀÇ º¹À⼺À» °ü¸®ÇÏ°í ¾ÈÀü°ú ¼º´É ÃÖÀûÈ­¸¦ º¸ÀåÇϱâ À§ÇØ ÁøÈ­Çϰí ÀÖ½À´Ï´Ù.

½ÃÀå Ãâ½Ã¸¦ °¡¼ÓÈ­Çϰí ÀÖ´Â ¾ÖÇø®ÄÉÀÌ¼Ç ºÎ¹®°ú Áö¿ªÀº ¾îµðÀΰ¡?

Àü±âÀÚµ¿Â÷´Â Â÷¼¼´ë À½±Ø Àç·áÀÇ ¼ö¿ä¸¦ ÁÖµµÇÏ´Â ÁÖ¿ä ÀÀ¿ë ºÐ¾ßÀÔ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶»çµéÀº ÁÖÇà°Å¸® ¿¬Àå, ÃæÀü ½Ã°£ ´ÜÃà, ¼ö¸íÁֱ⠰æÁ¦¼º Çâ»óÀ» À§ÇÑ ¹èÅ͸® ¼Ö·ç¼ÇÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ ¹× ¸®Æ¬ ±Ý¼Ó ¾ç±ØÀº ƯÈ÷ OEMÀÌ ¼Ö¸®µå ½ºÅ×ÀÌÆ® ¹× ¹Ý°íü ¹èÅ͸® ¾ÆÅ°ÅØÃ³·Î ÀüȯÇÔ¿¡ µû¶ó °í¼º´É EV¿¡¼­ ºÎ»óÇϰí ÀÖ½À´Ï´Ù. °¡ÀüÁ¦Ç°, ƯÈ÷ ³ëÆ®ºÏ, ½º¸¶Æ®Æù, ¿þ¾î·¯ºí Á¦Ç°µµ ¹èÅ͸® ¼ö¸íÀ» ´Ã¸®¸é¼­ ÆûÆÑÅ͸¦ ÀÛ°Ô ¸¸µé±â À§ÇØ ½Ç¸®ÄÜÀ» ÁÖ¼ººÐÀ¸·Î ÇÏ´Â ¼¿À» ³»ÀåÇϰí ÀÖ½À´Ï´Ù.

±×¸®µå ±Ô¸ðÀÇ ¿¡³ÊÁö ÀúÀåÀº ¾ÈÀü¼º, ¼ö¸í, ¿¡³ÊÁö È¿À²ÀÌ °¡Àå Áß¿äÇÑ Àå±âÀûÀÎ ÀÀ¿ë ºÐ¾ß·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼­´Â ÷´Ü À½±ØÀ» °®Ãá ³ªÆ®·ý À̿ ¹èÅ͸®¿Í ¸®Æ¬ Ȳ ¹èÅ͸®°¡ ±âÁ¸ÀÇ ¸®Æ¬ À̿ ½Ã½ºÅÛÀ» ´ëüÇÒ ¼ö ÀÖ´Â ºñ¿ë È¿À²ÀûÀÎ ¹èÅ͸®·Î °ËÅäµÇ°í ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ ¹× ±¹¹æ ºÐ¾ß¿¡¼­´Â µå·Ð, ÀΰøÀ§¼º, º´»ç ÈÞ´ë±â±â¿ë °í¹Ðµµ, °æ·® À½±Ø¿¡ °ü½ÉÀÌ ÁýÁߵǰí ÀÖ½À´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹, ÀϺ», Çѱ¹ÀÌ ÁÖµµÇÏ´Â Â÷¼¼´ë À½±Ø »ý»ê°ú ±â¼ú Çõ½Å »ýŰ踦 ¸ðµÎ Áö¹èÇϰí ÀÖ½À´Ï´Ù. ÀÌµé ±¹°¡¿¡´Â ½Ç¸®ÄÜ ¹× ¸®Æ¬ ±Ý¼Ó ¾ç±ØÀÇ »ó¿ëÈ­¿¡ ÁÖ·ÂÇÏ´Â ÁÖ¿ä ¹èÅ͸® Á¦Á¶¾÷ü, Àç·á °ø±Þ¾÷ü ¹× Çмú ¿¬±¸¼Ò°¡ ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â ¹Ì±¹ ¿¬¹æÁ¤ºÎÀÇ ¹èÅ͸® ±â¼ú Çõ½ÅÀ» À§ÇÑ ÀÚ±Ý Áö¿ø°ú Àü·«Àû ¿øÀÚÀç µ¶¸³¿¡ ÈûÀÔ¾î ºü¸£°Ô Ãß°ÝÇϰí ÀÖ½À´Ï´Ù. À¯·´Àº ±×¸°µô ±¸»ó ¹× ¹èÅ͸® ¾ó¶óÀ̾𽺠ÇÁ·Î±×·¥À» ÅëÇØ Áö¿ª ¹èÅ͸® ¹ë·ùüÀÎ ±¸Ãà¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù.

Â÷¼¼´ë À½±Ø Àç·á ¼¼°è ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº?

¼¼°è Â÷¼¼´ë À½±ØÀç ½ÃÀåÀÇ ¼ºÀåÀº Àü±â À̵¿¼º, Àç»ý¿¡³ÊÁö ÅëÇÕ, Â÷¼¼´ë ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä ±ÞÁõ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ÀúÀåÀÌ ¿î¼Û, Àü·Â¸Á, »ê¾÷ ºÐ¾ß¿¡¼­ Àü·«Àû ¿ì¼±¼øÀ§°¡ µÇ¸é¼­, À½±ØÀÇ ±â¼ú Çõ½ÅÀº Çõ½ÅÀûÀÎ ¼º´É Çâ»óÀ» ½ÇÇöÇÏ´Â ´É·ÂÀ¸·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù.

EV Àǹ«È­, ¹èÅ͸® ÀçȰ¿ë ±ÔÁ¦ ¹× Á¤Ã¥, ±¹°¡ Çõ½Å ÇÁ·Î±×·¥À» ÅëÇÑ Á¤Ã¥Àû Áö¿øÀº ÷´Ü ¾ç±ØÀÇ ¿¬±¸°³¹ß°ú ÆÄÀÏ·µ ±Ô¸ðÀÇ »ó¿ëÈ­¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Å×½½¶ó, CATL, ÆÄ³ª¼Ò´Ð, ÄöÅÒ½ºÄÉÀÌÇÁ µîÀÇ ±â¾÷ ÅõÀÚ´Â ½Ç¸®Äܰú ¸®Æ¬ ±Ý¼Ó ±â¼úÀÇ ¼º¼÷À» °¡¼ÓÈ­Çϰí, ½ºÅ¸Æ®¾÷Àº ÆÄ±«ÀûÀÎ Àç·á Ç÷§ÆûÀ» À§ÇØ º¥Ã³ ÀÚ±ÝÀ» ¸ðÀ¸°í ÀÖ½À´Ï´Ù.

°ø±Þ¸Á ´Ùº¯È­µµ ÀÎÁ¶ Èæ¿¬¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í ¿øÀç·áÀÇ ÇöÁö Á¶´Þ¿¡ ÁßÁ¡À» µÎ¸é¼­ ¿øµ¿·ÂÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¼¼°è Áö¼Ó°¡´É¼º ¸ñÇ¥¿Í ³ÝÁ¦·Î(Net Zero) °èȹÀÌ °­È­µÇ´Â °¡¿îµ¥, Â÷¼¼´ë ¾ç±ØÀº »ç¿ë »ç·Ê¿¡ °ü°è¾øÀÌ º¸´Ù È¿À²ÀûÀÌ°í ¼ö¸íÀÌ ±æ¸ç ¾ÈÀüÇÑ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀ» ±¸ÇöÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±â¼úÀû, ºñ¿ëÀû À庮À» ±Øº¹ÇÏ´Â ²ÙÁØÇÑ ÁøÀüÀ» ÅëÇØ ½ÃÀåÀº 10³â ÈıîÁö ºñ¾àÀûÀÎ ¼ºÀåÀ» ÀÌ·ê Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

ºÎ¹®

Àç·á(½Ç¸®Äܰè Àç·á, ¸®Æ¬ Ƽź »êÈ­¹° Àç·á, ÁÖ¼®°è Àç·á), ÀüÁö(¸®Æ¬À̿ ¹èÅ͸®, ³ªÆ®·ý À̿ ¹èÅ͸®, °íü ÀüÁö), ¿ëµµ(°¡Àü ¿ëµµ, ÀÚµ¿Â÷ ¿ëµµ, ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ¿ëµµ), ÃÖÁ¾»ç¿ëÀÚ(°¡Àü ÃÖÁ¾»ç¿ëÀÚ, ÀÚµ¿Â÷ ÃÖÁ¾»ç¿ëÀÚ, ¿¡³ÊÁö ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡¿ë ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Next-Generation Anode Materials Market to Reach US$7.3 Billion by 2030

The global market for Next-Generation Anode Materials estimated at US$3.3 Billion in the year 2024, is expected to reach US$7.3 Billion by 2030, growing at a CAGR of 14.3% over the analysis period 2024-2030. Silicon-based Material, one of the segments analyzed in the report, is expected to record a 15.6% CAGR and reach US$4.5 Billion by the end of the analysis period. Growth in the Lithium Titanium Oxide Material segment is estimated at 12.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$888.1 Million While China is Forecast to Grow at 19.3% CAGR

The Next-Generation Anode Materials market in the U.S. is estimated at US$888.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.6 Billion by the year 2030 trailing a CAGR of 19.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 10.4% and 12.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 11.4% CAGR.

Global Next-Generation Anode Materials Market - Key Trends & Drivers Summarized

Why Are Next-Generation Anode Materials Critical for Energy Storage Evolution?

Next-generation anode materials are at the heart of the global race to improve lithium-ion and beyond-lithium battery performance. Traditional graphite anodes, while widely used, have reached their theoretical energy density limits, making them inadequate for the demands of electric vehicles (EVs), renewable grid storage, and advanced consumer electronics. New materials such as silicon, lithium metal, graphene, and transition metal oxides are being developed to increase energy density, enhance charging speed, and extend cycle life-key attributes for next-generation battery competitiveness.

Silicon-based anodes, in particular, offer nearly 10 times the theoretical capacity of graphite, positioning them as a front-runner in battery innovation. However, their high-volume expansion during charge-discharge cycles has posed significant technical hurdles. Advances in nanostructuring, polymer binders, and elastic composite matrices are now helping mitigate these issues, making silicon anodes viable for commercial deployment. Lithium-metal anodes, meanwhile, are being explored for solid-state batteries, offering ultra-high capacity and safety improvements in conjunction with solid electrolytes.

As demand for high-performance energy storage surges, next-gen anode materials are becoming central to battery design, especially in EVs where range, safety, and cost are defining adoption. Materials innovation at the anode level is crucial to unlocking the full potential of solid-state, lithium-sulfur, and sodium-ion battery chemistries as the global battery market diversifies beyond legacy systems.

What Technological Innovations Are Shaping the Next Wave of Anode Development?

Breakthroughs in materials science and nanoengineering are enabling more stable, high-capacity anodes that overcome traditional trade-offs in energy density, cycle life, and safety. Silicon nanoparticles, silicon-carbon composites, and silicon oxide anodes are reducing swelling-induced degradation through engineered nanostructures that allow expansion buffering. Hybrid anodes combining silicon with graphite or graphene are gaining traction for EV-grade batteries, striking a balance between performance gains and manufacturability.

Lithium-metal anodes are being pursued by solid-state battery developers due to their unmatched specific energy and electrochemical performance. However, dendrite formation and interfacial instability remain challenges. Researchers are leveraging protective coatings, host frameworks, and hybrid electrolytes to suppress dendrites and improve anode-electrolyte interface compatibility. Similarly, metal oxides and nitrides-such as tin oxide, titanium dioxide, and molybdenum disulfide-are being investigated for their high theoretical capacity and structural stability.

Manufacturing scalability is another area of focus. Roll-to-roll coating techniques, 3D printing, and scalable CVD processes are being used to produce advanced anodes at competitive cost. Lifecycle sustainability is being addressed by exploring bio-derived carbonaceous materials and recyclable composite structures. Real-time diagnostics and battery management systems (BMS) are also evolving to manage the complexities of next-gen anodes, ensuring safety and performance optimization.

Which Application Segments and Regions Are Accelerating Market Deployment?

Electric vehicles are the primary application segment driving demand for next-generation anode materials. Automakers are seeking battery solutions that deliver longer driving range, faster charging, and improved lifecycle economics. Silicon and lithium-metal anodes are gaining ground in high-performance EVs, particularly as OEMs transition toward solid-state and semi-solid battery architectures. Consumer electronics-particularly laptops, smartphones, and wearables-are also integrating silicon-dominant cells to reduce form factor while boosting battery life.

Grid-scale energy storage is emerging as a long-term application area where safety, cycle life, and energy efficiency are paramount. In this domain, sodium-ion and lithium-sulfur batteries with advanced anodes are being explored to offer cost-effective alternatives to conventional lithium-ion systems. Aerospace and defense sectors are showing interest in high-density, lightweight anodes for drones, satellites, and soldier-portable devices.

Asia-Pacific dominates both the production and innovation ecosystem for next-gen anodes, led by China, Japan, and South Korea. These countries host major battery manufacturers, materials suppliers, and academic research hubs focused on commercializing silicon and lithium-metal anodes. North America is rapidly catching up, driven by U.S. federal funding for battery innovation and strategic raw material independence. Europe is focusing on building regional battery value chains under its Green Deal initiatives and battery alliance programs.

What Is Fueling Growth in the Global Next-Generation Anode Materials Market?

The growth in the global next-generation anode materials market is driven by several factors, including the surging demand for electric mobility, renewable energy integration, and next-gen consumer electronics. As energy storage becomes a strategic priority across transportation, grid, and industrial sectors, anode innovation is gaining prominence for its ability to deliver transformative performance enhancements.

Policy support through EV mandates, battery recycling regulations, and national innovation programs is catalyzing R&D and pilot-scale commercialization of advanced anodes. Corporate investment from Tesla, CATL, Panasonic, and QuantumScape is accelerating the maturation of silicon and lithium-metal technologies, while startups are attracting venture funding for disruptive material platforms.

Supply chain diversification is also acting as a driver, with an emphasis on reducing dependence on synthetic graphite and sourcing raw materials locally. As global sustainability targets and net-zero agendas tighten, next-gen anodes are expected to play a pivotal role in enabling more efficient, longer-lasting, and safer energy storage solutions across use cases. With steady progress in overcoming technical and cost barriers, the market is poised for exponential growth through the end of the decade.

SCOPE OF STUDY:

The report analyzes the Next-Generation Anode Materials market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Material (Silicon-based Material, Lithium Titanium Oxide Material, Tin-based Material); Battery (Lithium-Ion Battery, Sodium-Ion Battery, Solid-State Battery); Application (Consumer Electronics Application, Automotive Application, Energy Storage Systems Application); End-User (Electronics End-User, Automotive End-User, Energy End-User)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â