¼¼°èÀÇ Å×´õ µå·Ð ½ÃÀå
Tethered Drones
»óǰÄÚµå : 1795380
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 173 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,204,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,612,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Å×´õ µå·Ð ¼¼°è ½ÃÀåÀº 2030³â±îÁö 1¾ï 2,590¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 9,460¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â Å×´õ µå·Ð ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 1¾ï 2,590¸¸ ´Þ·¯¿¡ ´ÞÇϰí, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 4.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¸ÖƼÄßÅÍ Å×´õ µå·ÐÀº CAGR 3.9%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 8,250¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÄõµåÄßÅÍ Å×´õ µå·Ð ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 6.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2,490¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 4.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Å×´õ µå·Ð ½ÃÀåÀº 2024³â¿¡ 2,490¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 4.9%·Î 2030³â±îÁö 2,040¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 4.4%¿Í 4.2%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Å×´õ µå·Ð ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Å×´õ µå·ÐÀº ¿µ±¸ÀûÀÎ °øÁß °¨½ÃÀÇ ÁßÃß·Î °£°úµÇ°í ÀÖ´Ù?

Å×´õ µå·ÐÀº ÀÚÀ¯·Ó°Ô ºñÇàÇÏ´Â µ¿Á¾ µå·Ð°ú ´Þ¸® ¹°¸®Àû Å×´õ¸¦ ÅëÇØ Áö»ó Àü¿ø¿¡ ¿¬°áµÇ¾î ÀÖ¾î Àå½Ã°£ ºñÇà, ¾ÈÁ¤ÀûÀÎ Åë½Å, Áö¼ÓÀûÀÎ Àü·Â °ø±ÞÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¹èÅ͸® ¼ö¸íÀÇ Á¦ÇÑ ¾øÀÌ Áö¼ÓÀûÀÎ °øÁß °üÃøÀÌ °¡´ÉÇϱ⠶§¹®¿¡ ±¹¹æ, »ê¾÷, À̺¥Æ® °ü¸® µîÀÇ ºÐ¾ß¿¡¼­ ºü¸£°Ô º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. Å×´õ µå·ÐÀº Ãʱ⿡´Â ±º»ç ¹× ±¹°æ °¨½Ã ¾÷¹«¿¡ ¹èÄ¡µÇ¾úÀ¸³ª, ÇöÀç´Â ±ºÁß °¨½Ã, »êºÒ °üÃø, Åë½Å Áß°è, Àӽà ÇöÀå °æºñ µî »ó¾÷ ¹× ¹Î°£ ¿ëµµ·Îµµ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¸î ½Ã°£ ¶Ç´Â ¸çÄ¥ µ¿¾È È£¹ö¸µÀÌ °¡´ÉÇϱ⠶§¹®¿¡ Ç×»ó ²÷±è ¾ø´Â °øÁß Á¸Àç°¨ÀÌ ÇÊ¿äÇÑ ÀÓ¹«¿¡ ÀûÇÕÇÕ´Ï´Ù.

ÀÌ·¯ÇÑ µå·ÐÀÇ ¹èÄ¡ ÇüÅ´ ¿î¿µÀÇ ¾ÈÀü¼º, µ¥ÀÌÅÍÀÇ ¾ÈÀü¼º, ºñÇàÀÇ ¿¹Ãø°¡´É¼ºÀÌ ¿ì¼±½ÃµÇ´Â ¾ö°ÝÇÑ ºñÇà ±ÔÁ¦°¡ Àִ ȯ°æ¿¡¼­µµ ¸Å·ÂÀûÀÔ´Ï´Ù. Å×´õ ½Ã½ºÅÛÀº ƯÈ÷ Àα¸ ¹ÐÁý Áö¿ªÀ̳ª Àü·«ÀûÀ¸·Î ¹Î°¨ÇÑ Áö¿ª¿¡¼­ Å×´õ°¡ ¾ø´Â UAV¿Í °ü·ÃµÈ ¸¹Àº °ø¿ª Á¦ÇѰú ¿ì·Á¸¦ ÇÇÇÒ ¼ö ÀÖ½À´Ï´Ù. °ø¿ª È¥Àâ, µ¥ÀÌÅÍ À¯Ãâ, µå·ÐÀÇ ¹èÅ͸® ÇѰ迡 ´ëÇÑ ¿ì·Á°¡ Ä¿Áö´Â °¡¿îµ¥, Å×´õ µå·ÐÀº Áö¼ÓÀûÀÎ °íÇØ»óµµ °øÁß µ¥ÀÌÅÍ ¼öÁýÀ» À§ÇÑ ½Å·ÚÇÒ ¼ö ÀÖ´Â ´ë¾ÈÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ÀÚ¿¬ÀçÇØ, ´ë±Ô¸ð Áýȸ, ±ä±Þ ´ëÀÀ Á¶Á¤ µî °ø°ø¾ÈÀü ¾÷¹«¿¡ µå·ÐÀ» »ç¿ëÇÏ´Â °ÍÀº ¸¹Àº Á¤ºÎ ±â°ü°ú ¹Î°£ »ç¾÷ÀÚ¿¡°Ô Ç¥ÁØÀûÀÎ ¹æ¹ýÀÌ µÇ°í ÀÖ½À´Ï´Ù.

Å×´õµå·ÐÀÇ µµÀÔÀº µðÀÚÀΰú ±â´ÉÀÇ °³¼±À¸·Î ¾î¶»°Ô ÁøÇàµÇ°í Àִ°¡?

Å×´õ µå·Ð ½Ã½ºÅÛÀÇ ±â¼ú ¹ßÀüÀ¸·Î ÆäÀÌ·Îµå ¿ë·®, µ¥ÀÌÅÍ Àü¼Û ¼Óµµ, Áö»ó Á¦¾îÀÇ À¯¿¬¼ºÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. ÃֽŠÅ×´õ´Â Àü·Â °ø±Þ°ú ±¤´ë¿ª µ¥ÀÌÅÍ Àü¼ÛÀ» µ¿½Ã¿¡ ó¸®ÇÒ ¼ö ÀÖ´Â ÇÏÀ̺긮µå ÄÉÀ̺í·Î ¼³°èµÇ¾ú½À´Ï´Ù. À̸¦ ÅëÇØ ¿Âº¸µå Àü·Â ÀúÀåÀ̳ª ¹«¼± ¸±·¹ÀÌ ¾øÀ̵µ ½Ç½Ã°£ ºñµð¿À ½ºÆ®¸®¹Ö, ¼¾¼­ ÆÇµ¶, ¿ø°Ý ÃøÁ¤ÀÌ °¡´ÉÇØÁ® ¿î¿µÀÇ °æ·®È­ ¹× È¿À²È­¸¦ ½ÇÇöÇß½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ÇöÀç Àû¿Ü¼± ¿µ»ó, LiDAR ½ºÄ³´×, ¸ÖƼ Ä«¸Þ¶ó ¾î·¹À̸¦ Áö¿øÇϸç, ÁÖº¯ ¹æ¾î¿¡¼­ Á¤¹Ð³ó¾÷¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ½Ã³ª¸®¿À¿¡¼­ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

È޴뼺µµ Å©°Ô °³¼±µÇ¾ú½À´Ï´Ù. ¹èÄ¡ °¡´ÉÇÑ Áö»ó±¹Àº ÇöÀç °ß°íÇÑ ÄÉÀ̽º³ª Â÷·® žÀçÇü À¯´Ö¿¡ ³»ÀåµÇ¾î ÀÖ¾î ¿ø°ÝÁö³ª ¿ªµ¿ÀûÀΠȯ°æ¿¡¼­ ½Å¼ÓÇÏ°Ô ¼³Ä¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. µå·ÐÀÇ ±¸Á¶ ÀÚüµµ °æ·®È­, ¸ðµâÈ­°¡ ÁøÇàµÇ¾î °­Ç³À̳ª ºñ µî ¾ÇõÈÄ¿¡µµ °ßµô ¼ö ÀÖ´Â ±¸Á¶·Î ¹Ù²î°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿ È£¹ö, ÄÉÀ̺í Àå·Â Á¦¾î, GPS º¸Á¶ ¾ÈÁ¤È­ µîÀÇ ÀÚµ¿È­ ±â´ÉÀº »ç¿ë ÆíÀǼºÀ» Çâ»ó½ÃŰ°í ¿îÀüÀÚÀÇ ÇǷθ¦ ÁÙ¿©ÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ» Á¾ÇÕÇϸé, ÀÌÀü¿¡´Â µå·ÐÀ» ¹èÄ¡ÇÏ´Â °ÍÀÌ ³Ê¹« º¹ÀâÇϰųª ºñ¿ëÀÌ ³Ê¹« ºñ½Î´Ù°í »ý°¢Çß´ø ¼Ò±Ô¸ð »ó¾÷ »ç¾÷ÀÚ¿Í Áö¿ª ±â°üÀÌ µå·ÐÀ» äÅÃÇÏ´Â °ÍÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÀÎÇÁ¶ó ÅëÇÕÀº Å×´õÇü µå·ÐÀÇ ´ÙÀ½ µµ¾àÀΰ¡?

Å×´õ µå·ÐÀ» ´ë±Ô¸ð Åë½Å ¹× °¨½Ã ³×Æ®¿öÅ©¿¡ ÅëÇÕÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ºü¸£°Ô Áß¿äÇÑ °¡Ä¡ Á¦¾ÈÀÌ µÇ°í ÀÖ½À´Ï´Ù. Åë½Å ºÐ¾ß¿¡¼­´Â ½º¸ô¼¿ ±âÁö±¹À» žÀçÇÑ Å×´õ µå·ÐÀÌ Åë½ÅÀÌ Àß µÇÁö ¾Ê´Â Áö¿ªÀ̳ª ÀçÇØÁö¿ª¿¡¼­ ÀϽÃÀûÀÎ Åë½Å Áß°è·Î Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µå·Ð žÀç Ÿ¿ö´Â ½Å¼ÓÇÏ°Ô ¹èÄ¡Çϰí Çʿ信 µû¶ó Àç¹èÄ¡ÇÒ ¼ö ÀÖ¾î ³×Æ®¿öÅ© º¹¿ø·Â°ú ÀçÇØ º¹±¸¸¦ À§ÇÑ ¹ÎøÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼ ȸ»ç´Â ÆÄÀÌÇÁ¶óÀÎ, Àü·Â¸Á, ÇØ»ó Ç÷§Æû°ú °°Àº Áß¿äÇÑ ÀÎÇÁ¶ó¸¦ ¸ð´ÏÅ͸µÇϱâ À§ÇØ Áö¼ÓÀûÀÎ »ó°ø Á¶¸ÁÀ» Ȱ¿ëÇÏ¿© ÇöÀå Á¡°Ë ·çƾ¿¡ Å×´õ°¡ ´Þ¸° µå·Ð ½Ã½ºÅÛÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, Å×´õ µå·ÐÀ» AI ±â¹Ý ºÐ¼® Ç÷§Æû°ú ÅëÇÕÇÏ´Â ¿òÁ÷ÀÓµµ Ȱ¹ßÇØÁö°í ÀÖ½À´Ï´Ù. °íµµÀÇ È£¹ö Æ÷ÀÎÆ®¿¡¼­ ³ª¿À´Â ºñµð¿À Çǵå´Â ½Ç½Ã°£À¸·Î ¾ó±¼ ÀνÄ, ¹øÈ£ÆÇ ½ºÄµ, ÆÐÅÏ °¨Áö ¾Ë°í¸®Áò¿¡ Á÷Á¢ ÀԷµ˴ϴÙ. ±¹°æ °¨½Ã¿¡¼­ Å×´õ µå·ÐÀº ½º¸¶Æ® Ææ½º ½Ã½ºÅÛÀÇ ÀϺΰ¡ µÇ¾î Áö»ó ¼¾¼­ ¹× ÀÚµ¿ °æº¸¿Í ¿¬°áµË´Ï´Ù. µµ½Ã°¡ °ø°ø¾ÈÀü ½Ã½ºÅÛ¿¡ ´õ ¸¹ÀÌ ¿¬°áµÊ¿¡ µû¶ó Å×´õ µå·ÐÀº µµ½Ã »ç¹°ÀÎÅͳÝ(IoT) »ýŰèÀÇ ¿µ±¸ÀûÀÎ °øÁß ³ëµå·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ´õ ±ä Å×´õ, °íµµÈ­, ¸ð¹ÙÀÏ Ä¿¸Çµå À¯´Ö ¹× ¿ø°Ý Á¶Á¾ ÄְܼúÀÇ ÅëÇÕ °­È­¸¦ À§ÇÑ ¿¬±¸°³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Àü ¼¼°è Å×´õÇü µå·Ð ½Ã½ºÅÛ ¼ö¿ä ±ÞÁõÀÇ ¿äÀÎÀº?

Å×´õ µå·Ð ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ¿î¿µ ¿ä°Ç, ÀÓ¹«º° ½Å·Ú¼º°ú Á÷°áµÇ´Â ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ù°, ±¹¹æ, ¹ý ÁýÇà, ºñ»ó ´ëÀÀ ½Ã³ª¸®¿À¿¡¼­ Áö¼ÓÀûÀÎ °¨½Ã¿Í Àå½Ã°£ÀÇ °øÁß ¸ð´ÏÅ͸µÀÇ Çʿ伺ÀÌ ¹èÅ͸® Á¦¾à ¾øÀÌ ¹«±âÇÑÀ¸·Î »ó°ø¿¡ ¸Ó¹«¸¦ ¼ö ÀÖ´Â ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. µÑ°, Å×´õÀÇ µðÀÚÀÎ, ƯÈ÷ °æ·®, ´ë¿ë·® ±¤¼¶À¯¿Í ±¸¸® ÇÏÀ̺긮µåÀÇ °­È­µÈ ¼³°è·Î ÀÎÇØ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ ±â´ÉÀû ÆäÀÌ·Îµå ¹üÀ§¿Í Åë½Å Ãæ½Çµµ°¡ È®´ëµÇ¾ú½À´Ï´Ù.

¼Â°, ´ë±Ô¸ð Çà»ç, ±¹°æ, Áß¿ä ÀÎÇÁ¶ó ÇöÀåÀÇ º¸¾È¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ÅëÇÕ °¨½Ã Àü·«ÀÇ ÀÏȯÀ¸·Î Å×´õ µå·ÐÀ» äÅÃÇÏ°Ô µÇ¾ú½À´Ï´Ù. ³Ý°, ƯÈ÷ ÀÎÇÁ¶ó°¡ ºÎÁ·ÇÑ Áö¿ª¿¡¼­ Àӽà Åë½Å ³ëµåÀÇ ½Å¼ÓÇÑ ¹èÄ¡¿Í ÇöÀå Æò°¡¿¡ Å×´õ µå·ÐÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ´Ù¼¸Â°, ÀÚÀ¯·Ó°Ô ºñÇàÇÏ´Â µå·Ðº¸´Ù ¾ö°ÝÇÑ Ç×°ø ±ÔÁ¦¿¡ ½±°Ô ´ëÀÀÇÒ ¼ö ÀÖ¾î ±â¹Ð¼ºÀÌ ³ôÀº µµ½Ã Áö¿ª¿¡¼­ÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, AI, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, ¿§Áö ¾Ö³Î¸®Æ½½º¿¡ ±â¹ÝÇÑ ÀÚÀ² ¹× ¹ÝÀÚÀ² Å×´õ Ç÷§Æû¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ º¸µµºÎÅÍ È¯°æ ¸ð´ÏÅ͸µ¿¡ À̸£±â±îÁö »õ·Î¿î »ó¾÷Àû Ȱ¿ë »ç·Ê¸¦ °³Ã´Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÈûµéÀÌ °áÇÕµÇ¾î ¾ÈÁ¤¼º, ³»±¸¼º, Àü¼úÀû ½Å·Ú¼ºÀ¸·Î Á¤ÀǵǴ ½ÃÀå¿¡ Å« ¸ð¸àÅÒÀ» âÃâÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(¸ÖƼÄßÅÍ Å×´õ µå·Ð, ÄõµåÄßÅÍ Å×´õ µå·Ð), ÃÖÁ¾»ç¿ë(¹æÀ§ ÃÖÁ¾»ç¿ë, Åë½Å ÃÖÁ¾»ç¿ë, °Ë»ç ¹× ±âŸ ÃÖÁ¾»ç¿ë)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Tethered Drones Market to Reach US$125.9 Million by 2030

The global market for Tethered Drones estimated at US$94.6 Million in the year 2024, is expected to reach US$125.9 Million by 2030, growing at a CAGR of 4.9% over the analysis period 2024-2030. Multi-Copter Tethered Drones, one of the segments analyzed in the report, is expected to record a 3.9% CAGR and reach US$82.5 Million by the end of the analysis period. Growth in the Quadcopter Tethered Drones segment is estimated at 6.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$24.9 Million While China is Forecast to Grow at 4.9% CAGR

The Tethered Drones market in the U.S. is estimated at US$24.9 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$20.4 Million by the year 2030 trailing a CAGR of 4.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.4% and 4.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.1% CAGR.

Global Tethered Drones Market - Key Trends & Drivers Summarized

Are Tethered Drones the Overlooked Backbone of Persistent Aerial Surveillance?

Tethered drones, unlike their free-flying counterparts, are connected to a ground-based power supply through a physical tether, enabling extended flight durations, stable communications, and continuous power delivery. These systems are rapidly gaining traction across defense, industrial, and event management sectors for their ability to provide persistent aerial observation without the limitations of battery life. Initially deployed in military and border surveillance operations, tethered drones are now expanding into commercial and civil applications including crowd monitoring, wildfire observation, telecom relays, and temporary site security. Their ability to hover for hours or even days makes them ideal for missions requiring constant, uninterrupted aerial presence.

This form of drone deployment is also appealing in environments with strict flight regulations, where operational safety, data security, and flight predictability are prioritized. Tethered systems circumvent many airspace restrictions and concerns associated with untethered UAVs, particularly in densely populated or strategically sensitive regions. As concerns about airspace congestion, data breaches, and drone battery limitations grow, tethered drones are increasingly positioned as a reliable alternative for continuous, high-resolution aerial data collection. Their use in public safety operations, especially during natural disasters, large gatherings, and emergency response coordination, is becoming standard practice for many government agencies and private operators alike.

How Are Design and Functionality Improvements Advancing Tethered Drone Adoption?

Technology advancements in tethered drone systems have significantly improved payload capacity, data transmission speeds, and ground control flexibility. Modern tethers are engineered with hybrid cables that can simultaneously supply power and handle high-bandwidth data transfer. This allows for real-time video streaming, sensor readings, and telemetry without the need for onboard power storage or wireless relays, making operations both lighter and more efficient. These systems can now support thermal imaging, LiDAR scanning, and multi-camera arrays for use in scenarios ranging from perimeter defense to precision agriculture.

Portability has also seen major improvements. Deployable ground stations are now built into ruggedized cases or vehicle-mounted units, enabling rapid setup in remote or dynamic environments. Drone structures themselves are lighter, more modular, and able to withstand adverse weather conditions, including high winds and rain. Furthermore, automation features such as auto-hover, cable tension control, and GPS-assisted stabilization are increasing ease of use and reducing operator fatigue. Collectively, these advancements are encouraging adoption by smaller commercial operators and local agencies who previously found drone deployment too complex or cost-prohibitive.

Is Infrastructure Integration the Next Leap for Tethered Drone Utility?

The ability to integrate tethered drones into larger communication and surveillance networks is fast becoming a critical value proposition. In telecom, tethered drones equipped with small-cell base stations are being used as temporary communication relays in underserved or disaster-hit areas. These drone-borne towers can be deployed rapidly and repositioned as needed, providing an agile solution for network resilience and disaster recovery. Energy and utility companies are also incorporating tethered drone systems into site inspection routines, leveraging persistent aerial views to monitor critical infrastructure like pipelines, grids, and offshore platforms.

There’s also growing momentum in integrating tethered drones with AI-driven analytics platforms. Video feeds from high-altitude hover points are being fed directly into facial recognition, license plate scanning, and pattern-detection algorithms in real time. In border surveillance, tethered drones are now part of smart fencing systems, linked to ground sensors and automated alerts. As cities move toward more connected public safety systems, tethered drones are emerging as persistent aerial nodes in the urban Internet of Things (IoT) ecosystem. These trends are driving R&D into longer tethers, increased altitude capabilities, and enhanced integration with mobile command units and remote operating consoles.

What’s Fueling the Soaring Demand for Tethered Drone Systems Globally?

The growth in the tethered drones market is driven by several factors directly linked to technological advancements, operational requirements, and mission-specific reliability. First, the need for persistent surveillance and long-duration aerial monitoring in defense, law enforcement, and emergency response scenarios has pushed demand for systems that can remain aloft indefinitely without battery constraints. Second, enhancements in tether design-especially lightweight, high-capacity fiber-optic and copper hybrids-have expanded the functional payload range and communication fidelity of these systems.

Third, increasing security concerns at large events, borders, and critical infrastructure sites have led to the adoption of tethered drones as part of integrated surveillance strategies. Fourth, telecom and utility sectors are leveraging tethered drones for rapid deployment of temporary communication nodes and site assessments, especially in regions lacking infrastructure. Fifth, the ability to comply with strict aviation regulations more easily than free-flying drones is accelerating adoption in sensitive and urban areas. Lastly, growing interest in autonomous and semi-autonomous tethered platforms-supported by AI, cloud computing, and edge analytics-is opening up new commercial use cases, from media coverage to environmental monitoring. These combined forces are driving significant momentum in a market defined by stability, endurance, and tactical reliability.

SCOPE OF STUDY:

The report analyzes the Tethered Drones market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Multi-Copter Tethered Drones, Quadcopter Tethered Drones); End-Use (Defense End-Use, Telecommunication End-Use, Inspection & Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â