¼¼°èÀÇ K-12 ·Îº¿ ŸŶ ½ÃÀå
K-12 Robotic Toolkits
»óǰÄÚµå : 1795253
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 166 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF & Excel (Single User License)
US $ 17,550 £Ü 24,701,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries)


Çѱ۸ñÂ÷

K-12 ·Îº¿ ŸŶ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 21¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 5¾ï 4,930¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â K-12 ·Îº¿ ŸŶ ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 24.7%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 21¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¸ÞÄ¿´ÏÄà ·Îº¸Æ½½º´Â CAGR 22.1%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 12¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±³À°¿ë ·Îº¸Æ½½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 28.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 4,440¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 23.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ K-12 ·Îº¿ ŸŶ ½ÃÀåÀº 2024³â¿¡ 1¾ï 4,440¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 23.5%·Î 2030³â±îÁö 3¾ï 1,650¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 22.2%¿Í 21.6%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 17.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ K-12 ·Îº¿ ŸŶ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Ä¿¸®Å§·³ °³ÇõÀº K-12 ·Îº¿ µµÀÔ¿¡ ¾î¶² º¯È­¸¦ °¡Á®¿À°í Àִ°¡?

Àü ¼¼°è ±³À° °³ÇõÀº À¯Ä¡¿øºÎÅÍ °íµîÇб³±îÁö ±³½Ç¿¡ ·Îº¿À» µµÀÔÇϰí ÅëÇÕÇÏ´Â ¹æ½Ä¿¡ Àü·Ê ¾ø´Â º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ¾Ï±â½Ä ÇнÀÀº »ç¶óÁö°í, ¹®Á¦Çذá´É·Â, ºñÆÇÀû »ç°í, Çù¾÷ µîÀÇ ´É·ÂÀ» Ű¿ì´Â üÇèÇü ÇнÀÀÌ ÁÖ·ù¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ¹Ì±¹, µ¶ÀÏ, Çѱ¹, ½Ì°¡Æ÷¸£ µîÀÇ ±¹°¡¿¡¼­´Â Á¤ºÎ°¡ Àü Çг⿡¼­ STEM ´É·Â ½ÀµæÀ» Àǹ«È­Çϰí ÀÖÀ¸¸ç, ·Îº¿°øÇÐÀº ÀÌ·¯ÇÑ º¯È­ÀÇ Áß½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀúÇг⠶§ºÎÅÍ ºí·Ï ±â¹Ý ÇÁ·Î±×·¡¹Ö µµ±¸³ª ±¸Ã¼ÀûÀÎ ·Îº¿À» µµÀÔÇÏ¸é ¾ÆÀ̵éÀº ¹«¸® ¾øÀÌ ÄÚµùÀÇ ¿ø¸®¸¦ ÀÍÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÆÐ·¯´ÙÀÓÀÇ º¯È­´Â °³Á¤µÈ ±¹°¡ ±³À°°úÁ¤¿¡ ·Îº¿°øÇÐÀ» ÇÙ½É ¿ä¼Ò·Î Á¤½ÄÀ¸·Î Æ÷ÇÔ½ÃÅ´À¸·Î½á Çб³ÀÇ ´ë·® Á¶´Þ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±³À°ÀÚµéÀº ¼öÇÐ, ¹°¸®ÇÐ, ÄÄÇ»ÅÍ °úÇаú °°Àº °ú¸ñÀ» ¸Å·ÂÀûÀÎ ¹æ½ÄÀ¸·Î À¶ÇÕÇÏ°í ´ÙÇÐÁ¦Àû ÇнÀÀ» ÃËÁøÇϱâ À§ÇØ ·Îº¿°øÇÐÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ·Îº¿ °øÇÐÀº ´õ ÀÌ»ó ¹æ°ú ÈÄ Å¬·´À̳ª ¿¤¸®Æ® »ç¸³ ±³À° ±â°ü¿¡ ±¹ÇÑµÈ °ÍÀÌ ¾Æ´Ï¶ó °ø¸³Çб³, Áö¿ª ÇнÀ ¼¾ÅÍ, Â÷ÅÍ ±³À° ±â°üÀÇ ±³½Ç¿¡¼­ ºü¸£°Ô Ç¥ÁØ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù. ÃÖ÷´Ü ÇнÀ ÀÚ¿ø¿¡ ´ëÇÑ Á¢±ÙÀ» ¹ÎÁÖÈ­ÇÏ·Á´Â ¿òÁ÷ÀÓÀº ±³À°ºÎ°¡ ¿¡µàÅ×Å© ±â¾÷µé°ú Çù·ÂÇÏ¿© Àú·ÅÇÑ °¡°Ý, Áö¿ª ¹ÐÂøÇü, Ä¿¸®Å§·³¿¡ ºÎÇÕÇÏ´Â ·Îº¿°øÇРŰƮ¸¦ ¸¸µéµµ·Ï Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ±³»çµéÀº µðÁöÅÐ ¼ö¾÷ °èȹ°ú Ä¿¹Â´ÏƼ Æ÷·³ÀÇ Áö¿øÀ» ¹Þ¾Æ ÀÌ Å°Æ®¸¦ È¿°úÀûÀ¸·Î µµÀÔÇÒ ¼ö ÀÖµµ·Ï ±³À°À» ¹Þ°í ÀÖ½À´Ï´Ù. ¸¹Àº Áö¿ª¿¡¼­ ·Îº¿°øÇÐÀ» Áß½ÉÀ¸·Î ÇÑ Àü±¹ ´ëȸ¿Í STEM ¹Ú¶÷ȸ°¡ °³ÃֵǾî ÇлýµéÀÌ ¿£Áö´Ï¾î¸µ°ú ÇÁ·Î±×·¡¹Ö ºÐ¾ß¿¡ ±íÀº °ü½ÉÀ» °®µµ·Ï µ¿±â¸¦ ºÎ¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ä¿¸®Å§·³ °³Çõ, ±³»çÀÇ ±ÇÇÑ ºÎ¿©, Á¶Á÷Àû Áö¿øÀÇ À¶ÇÕÀº À¯Ä¡¿øºÎÅÍ °íµîÇб³±îÁö ±³À° Àü¹Ý¿¡ °ÉÃÄ ·Îº¿°øÇÐÀ» ±¤¹üÀ§ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ´Â ºñ¿ÁÇÑ Åä¾çÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.

¿¡µàÅ×Å© ´ë±â¾÷°ú ½ºÅ¸Æ®¾÷ÀÌ Çõ½Å¿¡ ¹ÚÂ÷¸¦ °¡ÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

K-12 ·Îº¿°øÇÐ ÅøÅ¶ »ê¾÷Àº ±âÁ¸ ¿¡µàÅ×Å© ´ë±â¾÷°ú ¹ÎøÇÑ ½ºÅ¸Æ®¾÷ÀÌ Á¡Á¡ ´õ Á¤±³ÇÏ°í »ç¿ëÇϱ⠽¬¿î ÇнÀ µµ±¸¸¦ Á¦°øÇϱâ À§ÇØ °æÀïÇÏ´Â Çõ½ÅÀÇ °ÝÀüÁö°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅøÅ¶Àº ´Ü¼øÇÑ ±â°è½Ä Àå³­°¨¿¡¼­ ÀΰøÁö´É, À½¼º ÀνÄ, Ŭ¶ó¿ìµå ±â¹Ý ÇнÀ °ü¸® ½Ã½ºÅÛÀ» ÅëÇÕÇÑ º¹ÀâÇϰí ÀÎÅÍ·¢Æ¼ºêÇÑ Ç÷§ÆûÀ¸·Î ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ±³½Ç¿¡¼­ ÀϹÝÀûÀ¸·Î »ç¿ëµÇ´Â ¸ð¹ÙÀÏ ±â±â ¹× Å©·ÒºÏ°ú ȣȯµÇ´Â ¸ðµâ½Ä ·Îº¿ °øÇÐ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ôÀ¸¸ç, ÇлýµéÀÌ ½±°Ô Á¶¸³, ÄÚµù, ¹Ýº¹ÇÒ ¼ö ÀÖ´Â ¸ðµâ½Ä ·Îº¿ °øÇÐ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô½À´Ï´Ù. ÀÌ ½ºÅ¸Æ®¾÷Àº »ç¿ëÀÚ Á᫐ ¼³°è¸¦ Ȱ¿ëÇÏ¿© ƯÁ¤ ¿¬·É´ë, Ä¿¸®Å§·³ ±âÁØ, Áö¿ª ¾ð¾î ¼±È£µµ¿¡ µû¶ó ¸ÂÃãÇü ŰƮ¸¦ Á¦ÀÛÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ÁÖ¿ä ±â¾÷µéÀº Áõ°­Çö½Ç, °ÔÀÓÈ­ ¿£Áø, ÀûÀÀÇü Çǵå¹é ·çÇÁ µî ÷´Ü ±â¼úÀ» Á¦Ç°¿¡ ÅëÇÕÇϱâ À§ÇØ ¿¬±¸°³¹ß¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿ÀÇ ¼Ò½º ¼ÒÇÁÆ®¿þ¾îÀÇ È®»êÀ¸·Î ±³À°ÀÚ¿Í ÇнÀÀÚ°¡ µ¶Á¡ÀûÀÎ »ýŰ迡 ¾ô¸ÅÀÌÁö ¾Ê°í ŸŶÀÇ ±â´ÉÀ» º¯°æÇϰí È®ÀåÇÒ ¼ö ÀÖ°Ô µÈ °Íµµ Çõ½ÅÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °¢ Á¦Á¶¾÷üµéÀº Ưº°ÇÑ µµ¿òÀÌ ÇÊ¿äÇÑ ÇнÀÀÚ¸¦ À§ÇÑ Á¾ÇÕÀûÀΠŰƮ °³¹ß¿¡ ÁýÁßÇÏ¿© Æø³ÐÀº Á¢±Ù¼ºÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù. ±³½ÇÀÇ µðÁöÅÐ ÀÎÇÁ¶ó¿ÍÀÇ »óÈ£¿î¿ë¼ºµµ ¿ì¼±¼øÀ§ Áß ÇϳªÀ̸ç, »õ·Î¿î ŰƮ´Â °¡»ó ÇнÀ ȯ°æ ¹× ½º¸¶Æ®º¸µå¿Í ¿øÈ°ÇÏ°Ô µ¿±âÈ­µÇµµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ¸ÞÀÌÄ¿ ¹®È­¿Í DIY ±³À°ÀÇ ºÎ»óµµ µðÀÚÀο¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, 3D ÇÁ¸°ÆÃ ¿ä¼Ò¸¦ µµÀÔÇÑ Å°Æ®¿Í Ä¿¹Â´ÏƼ¿¡¼­ Á¶´ÞÇÑ ºÎǰÀÇ Áö¿øµµ µîÀåÇϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀº ÄÁÅÙÃ÷ Á¦ÀÛÀÚ ¹× ±³À°ÇÐ Àü¹®°¡¿Í ÆÄÆ®³Ê½ÊÀ» ¸Î°í ·Îº¿°øÇÐ Ç÷§ÆûÀ» ÇнÀ ¼º°ú ¹× ¿¬·Éº° ÀÎÁöÀû ÀÌÁ¤Ç¥¿¡ ¸Â°Ô Á¶Á¤Çϰí ÀÖ½À´Ï´Ù. ±³À°¿ë ·Îº¿¿¡ ´ëÇÑ º¥Ã³ ijÇÇÅÐÀÇ À¯ÀÔÀº Á¦Ç° °³¹ß Áֱ⸦ ´õ¿í °¡¼ÓÈ­ÇÏ¿© ²÷ÀÓ¾ø´Â ¾÷±×·¹À̵å¿Í »õ·Î¿î Á¦Ç°À» Ãâ½ÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀÇ ¹°°áÀº ÇнÀ °æÇèÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó Çб³¿Í Çкθ𰡠¾ÆÀ̵éÀ» À§ÇØ °¡Àå È¿°úÀûÀÎ Ãֽб³À° µµ±¸¸¦ ¿ä±¸ÇÏ°Ô µÇ¸é¼­ º¸±Þ·üµµ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

·Îº¿°øÇп¡ ´ëÇÑ Á¤ºÎ ¹× ±â°ü ÅõÀÚÀÇ ¿øµ¿·ÂÀº?

Àü ¼¼°è À¯Ä¡¿øºÎÅÍ °íµîÇб³±îÁöÀÇ ±³À° ½Ã½ºÅÛ¿¡¼­ ·Îº¿ ŸŶÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â µ¥ ÀÖ¾î Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿Í Á¶Á÷ÀûÀÎ ÅõÀÚ°¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¿©·¯ Áö¿ªÀÇ Á¤Ã¥ ÀÔ¾ÈÀÚµéÀº ÀÚµ¿È­, AI, µðÁöÅÐ À¯Ã¢¼ºÀ¸·Î Çü¼ºµÇ´Â ³ëµ¿·ÂÀ» À§ÇØ ¹Ì·¡ ¼¼´ë¸¦ Áغñ½Ã۱â À§ÇÑ Àü·«Àû ¿ì¼±¼øÀ§·Î ·Îº¿°øÇÐ ±³À°À» °í·ÁÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ±³À° ¿¹»êÀº ·Îº¿°øÇÐ ÇÁ·Î±×·¥, ÀÎÇÁ¶ó, ±³»ç ¾ç¼º¿¡ ¸¹Àº ¿¹»êÀ» ¹èÁ¤ÇÏ´Â ¹æÇâÀ¸·Î ÀçÆíµÇ°í ÀÖ½À´Ï´Ù. ¹Ì±¹¿¡¼­´Â ŸÀÌÆ² I°ú ESSER¿Í °°Àº ¿¬¹æ ¹× ÁÖ Á¤ºÎ ÀÚ±Ý Áö¿ø ¸ÞÄ¿´ÏÁòÀ» ÅëÇØ µµ½Ã¿Í ³óÃÌ Çб³ ¸ðµÎ ·Îº¿ °øÇÐ ÅøÅ¶À» È®º¸Çϰí ÷´Ü ±â¼úÀ» Àü¸é¿¡ ³»¼¼¿î ÇнÀ ¸ðµ¨À» µµÀÔÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. À¯·´¿¬ÇÕ(EU)¿¡¼­´Â Erasmus+¿Í Horizon EuropeÀÇ Æ² ¾Æ·¡ ±¹°æÀ» ÃÊ¿ùÇÑ Çù·ÂÀ» ÅëÇØ ·Îº¿°øÇÐÀ» Áß½ÉÀ¸·Î ÇÑ STEM Ä¿¸®Å§·³°ú ±³»ç À̵¿ ÇÁ·Î±×·¥ÀÌ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. Àεµ¿Í °°Àº ±¹°¡¿¡¼­´Â Atal Tinkering Labs¿Í °°Àº ÀÌ´Ï¼ÅÆ¼ºê¸¦ ÅëÇØ ¹Î°ü ÆÄÆ®³Ê½ÊÀ» Ȱ¿ëÇϰí, ·Îº¿ °øÇРŰƮ ¹èÆ÷ ¹× Áö¿ª ±³À°Àڵ鿡 ´ëÇÑ ÀÚ±Ý Áö¿øÀ» ÅëÇØ °ø¸³Çб³¿¡ Çõ½Å ¹®È­ÀÇ ¾¾¾ÑÀ» »Ñ¸®°í ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î ÀΰøÁö´É ±³À°¿¡ ÁßÁ¡À» µÎ°í ÀÖ´Â Áß±¹¿¡¼­´Â Á¤ºÎÀÇ Áö½Ã¿¡ µû¶ó ¼öõ °³ÀÇ ÃÊÁßµî ±³À°±â°ü¿¡ ·Îº¿°øÇÐ ½ÇÇè½ÇÀÌ ¼³Ä¡µÇ¾î ÀÖ½À´Ï´Ù. ±â°ü Á¶´ÞÀº ±¹°¡ ÀÎÁõ ±âÁØ¿¡ ·Îº¿ °øÇÐ ±³À°À» Æ÷ÇÔÇÏ´Â ÇÁ·¹ÀÓ¿öÅ©¿¡ ÀÇÇØ ´õ¿í µÞ¹ÞħµÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ÀÌ·¯ÇÑ ÅõÀÚ°¡ À¯ÀÍÇÒ »Ó¸¸ ¾Æ´Ï¶ó Çб³°¡ ±ÔÁ¤ Áؼö¿Í °æÀï·ÂÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ±¸±ÛÀ̳ª ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®¿Í °°Àº ±â¾÷µéÀº ·Îº¿ ŰƮ¿Í ¿Â¶óÀÎ ±³À° Ç÷§Æû Á¦°ø µî ±³À° Áö¿ø Ȱµ¿À» ÈÄ¿øÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±¹Á¦ ¿øÁ¶ ¹× °³¹ß ÇÁ·Î±×·¥Àº µðÁöÅÐ °ÝÂ÷(Á¤º¸ °ÝÂ÷)¸¦ ÇØ¼ÒÇϱâ À§ÇØ ±³À°ÀÌ ºÎÁ·ÇÑ Áö¿ª¿¡ Àúºñ¿ëÀÇ ·Îº¿°øÇÐ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â µ¥ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù. ±³»çÀÇ Àü¹®¼º °³¹ß¿¡µµ ¿¹»êÀÌ Ã¥Á¤µÇ¾î ÀÖÀ¸¸ç, ·Îº¿°øÇÐÀ» È¿°úÀûÀÎ ±³À° µµ±¸·Î µµÀÔÇϱâ À§ÇÑ ±³À°Àû ÀڽۨÀ» ³ôÀ̱â À§ÇÑ ¿öÅ©¼ó°ú ÀÚ°Ý ÀÎÁõÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´Ù°¢ÀûÀÎ ÅõÀÚ¸¦ ÅëÇØ ·Îº¿ ±³À°Àº º¸´Ù °øÆòÇϰí, È®Àå °¡´ÉÇϸç, ´Ù¾çÇÑ ÇнÀ ȯ°æ¿¡ ÅëÇÕµÉ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¼¼°è K-12 ·Îº¿°øÇÐ ÅøÅ¶ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀϱî?

¼¼°è K-12 ·Îº¿ ŸŶ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ÁøÈ­ÇÏ´Â ±³À° ¿ì¼±¼øÀ§, ±³À° ±â°ü ¹× ¼ÒºñÀÚÀÇ ±¸¸Å Çൿ º¯È­¿¡ ±â¹ÝÇÑ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Àú·ÅÇÑ °¡°ÝÀÇ ¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯, ½º¸¶Æ® ¼¾¼­, ¿ÀÇ ¼Ò½º ÇÁ·Î±×·¡¹Ö ȯ°æÀ» ½±°Ô ±¸ÇÒ ¼ö ÀÖ°Ô µÇ¸é¼­ ·Îº¿ ±³À°¿¡ ´ëÇÑ ÁøÀÔÀ庮ÀÌ Å©°Ô ³·¾ÆÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ ¸ðµç ÇгâÀÇ ÇнÀÀÚ¿¡°Ô ÀûÇÕÇÑ ÄÄÆÑÆ®Çϰí Á÷°üÀûÀ̸ç ÀÎÅÍ·¢Æ¼ºêÇÑ Å°Æ®¸¦ Á¦ÀÛÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ±³À°±â°üÀº ÄÚµù, ³í¸®Àû Ãß·Ð, STEMÀÇ ÅëÇÕÀ» ÃËÁøÇÏ´Â µµ±¸¿¡ ÅõÀÚÇÔÀ¸·Î½á µðÁöÅÐ ±â¼ú °³¹ßÀÇ ±ä±ÞÇÑ ¿ä±¸¿¡ ºÎÀÀÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Çб³´Â ÇлýµéÀÌ ÀÚµ¿È­ÀÇ ¿µÇâÀ» ¹Þ´Â ¹Ì·¡¿¡ ´ëºñÇÒ ¼ö ÀÖµµ·Ï ÁغñÇØ¾ß Çϸç, Ä¿¸®Å§·³ ¼³°è¿Í ÀÎÇÁ¶ó ¾÷±×·¹ÀÌµå ¸ðµÎ¿¡¼­ ·Îº¿°øÇÐÀ» ¿ì¼±¼øÀ§¿¡ µÎµµ·Ï Ã˱¸Çϰí ÀÖ½À´Ï´Ù. °³ÀÎÈ­ ÇнÀÀÇ Áõ°¡ Ãß¼¼´Â ŸŶ ¼³°è¿¡µµ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, Á¦Á¶¾÷ü´Â ÇлýÀÇ ´É·Â°ú ÇнÀ Æ®·»µå¿¡ µû¶ó ÀûÀÀÇü ÇнÀ °æ·Î¸¦ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ¼ÒºñÀÚ Ãø¸é¿¡¼­´Â °¡Á¤ ÇнÀÀ» Áö¿øÇϰí Çо÷¿¡¼­ °æÀï ¿ìÀ§¸¦ Á¦°øÇÏ´Â ±³À°¿ë ŰƮ¸¦ ã´Â ºÎ¸ðµéÀÌ ´Ã°í ÀÖ½À´Ï´Ù. Ȩ½ºÄ𸵰ú ¿ø°Ý ±³À° ¸ðµ¨ÀÇ ºÎ»óÀ¸·Î ¼ÒºñÀÚ µî±Þ ·Îº¿ °øÇРŰƮ, ƯÈ÷ Çб³ Ä¿¸®Å§·³°ú Àαâ ÀÖ´Â ÀÎÁõ ÇÁ·Î±×·¥¿¡ ºÎÇÕÇϴ ŰƮÀÇ ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ±³½Ç ±Ô¸ð°¡ Ä¿Áö°í ½Ã°£ÀÌ ºÎÁ·ÇÑ ±³»çµéÀº ¼ö¾÷ °èȹÀÌ ³»ÀåµÇ¾î ÀÖ°í, ÀÚµ¿ Æò°¡°¡ °¡´ÉÇϸç, ÃÖ¼ÒÇÑÀÇ ¼³Ä¡°¡ ÇÊ¿äÇÑ ·Îº¿ Ç÷§Æû¿¡ ¸Å·ÂÀ» ´À³¢°í ÀÖ½À´Ï´Ù. ÇÁ·ÎÁ§Æ® ±â¹Ý ÇнÀ°ú ´ÙÇÐÁ¦Àû ±³À°¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ °ü½ÉÀº ¸ðµâ½Ä ¹× °ú¸ñ °£ ȣȯ¼ºÀ» Á¦°øÇÏ´Â ·Îº¿ ŸŶÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±â¾÷ÀÇ CSR ÇÁ·Î±×·¥°ú NGO ÁÖµµÀÇ STEM ¾Æ¿ô¸®Ä¡ ÀÌ´Ï¼ÅÆ¼ºê´Â ƯÈ÷ °³¹ßµµ»ó±¹¿¡¼­ ·Îº¿ ŸŶÀÇ »õ·Î¿î À¯Åë ä³Î°ú »ç¿ëÀÚ ±â¹ÝÀ» âÃâÇϰí ÀÖ½À´Ï´Ù. ±â¼úÀû Áغñ, Á¦µµÀû ±ä±Þ¼º, ¼ÒºñÀÚ ¼ö¿ä µî ÀÌ·¯ÇÑ ÈûÀÇ ¼ö·ÅÀº ÀÌ ¿ªµ¿ÀûÀÎ ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦Ç° À¯Çü(¸ÞÄ¿´ÏÄà ·Îº¸Æ½½º, ±³À°¿ë ·Îº¸Æ½½º), À¯Çü(°úÇÐ, ±â¼ú, °øÇÐ, ¼öÇÐ, ±âŸ À¯Çü), Çб³ ·¹º§(°íµîÇб³, ÁßÇÐ, À¯Ä¡¿ø/ÃʵîÇб³)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°è °íÀ¯ÀÇ SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global K-12 Robotic Toolkits Market to Reach US$2.1 Billion by 2030

The global market for K-12 Robotic Toolkits estimated at US$549.3 Million in the year 2024, is expected to reach US$2.1 Billion by 2030, growing at a CAGR of 24.7% over the analysis period 2024-2030. Mechanical Robotics, one of the segments analyzed in the report, is expected to record a 22.1% CAGR and reach US$1.2 Billion by the end of the analysis period. Growth in the Educational Robotics segment is estimated at 28.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$144.4 Million While China is Forecast to Grow at 23.5% CAGR

The K-12 Robotic Toolkits market in the U.S. is estimated at US$144.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$316.5 Million by the year 2030 trailing a CAGR of 23.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 22.2% and 21.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 17.3% CAGR.

Global K-12 Robotic Toolkits Market - Key Trends & Drivers Summarized

How Are Curriculum Reforms Transforming K-12 Robotics Adoption?

Educational reforms worldwide are bringing unprecedented changes to the way robotics is being introduced and integrated into K-12 classrooms. Traditional rote learning is being phased out in favor of hands-on, experiential learning that fosters problem-solving, critical thinking, and collaboration-skills that robotic toolkits are uniquely positioned to nurture. In countries such as the United States, Germany, South Korea, and Singapore, governments are mandating STEM competencies across all grade levels, and robotics plays a central role in this transformation. For instance, the inclusion of block-based programming tools and tangible robots in early grades helps familiarize children with coding principles without overwhelming them. This paradigm shift has led to the formal inclusion of robotics as a core component in revised national curricula, spurring mass procurement by schools. Furthermore, educators are increasingly incorporating robotics to facilitate interdisciplinary learning, blending subjects like math, physics, and computer science in engaging ways. Robotics is no longer restricted to after-school clubs or elite private institutions-it is rapidly becoming a standard tool in classrooms of public schools, rural learning centers, and charter institutions. The drive to democratize access to cutting-edge learning resources is also pushing ministries of education to partner with edtech firms to create affordable, localized, and curriculum-aligned robotics kits. Teachers are being trained to deploy these kits effectively, supported by digital lesson plans and community forums. In many regions, national competitions and STEM fairs centered around robotics are motivating students to take a deeper interest in engineering and programming fields. This fusion of curriculum reform, teacher empowerment, and institutional backing is creating fertile ground for the widespread integration of robotics across the K-12 educational landscape.

Why Are EdTech Giants and Startups Racing to Innovate?

The K-12 robotics toolkit industry has become an innovation battleground where established edtech giants and agile startups are competing to deliver increasingly sophisticated and accessible learning tools. These toolkits are evolving beyond simple mechanical toys into complex, interactive platforms that incorporate artificial intelligence, voice recognition, and cloud-based learning management systems. Modular robotics systems that allow students to build, code, and iterate with ease are in high demand, especially those compatible with mobile devices and Chromebooks commonly used in classrooms. Startups are leveraging user-centered design to produce customizable kits that cater to specific age groups, curriculum standards, and regional language preferences. Meanwhile, larger players are investing in research and development to integrate cutting-edge technologies such as augmented reality, gamification engines, and adaptive feedback loops into their products. Innovation is also being driven by the growing prevalence of open-source software, allowing educators and learners to modify and extend toolkit functionalities without being locked into proprietary ecosystems. In addition, manufacturers are focusing on creating inclusive kits that address learners with special needs, ensuring broader accessibility. Interoperability with classroom digital infrastructure is another priority, with new kits designed to sync seamlessly with virtual learning environments and smartboards. The rise of maker culture and DIY education is also influencing design, with kits incorporating 3D printing elements and support for community-sourced components. Companies are forming partnerships with content creators and pedagogical experts to align robotics platforms with learning outcomes and age-specific cognitive milestones. The influx of venture capital into educational robotics has further accelerated product development cycles, resulting in a constant stream of upgrades and new releases. This innovation surge is not only enhancing the learning experience but also increasing the adoption rate as schools and parents seek the latest and most effective educational tools for their children.

What Is Driving Government and Institutional Spending in Robotics?

Government initiatives and institutional investments are playing a crucial role in propelling the adoption of robotics toolkits within K-12 education systems globally. Policymakers across various regions are increasingly viewing robotics education as a strategic priority to prepare future generations for a workforce shaped by automation, AI, and digital fluency. As a result, education budgets are being restructured to allocate substantial funding for robotics programs, infrastructure, and teacher training. In the United States, federal and state funding mechanisms such as Title I and ESSER have enabled schools in both urban and rural areas to acquire robotics toolkits and implement tech-forward learning models. In the European Union, cross-border collaboration under the Erasmus+ and Horizon Europe frameworks is promoting robotics-centric STEM curricula and teacher mobility programs. Countries like India are leveraging public-private partnerships through initiatives like Atal Tinkering Labs to seed innovation culture in public schools by distributing robotics kits and funding local educators. Similarly, China’s emphasis on artificial intelligence education has led to the creation of robotics labs in thousands of primary and secondary institutions under government mandates. Institutional procurement is further supported by frameworks that include robotics education in national accreditation standards, thereby making such investments not only beneficial but essential for schools to maintain compliance and competitiveness. Philanthropic contributions from tech corporations are also shaping the funding landscape, with companies like Google and Microsoft sponsoring educational outreach that includes the provision of robotic kits and online training platforms. Moreover, international aid and development programs are focusing on equipping underserved regions with low-cost robotics solutions to bridge digital divides. Teacher professional development is another area of institutional spending, with workshops and certifications aimed at enhancing pedagogical confidence in deploying robotics as an effective teaching tool. These multi-pronged investments are ensuring that robotics education becomes more equitable, scalable, and integrated across diverse learning environments.

What Is Fueling the Growth in the Global K-12 Robotics Toolkit Market?

The growth in the global K-12 robotics toolkit market is driven by several factors grounded in technological advancements, evolving educational priorities, and changes in purchasing behavior among institutions and consumers. The increasing availability of low-cost microcontrollers, smart sensors, and open-source programming environments has significantly lowered the entry barrier for robotics education. These technologies enable the creation of compact, intuitive, and interactive kits that are suitable for learners across all grade levels. Educational institutions are responding to the urgent need for digital skill-building by investing in tools that promote coding, logical reasoning, and STEM integration, all of which are facilitated effectively through robotics. Furthermore, schools are under pressure to prepare students for automation-impacted futures, pushing them to prioritize robotics in both curriculum design and infrastructure upgrades. The growing trend of personalized learning has also influenced toolkit design, with manufacturers incorporating adaptive learning pathways that cater to different student abilities and learning speeds. Meanwhile, on the consumer front, parents are increasingly seeking educational kits that support at-home learning and provide a competitive edge in academics. The rise of homeschooling and remote education models has expanded the market for consumer-grade robotics kits, particularly those aligned with school curricula or popular certification programs. Teachers, faced with rising classroom sizes and limited time, are gravitating toward robotics platforms that offer built-in lesson plans, automated assessments, and minimal setup requirements. Global interest in project-based learning and interdisciplinary education is further driving the adoption of robotic toolkits that offer modularity and cross-subject compatibility. Additionally, corporate CSR programs and NGO-led STEM outreach initiatives are creating new distribution channels and user bases for robotic toolkits, especially in developing regions. The convergence of these forces-technological readiness, institutional urgency, and consumer demand-is powering sustained growth in this dynamic market.

SCOPE OF STUDY:

The report analyzes the K-12 Robotic Toolkits market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product Type (Mechanical Robotics, Educational Robotics); Type (Science, Technology, Engineering, Mathematics, Other Types); School Level (High School, Middle School, Pre-K / Elementary School)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 32 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â