¼¼°èÀÇ Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀå
Predictive Disease Analytics
»óǰÄÚµå : 1794655
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 214 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,701,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Áúº´ ¿¹Ãø ºÐ¼® ¼¼°è ½ÃÀåÀº 2030³â±îÁö 104¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 31¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Áúº´ ¿¹Ãø ºÐ¼® ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 22.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 104¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼ÒÇÁÆ®¿þ¾î ±¸¼º¿ä¼Ò´Â CAGR 23.3%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 68¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼­ºñ½º ±¸¼º¿ä¼Ò ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ CAGR·Î 20.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8¾ï 1,810¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 21.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀåÀº 2024³â¿¡ 8¾ï 1,810¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 16¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 21.0%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 20.4%¿Í 19.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 15.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Áúº´ ¿¹Ãø ºÐ¼®ÀÌ ¿¹¹æ ÀÇ·áÀÇ ¹Ì·¡¸¦ ¾î¶»°Ô ¹Ù²Ü °ÍÀΰ¡?

Áúº´ ¿¹Ãø ºÐ¼®Àº µ¥ÀÌÅÍ ±â¹Ý ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© Áúº´ÀÇ Á¶±â ¹ß°ß, ¹ßº´ ¿¹Ãø, ¿¹¹æ Ä¡·áÀÇ °³ÀÎÈ­¸¦ °¡´ÉÇϰÔÇÔÀ¸·Î½á ÀÇ·á ¼­ºñ½º Á¦°øÀ» ºü¸£°Ô À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ º¯È­ÀÇ ÇÙ½ÉÀº ÀüÀڰǰ­±â·Ï(EHR), ÀÇ·á ¿µ»ó, ¿þ¾î·¯ºí ¼¾¼­ µ¥ÀÌÅÍ, À¯Àüü ÇÁ·ÎÆÄÀÏ, °Ç°­ÀÇ »çȸÀû °áÁ¤¿äÀÎÀ¸·Î ±¸¼ºµÈ ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ®·Î ÇнÀµÈ ¸Ó½Å·¯´× ¸ðµ¨, Åë°èÀû ȸ±ÍºÐ¼® µµ±¸, AI ±â¹Ý ÀÇ»ç°áÁ¤ ½Ã½ºÅÛÀÔ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ÆÐÅÏ Àνİú È®·üÀû ¸ðµ¨¸µÀ» ÅëÇØ ´ç´¢º´, ½ÉÇ÷°üÁúȯ, ¾Ï°ú °°Àº ¸¸¼ºÁúȯ¿¡ °É¸± À§ÇèÀÌ ³ôÀº °³ÀÎÀ» ½Äº°ÇÕ´Ï´Ù.

ÇöÀç ÀÌ Ã·´Ü Ç÷§ÆûÀº ÀÚ¿¬¾î ó¸®(NLP)¸¦ ÅëÇÕÇÏ¿© ºñÁ¤ÇüÈ­µÈ ÀÇ»çÀÇ ¸Þ¸ð¿Í ¿þ¾î·¯ºí ±â±âÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µ µ¥ÀÌÅÍ¿¡¼­ ÀÓ»óÀû ÀλçÀÌÆ®¸¦ ÃßÃâÇϰí ÀÖ½À´Ï´Ù. ¿¹Ãø µµ±¸´Â ¶ÇÇÑ Áúº´ÀÇ ÁøÇàÀ» ÃßÀûÇϰí Ä¡·á °á°ú¸¦ ½Ã¹Ä·¹À̼ÇÇϱâ À§ÇØ Á¾´ÜÀû µ¥ÀÌÅ͸¦ Ȱ¿ëÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, Á¾¾çÇп¡¼­´Â ¿¹Ãø ¸ðµ¨À» »ç¿ëÇÏ¿© Á¾¾çÀÇ Àç¹ß È®·üÀ» °áÁ¤Çϰí, ¼øÈ¯±âÇп¡¼­´Â ¾Ë°í¸®ÁòÀÌ »ýȰ½À°ü, ¹ÙÀÌÅ», ÁöÁú ÇÁ·ÎÇÊÀ» ±â¹ÝÀ¸·Î ½É±Ù°æ»ö À§ÇèÀ» ÃßÁ¤ÇÕ´Ï´Ù. ÀÌó·³ AI¿Í ¸ÂÃãÇü ÀÇ·áÀÇ À¶ÇÕÀº º¸´Ù Ÿ°ÙÆÃµÈ ½ºÅ©¸®´×, Ä¡·á °æ·ÎÀÇ ¿ì¼±¼øÀ§ °áÁ¤, Èı⠰³ÀÔÀ¸·Î ÀÎÇÑ °æÁ¦Àû ºÎ´ãÀÇ °¨¼Ò¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¿¹Ãø ºÐ¼®ÀÌ ÀÓ»ó°ú ¿î¿µ¿¡ °¡Àå Å« ¿µÇâÀ» ¹ÌÄ¡´Â ºÐ¾ß´Â?

¿¹Ãø ºÐ¼®Àº ¸¸¼ºÁúȯ °ü¸®, Á¤½Å°Ç°­, °¨¿°º´ °¨½Ã, º´¿ø ¿î¿µ µî ÀÓ»ó¿¡ ±í¼÷ÀÌ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ´ç´¢º´ Ä¡·á¿¡¼­´Â ¿¹Ãø Ç÷§ÆûÀÌ Æ÷µµ´ç ÆÐÅÏ, ½Ä»ç ÀÔ·Â, º¹¾à ¼øÀÀµµ¸¦ ºÐ¼®ÇÏ¿© ÀúÇ÷´çÀ̳ª °íÇ÷´çÀ» ¿¹ÃøÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ Àν¶¸° Åõ¿© ¹× »ýȰ½À°ü °³ÀÔÀ» »çÀü¿¡ Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¤½Å°Ç°­ ºÐ¾ß¿¡¼­´Â ¸ð¹ÙÀÏ ¾Û, ¼Ò¼È ¹Ìµð¾î Ȱµ¿, ¾ð¾î ÆÐÅÏ¿¡¼­ ³ªÅ¸³ª´Â Çൿ µ¿ÇâÀ» ¹ÙÅÁÀ¸·Î ¿ì¿ïÁõ ¿¡ÇǼҵå Àç¹ß ¹× ÀÚ»ì À§ÇèÀ» ¿¹ÃøÇϱâ À§ÇØ AI ¸ðµ¨À» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

COVID-19 ÆÒµ¥¹Í ±â°£ µ¿¾È À̵¿, Á¢ÃËÀÚ ÃßÀû, ±â»ó µ¥ÀÌÅ͸¦ Ȱ¿ëÇØ ¹ßº´ ÇÖ½ºÆÌ, ÁßȯÀÚ½Ç °¡µ¿·ü, °¨¿° °æ·Î¸¦ ¿¹ÃøÇϰí Áúº´ ¿¹º¸ ºÐ¼®ÀÌ Áß¿äÇÑ ¿ªÇÒÀ» Çß½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨Àº ÇöÀç °øÁߺ¸°Ç ½Ã½ºÅÛ¿¡¼­ Á¦µµÈ­µÇ¾î ÇâÈÄ Àμö°øÅëÀü¿°º´ ¹ß»ýÀ̳ª °èÀý¼º µ¶°¨ À¯Çà¿¡ ´ëºñÇϰí ÀÖ½À´Ï´Ù. º´¿øÀº ¿¹Ãø ÅøÀ» ÅëÇØ º´»ó °¡µ¿·ü, ÀÀ±Þ½Ç ±ÞÁõ, ÀçÀÔ¿ø À§Çè, °ø±Þ¸Á È¥¶õ µîÀ» ¿¹ÃøÇÏ¿© ÀÚ¿ø ¹èºÐÀ» ÃÖÀûÈ­Çϰí ÀÖ½À´Ï´Ù. Population Health Manager´Â ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ Ȱ¿ëÇÏ¿© ȯÀÚ ÄÚȣƮ ¼¼ºÐÈ­, ¾Æ¿ô¸®Ä¡ Ä·ÆäÀÎ ¼³°è, Ã¥ÀÓ Áø·á ȯ°æ¿¡¼­ À§Çè Á¶Á¤µÈ °á°ú¸¦ ´Þ¼ºÇϱâ À§ÇØ ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ ÅëÇÕ, À±¸®, ±ÔÁ¦´Â ¾î¶»°Ô µµÀÔ ±Ëµµ¸¦ Çü¼ºÇϰí Àִ°¡?

Áúº´ ¿¹Ãø ºÐ¼®ÀÇ È¿°ú¿Í È®À强Àº źźÇÑ µ¥ÀÌÅÍ ÅëÇÕ°ú »óÈ£¿î¿ë¼º¿¡ ´Þ·ÁÀÖ½À´Ï´Ù. ÀÇ·á ½Ã½ºÅÛÀº ÀÇ·á Á¤º¸ ±³È¯(HIE), API Áö¿ø µ¥ÀÌÅÍ ·¹ÀÌÅ©, º´¿ø, °Ë»ç½Ç, ¾à±¹, º¸Çè»ç, ¿ø°Ý ¸ð´ÏÅ͸µ µµ±¸ÀÇ Á¤Çü ¹× ºñÁ¤Çü µ¥ÀÌÅ͸¦ ÅëÇÕÇÏ´Â ¿¬°è µ¥ÀÌÅÍ ¸ðµ¨¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê Ç÷§Æû°ú ¿§Áö ÄÄÇ»ÆÃÀº ƯÈ÷ ±Þ¼º±â ÀÇ·á ȯ°æ¿¡¼­ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º ±â¾÷°úÀÇ Á¦ÈÞ¸¦ ÅëÇÑ À¯Àüü µ¥ÀÌÅÍ ÅëÇÕÀº Á¾¾çÇÐ, Èñ±ÍÁúȯ, ¾à¹°À¯ÀüüÇÐ ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ ¿¹ÃøÀÇ ±íÀ̸¦ ´õ¿í dzºÎÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

±×·¯³ª µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã, ¾Ë°í¸®ÁòÀÇ ÆíÇ⼺, ¼³¸í °¡´É¼º µîÀ» µÑ·¯½Ñ À±¸®Àû ¿ì·Á°¡ ±ÔÁ¦ ü°èÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. À¯·´ÀÇ ÀÏ¹Ý µ¥ÀÌÅÍ º¸È£ ±ÔÁ¤(GDPR), ¹Ì±¹ÀÇ HIPAA, Àεµ¿Í ºê¶óÁúÀÇ »õ·Î¿î µ¥ÀÌÅÍ º¸È£¹ýÀº °³¹ßÀڵ鿡°Ô °­·ÂÇÑ ¾Ïȣȭ, À͸íÈ­, µ¥ÀÌÅÍ ÃÖ¼ÒÈ­ ±â¼úÀ» ±¸ÇöÇϵµ·Ï Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦ ´ç±¹ ¶ÇÇÑ ÀÓ»óÀû °ËÁõ°ú ½ÇÁ¦ ¼¼°è¿¡¼­ÀÇ ½Å·Ú¼ºÀ» º¸ÀåÇϱâ À§ÇØ SaMD(software-as-a-medical-device) ÇÁ·¹ÀÓ¿öÅ© ÇÏ¿¡¼­ ¿¹Ãø ¸ðµ¨À» Æò°¡Çϰí ÀÖ½À´Ï´Ù. ¸ðµ¨ Åõ¸í¼º Á¡¼ö, ÀÓ»ó °¨»ç °¡´É¼º, ÆíÇ⼺ ¿ÏÈ­ Àü·« µîÀÇ ³ë·ÂÀº ¿¹Ãø ºÐ¼® º¥´õ¿¡°Ô ±â´ëµÇ´Â Ç¥ÁØÀÌ µÇ¾î°¡°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î ÀÓ»óÀÇ¿Í È¯ÀÚÀÇ ½Å·Ú°¡ Á¡Â÷ ½×¿©°¡°í ÀÖÀ¸¸ç, Àüü ÀÇ·á »ýŰ迡¼­ äÅÃÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.

¼¼°è Áúº´ ¿¹Ãø ºÐ¼® ½ÃÀå È®´ë ¿äÀÎÀº?

¸¸¼ºÁúȯÀÇ À¯º´·ü Áõ°¡, ÇコÄɾîÀÇ µðÁöÅÐÈ­, °¡Ä¡ ±â¹Ý ÄÉ¾î ¸ðµ¨·ÎÀÇ ÆÐ·¯´ÙÀÓ Àüȯ µîÀÌ ¼¼°è Áúº´ ¿¹ÈÄ ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ÀÇ·á ½Ã½ºÅÛÀº ºñ¿ëÀ» Àý°¨Çϸ鼭 °á°ú¸¦ °³¼±ÇÒ Çʿ䰡 ÀÖÀ¸¸ç, °íÀ§Ç豺À» Á¶±â¿¡ ½Äº°Çϰí ÁßÀç ÀÚ¿øÀ» È¿°úÀûÀ¸·Î °èÃþÈ­ÇÒ ¼ö ÀÖ´Â µµ±¸¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °í·ÉÈ­¿Í »ýȰ½À°üº´ÀÌ ÀÇ·á ÀÎÇÁ¶ó¿¡ ºÎ´ãÀ» ÁÖ´Â °¡¿îµ¥, ¿¹Ãø ºÐ¼®Àº ÀÇ·á ¼­ºñ½º Á¦°øÀÇ ÃÖÀûÈ­¿Í °Ç°­¼ö¸í ¿¬ÀåÀ» À§ÇØ ÇʼöÀûÀÎ °ÍÀ¸·Î ÀÔÁõµÇ°í ÀÖ½À´Ï´Ù.

¹Ì±¹ Ä¡·á¹ý(Cures Act), EU µðÁöÅÐ Çコ Àü·«(EU Digital Health Strategy), Áß±¹ ÀÇ·á Á¤º¸È­ °èȹ(China's Health Informatization Plan) µîÀÇ Á¤Ã¥À» ÅëÇØ µðÁöÅÐ Çコ Çõ½Å¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀº EHR µµÀÔ, AI ÅõÀÚ, ¿¹Ãø ¾Ë°í¸®Áò °³¹ß¿¡ ´ëÇÑ Àμ¾Æ¼ºê¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. EHR µµÀÔ, AI ÅõÀÚ, ¿¹Ãø ¾Ë°í¸®Áò Àü°³¿¡ Àμ¾Æ¼ºê¸¦ ºÎ¿©Çϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ °Ç°­¿¡ ÃÊÁ¡À» ¸ÂÃá ¿þ¾î·¯ºí, ¸ð¹ÙÀÏ °Ç°­ ¾Û, ¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µ(RPM)ÀÇ µîÀåÀº °íÇØ»óµµ Çൿ ¹× »ý¸®Àû µ¥ÀÌÅ͸¦ ¿¹Ãø ½Ã½ºÅÛÀ¸·Î Àü¼ÛÇÏ¿© Á¤È®µµ¿Í °³ÀÎÈ­¸¦ Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. Á¦¾à»ç ¹× º¸Çè»ç´Â ¿¹Ãø ºÐ¼®À» ÅëÇØ ÀÓ»ó½ÃÇè Âü¿©ÀÚ ½Äº°, º¹¾à ¼øÀÀµµ ¸ð´ÏÅ͸µ, Áý´Ü À§Ç豺 °ü¸® µî¿¡ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

ÀÇ·á IT ±â¾÷, Çмú ÀÇ·á ¼¾ÅÍ, AI ½ºÅ¸Æ®¾÷ °£ÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀº Çõ½Å ÆÄÀÌÇÁ¶óÀÎÀ» °¡¼ÓÈ­Çϰí, Áö¿ª °£ ÆÄÀÏ·µ µµÀÔÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. IBM Watson Health, Health Catalyst, Optum, Philips, SAS µî ÁÖ¿ä ±â¾÷µéÀº Àμö ¹× Ç÷§Æû ÅëÇÕÀ» ÅëÇØ ¿¹Ãø Æ÷Æ®Æú¸®¿À¸¦ È®ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÇ·áºñ Àý°¨, ÀÇ·á °á°ú °³¼±, °³ÀÔÀÇ °³º°È­¿¡ ´ëÇÑ ¾Ð¹ÚÀÌ Ä¿Áö¸é¼­ Áúº´ ¿¹Ãø ºÐ¼®Àº ¹Ì·¡ ÀÇ·á ½Ã½ºÅÛÀÇ ÇÙ½ÉÀÌ µÉ °ÍÀ̸ç, °í¼Òµæ ±¹°¡¿Í °³¹ßµµ»ó±¹ ¸ðµÎ¿¡¼­ µµÀÔÀÌ °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

±¸¼º¿ä¼Ò(¼ÒÇÁÆ®¿þ¾î, ¼­ºñ½º, Çϵå¿þ¾î), Àü°³(¿ÂÇÁ·¹¹Ì½º, Ŭ¶ó¿ìµå), ÃÖÁ¾»ç¿ëÀÚ(ÀÇ·á ÁöºÒÀÚ, ÇコÄɾî Á¦°øÀÚ, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Predictive Disease Analytics Market to Reach US$10.4 Billion by 2030

The global market for Predictive Disease Analytics estimated at US$3.1 Billion in the year 2024, is expected to reach US$10.4 Billion by 2030, growing at a CAGR of 22.2% over the analysis period 2024-2030. Software Component, one of the segments analyzed in the report, is expected to record a 23.3% CAGR and reach US$6.8 Billion by the end of the analysis period. Growth in the Service Component segment is estimated at 20.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$818.1 Million While China is Forecast to Grow at 21.0% CAGR

The Predictive Disease Analytics market in the U.S. is estimated at US$818.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.6 Billion by the year 2030 trailing a CAGR of 21.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 20.4% and 19.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 15.2% CAGR.

Global Predictive Disease Analytics Market - Key Trends & Drivers Summarized

How Is Predictive Disease Analytics Transforming the Future of Preventive Healthcare?

Predictive disease analytics is rapidly reshaping healthcare delivery by enabling early disease detection, forecasting outbreaks, and personalizing preventive care using data-driven algorithms. At the core of this transformation are machine learning models, statistical regression tools, and AI-based decision systems trained on vast datasets comprising electronic health records (EHRs), medical imaging, wearable sensor data, genomic profiles, and social determinants of health. These systems use pattern recognition and probabilistic modeling to identify individuals at elevated risk of developing chronic diseases such as diabetes, cardiovascular disorders, and cancer-often before symptoms appear.

Advanced platforms now integrate natural language processing (NLP) to extract clinical insights from unstructured physician notes and real-time monitoring data from wearable devices. Predictive tools also draw on longitudinal data to track disease progression and simulate treatment outcomes. For instance, in oncology, predictive models are used to determine tumor recurrence probabilities, while in cardiology, algorithms estimate risk for myocardial infarction based on lifestyle, vitals, and lipid profiles. The convergence of AI with personalized medicine is thus enabling more targeted screening, prioritizing care pathways, and reducing the economic burden of late-stage interventions.

In Which Areas Is Predictive Analytics Making the Deepest Clinical and Operational Impact?

Predictive analytics is having profound clinical applications across chronic disease management, mental health, infectious disease surveillance, and hospital operations. In diabetes care, predictive platforms analyze glucose patterns, dietary inputs, and medication adherence to forecast hypo- or hyperglycemic events. These insights enable proactive adjustments in insulin dosing or lifestyle interventions. In the area of mental health, AI models are being employed to predict depressive episode relapses or suicide risks based on behavioral trends from mobile apps, social media activity, and speech patterns.

In infectious disease control, predictive disease analytics played a vital role during the COVID-19 pandemic, forecasting outbreak hotspots, ICU occupancy, and transmission chains using mobility, contact-tracing, and weather data. These models are now being institutionalized in public health systems to prepare for future zoonotic outbreaks and seasonal influenza waves. At the operational level, hospitals use predictive tools to optimize resource allocation-forecasting bed occupancy, ER surges, readmission risks, and supply chain disruptions. Population health managers utilize these insights to segment patient cohorts, design outreach campaigns, and achieve risk-adjusted outcomes in accountable care environments.

How Are Data Integration, Ethics, and Regulation Shaping Adoption Trajectories?

The effectiveness and scalability of predictive disease analytics hinge on robust data integration and interoperability. Health systems are increasingly investing in Health Information Exchanges (HIEs), API-enabled data lakes, and federated data models that bring together structured and unstructured data from hospitals, labs, pharmacies, insurers, and remote monitoring tools. Cloud-native platforms and edge computing are enabling real-time data processing, especially in acute care settings. Genomic data integration, through partnerships with bioinformatics firms, is further enriching the predictive depth in oncology, rare disease, and pharmacogenomics applications.

However, ethical concerns surrounding data privacy, algorithmic bias, and explainability are shaping the regulatory framework. The General Data Protection Regulation (GDPR) in Europe, HIPAA in the U.S., and emerging data protection laws in India and Brazil are driving developers to implement strong encryption, anonymization, and data minimization techniques. Regulatory authorities are also evaluating predictive models under software-as-a-medical-device (SaMD) frameworks to ensure clinical validation and real-world reliability. Initiatives such as model transparency scores, clinical auditability, and bias mitigation strategies are becoming standard expectations for predictive analytics vendors. These developments are gradually fostering trust among clinicians and patients, catalyzing adoption across care ecosystems.

What Factors Are Fueling the Expansion of the Global Predictive Disease Analytics Market?

The growth in the global predictive disease analytics market is being fueled by rising chronic disease prevalence, increasing healthcare digitalization, and a paradigm shift toward value-based care models. Health systems are under pressure to improve outcomes while controlling costs, which is driving demand for tools that can identify high-risk individuals early and stratify intervention resources effectively. As aging populations and lifestyle-related diseases strain healthcare infrastructure, predictive analytics is proving essential in optimizing care delivery and extending healthy life expectancy.

Government support for digital health transformation-through policies such as the U.S. Cures Act, the EU Digital Health Strategy, and China’s Health Informatization Plan-is incentivizing EHR adoption, AI investment, and predictive algorithm deployment. Simultaneously, the rise of health-focused wearables, mobile health apps, and remote patient monitoring (RPM) is feeding high-resolution behavioral and physiological data into predictive systems, improving accuracy and personalization. Pharmaceutical and insurance companies are leveraging predictive analytics to identify trial participants, monitor medication adherence, and manage population risk pools.

Strategic partnerships between health IT firms, academic medical centers, and AI startups are accelerating innovation pipelines and scaling pilot deployments across geographies. Major players such as IBM Watson Health, Health Catalyst, Optum, Philips, and SAS are expanding predictive portfolios through acquisitions and platform integrations. With rising pressure to contain healthcare costs, improve care outcomes, and personalize interventions, predictive disease analytics is expected to be a cornerstone of future health systems, with adoption accelerating in both high-income and developing countries.

SCOPE OF STUDY:

The report analyzes the Predictive Disease Analytics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Software Component, Service Component, Hardware Component); Deployment (On-Premise Deployment, Cloud Deployment); End-Use (Healthcare Payer End-Use, Healthcare Providers End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â