¼¼°èÀÇ Á¤¹Ð Á¦ÃÊ ½ÃÀå
Precision Weeding
»óǰÄÚµå : 1794654
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 263 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF & Excel (Single User License)
US $ 17,550 £Ü 24,701,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries)


Çѱ۸ñÂ÷

Á¤¹Ð Á¦ÃÊ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 39¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 20¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Á¤¹Ð Á¦ÃÊ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 11.6%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 39¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÀâÃÊ °ËÃâ Ç÷§ÆûÀº CAGR 12.9%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 29¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀâÃÊ °ü¸® ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 8.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 5¾ï 5,260¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 15.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Á¤¹Ð Á¦ÃÊ ½ÃÀåÀº 2024³â¿¡ 5¾ï 5,260¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 15.9%·Î 2030³â±îÁö 8¾ï 2,580¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 8.3%¿Í 10.4%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 9.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Á¤¹Ð Á¦ÃÊ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Á¤¹Ð Á¦ÃÊ´Â ¼¾¼­ ±â¹Ý ÀÎÅÚ¸®Àü½º¸¦ ÅëÇØ ³óÀÛ¾÷ÀÇ È¿À²¼ºÀ» ¾î¶»°Ô ÀçÁ¤ÀÇÇϰí Àִ°¡?

Á¤¹Ð Á¦ÃÊ´Â Á¾ÇÕÀûÀÎ ¾àÁ¦ »ìÆ÷¿Í ³ëµ¿ Áý¾àÀûÀÎ ¼öÀÛ¾÷ °øÁ¤À» ´ëüÇÏ´Â ¼¾¼­ ±â¹ÝÀÇ ÇöÀå ¸ÂÃãÇü °³ÀÔÀ» ÅëÇØ ÀâÃÊ ¹æÁ¦¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÌ º¯È­ÀÇ ÇÙ½ÉÀº ÷´Ü ¸Ó½ÅºñÀü ½Ã½ºÅÛ, AI¸¦ Ȱ¿ëÇÑ ¹°Ã¼ ÀÎ½Ä ¾Ë°í¸®Áò, ±×¸®°í ÀÛ¹°°ú ÀâÃʸ¦ Á¤È®ÇÏ°Ô ±¸ºÐÇÏ´Â ½Ç½Ã°£ ÀÇ»ç°áÁ¤ µµ±¸ÀÔ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº RGB Ä«¸Þ¶ó, ±ÙÀû¿Ü¼±(NIR), ÇÏÀÌÆÛ½ºÆåÆ®·³ À̹ÌÁö ó¸®, LiDAR ±â¼úÀ» »ç¿ëÇÏ¿© ÀÚÀ² Æ®·¢ÅÍ¿Í ·Îº¿ Ç÷§Æû¿¡ žÀçµÇ¾î ½Ç½Ã°£À¸·Î ¹çÀÇ »óȲÀ» ¸ÅÇÎÇÕ´Ï´Ù. ÀâÃʰ¡ °¨ÁöµÇ¸é ÀÚµ¿ ¾×Ãß¿¡ÀÌÅÍ¿Í ·¹ÀÌÀú ¸ðµâÀÌ ¹°¸®ÀûÀ¸·Î, ±â°èÀûÀ¸·Î ¶Ç´Â ¿­ÀûÀ¸·Î ÀâÃʸ¦ Á¤È®ÇÏ°Ô Á¦°ÅÇÏ¿© Ç¥Àû ¿Ü ¿µÇâ°ú Åä¾ç ±³¶õÀ» Å©°Ô ÁÙÀÔ´Ï´Ù.

ÀÌ¿Í º´ÇàÇÏ¿© °³¹ßµÇ°í ÀÖ´Â °ÍÀº ÀâÃÊ ÆÐÄ¡ ¶Ç´Â °³º° ÀâÃÊ¿¡¸¸ Á¦ÃÊÁ¦¸¦ »ìÆ÷ÇÒ ¼ö ÀÖ´Â ¼±ÅÃÀû ³ëÁñ Á¦¾î°¡ °¡´ÉÇÑ GPS À¯µµ Á¤¹Ð »ìÆ÷±â¸¦ ÅëÇÕÇÑ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Á¦ÃÊÁ¦ »ç¿ë È¿À²À» Å©°Ô Çâ»ó½ÃÅ´°ú µ¿½Ã¿¡ ¾àÁ¦ À¯Ãâ, ÅõÀÔ ºñ¿ë, ³óÀÛ¹° ¼Õ»óÀ» ÁÙ¿©ÁÝ´Ï´Ù. Á¤¹Ð Á¦Ãʸ¦ Åä¾ç ¸ð´ÏÅ͸µ, ¼öÈ®·® ¸ÅÇÎ, µ¥ÀÌÅÍ ·Î±ë°ú °°Àº ´Ù¸¥ ÀÛ¾÷°ú °áÇÕÇÒ ¼ö ÀÖ´Â ´É·ÂÀº Á¤¹Ð³ó¾÷ »ýŰèÀÇ Áß½ÉÃàÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ƯÈ÷ ³ëµ¿·Â ºÎÁ·, Á¦ÃÊÁ¦ ³»¼º, ȯ°æ ±ÔÁ¦ °­È­¿¡ Á÷¸éÇÑ Áö¿ª¿¡¼­ ³ó¾÷ÀÇ Áö¼Ó°¡´ÉÇÑ Áý¾àÈ­¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

Á¤¹Ð Á¦ÃÊ´Â ¿¬ÀÛÁö ¿Ü¿¡´Â ¾îµð¿¡ Àû¿ëµÇ°í Àִ°¡?

Á¤¹Ð Á¦ÃÊ ±â¼úÀº Ãʱ⿡´Â ¿Á¼ö¼ö, Äá, »çÅÁ¹« µî °í¹Ðµµ ¿¬ÀÛ ÀÛ¹° Àç¹è¸¦ À§ÇØ °³¹ßµÇ¾úÁö¸¸, ÇöÀç´Â ´õ ³ÐÀº ¹üÀ§ÀÇ ÀÛ¹° Àç¹è¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. Æ÷µµ¿ø, °ú¼ö¿ø, ä¼Ò ³óÀå µî Æ¯¼ö ÀÛ¹°¿¡¼­´Â Á¶Àý °¡´ÉÇÑ ÆÈ°ú AI °¡ÀÌµå °áÁ¤ ½Ã½ºÅÛÀ» °®Ãá ·Îº¿ Á¦ÃʱⰡ Á¼Àº ÁÙ °£°Ý°ú ¿ïÅüºÒÅüÇÑ ÁöÇüÀ» À̵¿Çϸç ÁÙ±â¿Í »Ñ¸® ±ÙóÀÇ ÀâÃʸ¦ Á¦°ÅÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿ëµµ´Â ±âÁ¸ Á¦ÃÊÁ¦°¡ ÀÛ¹°¿¡ ½Ä¹° µ¶¼ºÀÌ Àְųª ±ÔÁ¦ ¹®Á¦·Î ÀÎÇØ »ç¿ëÀÌ Á¦ÇѵǴ °æ¿ì¿¡ ƯÈ÷ Áß¿äÇÕ´Ï´Ù.

¿Â½Ç Àç¹è³ª ¼öÁ÷³ó¹ý¿¡¼­´Â °ü¸®µÈ ȯ°æ¿¡¼­ ÀâÃÊ ¹ß»ýÀ» ¾ïÁ¦Çϱâ À§ÇØ ·Îº¿ÆÈÀ̳ª ±â°è À¯µµÇü UV ¹ß±¤±â¸¦ »ç¿ëÇÏ´Â ¼Ö·ç¼Çµµ äÅÃÇϰí ÀÖ½À´Ï´Ù. Àç»ý ³ó¾÷À̳ª À¯±â³ó¹ý¿¡¼­´Â ƾÇҷοì, ÇΰÅÀ§´õ, ³íµÎ·· °æ¿î±â µî Á¤¹Ð±â°è Á¦ÃʱⰡ Ä«¸Þ¶ó·Î ¹çµÎ··À» °¨ÁöÇÏ¿© À¯µµÇÏ¿© È­ÇоàǰÀ» ÅõÀÔÇÏÁö ¾Ê°íµµ ÀâÃʸ¦ ¹æÁ¦ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ÀÚÄ¡´ÜüÀÇ Á¶°æ, °ø¿ø, °ø°øÀå¼Ò¿¡¼­´Â Á¦ÃÊÁ¦ »ç¿ëÀ» ¿ÏÀüÈ÷ ¾ø¾Ö±â À§ÇØ ÀÚÀ² ·Îº¿À» äÅÃÇÏ¿© µµ½ÃÀÇ Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â ÀÚÀ² ·Îº¿À» »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÀ¿ë ºÐ¾ßÀÇ ´Ù¾ç¼ºÀº »ê¾÷ ¹× ºñ»ê¾÷¿ë ³ó¾÷ °ø°£ ¸ðµÎ¿¡¼­ ½ÃÀå ¹üÀ§¸¦ Å©°Ô È®ÀåÇϰí ÀÖ½À´Ï´Ù.

±ÔÁ¦ º¯È­, ÅõÀÔ ºñ¿ë ¾Ð·Â, Áö¼Ó°¡´É¼º ¸ñÇ¥°¡ ¾î¶»°Ô äÅÃÀ» ÃËÁøÇϰí Àִ°¡?

ȯ°æ ¹®Á¦ÀÇ Áõ°¡, Á¦ÃÊÁ¦ »ç¿ë ±ÝÁö, ½Äǰ ³» È­ÇÐÁ¦Ç° ÀÜ·ù·® °¨¼Ò¿¡ ´ëÇÑ ¾Ð·ÂÀº ÀâÃÊ °ü¸®¸¦ µÑ·¯½Ñ °æÁ¦Àû, Á¤Ã¥Àû ȯ°æÀ» ±Ùº»ÀûÀ¸·Î º¯È­½Ã۰í ÀÖ½À´Ï´Ù. À¯·´°ú ºÏ¹ÌÀÇ ±ÔÁ¦ ´ç±¹Àº ±Û¸®Æ÷¼¼ÀÌÆ® ¹× ±âŸ ºñ¼±Åüº Á¦ÃÊÁ¦¿¡ ´ëÇÑ ±ÔÁ¦¸¦ °­È­Çϰí ÀÖÀ¸¸ç, Á¾ÇÕÀû ÇØÃæ °ü¸®(IPM) ÇÁ·ÎÅäÄÝ¿¡ µû¸¥ ´ëü ÀâÃÊ ¹æÁ¦ ¹æ¹ý¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Á¤¹Ð Á¦ÃÊ ±â¼úÀº À¯±â³ó ÀÎÁõ, GlobalG.A.P. ¹× EU ±×¸°µô ¸ñÇ¥¿Í °°Àº Áö¼Ó°¡´ÉÇÑ ³ó¾÷ Ç¥ÁØ Áؼö¸¦ Áö¿øÇÏ´Â ºñÈ­ÇÐÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù.

ƯÈ÷ Á¦ÃÊÁ¦ ¹× ¼öÀÛ¾÷ ÅõÀÔ ºñ¿ëÀÇ »ó½ÂÀº ´ë±Ô¸ð ³ó°¡°¡ ¿©·¯ ÀÛ¹° Àç¹è Áֱ⿡ °ÉÃÄ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ´Â ÀÚÀ² ¶Ç´Â ¹ÝÀÚÀ² Á¤¹Ð Á¦Ãʱ⿡ ÅõÀÚÇϵµ·Ï µ¿±â¸¦ ºÎ¿©Çϰí ÀÖ½À´Ï´Ù. Á¤¹Ð Á¦ÃÊ´Â ¶ÇÇÑ ÁÖ¿ä ÀâÃÊ Á¾ÀÇ Á¦ÃÊÁ¦ ³»¼º Áõ°¡·Î ÀÎÇØ È­ÇÐÀû ¹æÁ¦°¡ Á¡Á¡ ´õ È¿°úÀûÀÌÁö ¾Ê°Ô µÇ´Â ¹®Á¦µµ ´Ù·ç°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Åä¾çÀÇ °Ç°­¼º, »ý¹°´Ù¾ç¼º, È­ÇÐÁ¦Ç° ÀÇÁ¸µµ °¨¼Ò¸¦ Áß½ÃÇÏ´Â Àç»ýº¸ÀüÇü ³ó¾÷À¸·ÎÀÇ ÀüȯÀº Á¤¹Ð Á¦Ãʸ¦ ¹Ì·¡ ³ó¾÷ Àü·«ÀÇ ÇÙ½ÉÀ¸·Î »ï°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû, ±ÔÁ¦Àû, »ýÅÂÇÐÀû Æ®·»µå°¡ °ãÄ¡¸é¼­ Á¤¹Ð Á¦ÃÊ ±â¼úÀÇ »ó¾÷Àû °¡´É¼ºÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

Á¤¹Ð Á¦ÃÊ ¼¼°è ½ÃÀåÀÇ Áö¿ªº° ¼ºÀå ¿øµ¿·ÂÀº?

¼¼°è Á¤¹Ð Á¦ÃÊ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼úÀÇ °¡¿ë¼º, Á¤ºÎ Àμ¾Æ¼ºê, Áö¼Ó°¡´ÉÇÑ ³ó¾÷ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì¿¡¼­´Â º¥Ã³ ijÇÇÅ»°ú µðÁöÅÐ ³ó¾÷ ¾×¼¿·¯·¹ÀÌÅÍÀÇ Áö¿øÀ» ¹Þ¾Æ ÁÖ¿ä ³ó¾÷ ±â¼ú ½ºÅ¸Æ®¾÷°ú Àåºñ Á¦Á¶¾÷üµéÀÌ ¿¬ÀÛ ÀÛ¹°¿¡ ¸Â´Â ·Îº¿ Á¦Ãʱ⸦ Ãâ½ÃÇϰí ÀÖ½À´Ï´Ù. ƯÁ¤ Á¦ÃÊÁ¦¸¦ ±ÝÁöÇÏ°í ³ó¾÷ ÀÚµ¿È­¸¦ Àå·ÁÇϴ Ķ¸®Æ÷´Ï¾Æ ÁÖ µî ¹Ì±¹ °¢ ÁÖ¿¡¼­ °¡Àå ¸ÕÀú µµÀÔÇϰí ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â ±ÔÁ¦ ¾Ð·Â, ³ëµ¿·Â Ç®ÀÇ Ãà¼Ò, °øµ¿³ó¾÷Á¤Ã¥(CAP)¿¡ µû¸¥ ź¼Ò Á߸³ ³ó¾÷ ¸ñÇ¥°¡ µ¶ÀÏ, ÇÁ¶û½º, ³×´ú¶õµå µîÀÇ ±¹°¡¿¡¼­ Á¤¹Ð Á¦ÃÊÀÇ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀº ½Ä·® ¾Èº¸¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ÅõÀÔ ºñ¿ë »ó½Â, ½º¸¶Æ® ³ó¾÷ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¹Î°ü ÅõÀÚ·Î ÀÎÇØ ³ôÀº ¼ºÀå ÀáÀç·ÂÀ» º¸À̰í ÀÖ½À´Ï´Ù. ÀϺ»À̳ª Çѱ¹ °°Àº ³ª¶ó¿¡¼­´Â ³ó°¡ÀÇ °í·ÉÈ­¿¡ ´ëÀÀÇϱâ À§ÇØ Ä«¸Þ¶ó °¡À̵å Á¤¹Ð Á¦Ãʱ⸦ µµÀÔÇϰí ÀÖÀ¸¸ç, Àεµ¿¡¼­´Â ³ó¾÷ ±â¼ú ÀÎÅ¥º£ÀÌÅÍ¿Í Áö¼Ó°¡´É¼º ¿¬°èÇü À¶ÀÚ Áö¿øÀ» ÅëÇÑ ÆÄÀÏ·µ ÇÁ·Î±×·¥À» º¼ ¼ö ÀÖ½À´Ï´Ù. ¶óƾ¾Æ¸Þ¸®Ä«¿Í Áßµ¿¿¡¼­´Â ¼öÁú ¿À¿°À» ÁÙÀÌ°í ¹çÀÇ È¿À²À» ³ôÀÌ·Á´Â ´ë±Ô¸ð ¿µ¸® ³óÀåÀÇ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. Àåºñ Á¦Á¶¾÷ü, AI °³¹ßÀÚ, ³ó¾÷Çùµ¿Á¶ÇÕÀÇ ÆÄÆ®³Ê½ÊÀÌ °¡°Ý¿¡ ¹Î°¨ÇÑ ½ÃÀå¿¡¼­ ±â¼ú º¸±ÞÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

Ecorobotix, Blue River Technology(John Deere), Naio Technologies, Garford Farm Machinery µî ÁÖ¿ä ±â¾÷µéÀº AI ¾Ë°í¸®Áò °³¼±, Ŭ¶ó¿ìµå ±â¹Ý ¸ð´ÏÅ͸µ, ´ÙÁß ÀÛ¹° ÀûÀÀ¼º µî¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. źźÇÑ ±â¼ú Çõ½Å ÆÄÀÌÇÁ¶óÀΰú ÀüÅëÀûÀÎ ÀâÃÊ ¹æÁ¦ÀÇ È¯°æÀû, °æÁ¦Àû ºñ¿ë¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¼¼°è Á¤¹Ð Á¦ÃÊ ½ÃÀåÀº ƯÈ÷ µðÁöÅÐÈ­ ¹× ȯ°æ ±ÔÁ¦°¡ °­È­µÈ Áö¿ª¿¡¼­ ºñ¾àÀûÀÎ ¼ºÀåÀ» ÀÌ·ê Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(ÀâÃÊ °ËÃâ Ç÷§Æû, ÀâÃÊ °ü¸®), ¿ëµµ(³ó¾÷ ¿ëµµ, ºñ³ó¾÷ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Precision Weeding Market to Reach US$3.9 Billion by 2030

The global market for Precision Weeding estimated at US$2.0 Billion in the year 2024, is expected to reach US$3.9 Billion by 2030, growing at a CAGR of 11.6% over the analysis period 2024-2030. Weed Detection Platform, one of the segments analyzed in the report, is expected to record a 12.9% CAGR and reach US$2.9 Billion by the end of the analysis period. Growth in the Weed Management segment is estimated at 8.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$552.6 Million While China is Forecast to Grow at 15.9% CAGR

The Precision Weeding market in the U.S. is estimated at US$552.6 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$825.8 Million by the year 2030 trailing a CAGR of 15.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.3% and 10.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 9.2% CAGR.

Global Precision Weeding Market - Key Trends & Drivers Summarized

How Is Precision Weeding Redefining Agronomic Efficiency Through Sensor-Based Intelligence?

Precision weeding is revolutionizing weed control by replacing blanket chemical application and labor-intensive manual processes with sensor-driven, site-specific interventions. At the core of this transformation are advanced machine vision systems, AI-powered object recognition algorithms, and real-time decision-making tools that distinguish between crops and weeds with high accuracy. These systems use RGB cameras, near-infrared (NIR), hyperspectral imaging, and LiDAR technologies mounted on autonomous tractors or robotic platforms to map field conditions in real-time. Once weeds are detected, automated actuators or laser modules conduct precise physical, mechanical, or thermal weed removal, drastically minimizing off-target effects and soil disturbance.

A parallel development is the integration of GPS-guided precision sprayers equipped with selective nozzle control that can apply herbicides only to weedy patches or individual weeds. Such systems are significantly improving herbicide use efficiency while reducing chemical runoff, input costs, and crop damage. The ability to couple precision weeding with other tasks like soil monitoring, yield mapping, and data logging makes it a central pillar of precision agriculture ecosystems. These technologies are critical for enabling sustainable intensification of agriculture, especially in regions facing labor shortages, herbicide resistance, and rising environmental regulations.

Where Is Precision Weeding Being Applied Beyond Row Crop Fields?

Although initially developed for high-density row crop farming such as corn, soybean, and sugar beet, precision weeding technologies are now being deployed across a broader range of applications. In specialty crops-including vineyards, orchards, and vegetable farms-robotic weeders with adjustable arms and AI-guided decision systems are navigating tight row spacings and uneven terrain to eliminate weeds near stems and root zones. These applications are particularly important where conventional herbicides are either phytotoxic to the crop or restricted due to regulatory concerns.

Greenhouse and vertical farming environments are also adopting precision weeding solutions that use robotic arms or machine-guided UV light emitters to control weed emergence in controlled environments. In regenerative agriculture and organic farming systems, precision mechanical weeders using tine harrows, finger weeders, or inter-row cultivators-guided by camera-based row detection-are enabling weed control without chemical inputs. Additionally, municipal landscapes, parks, and public spaces are employing autonomous precision weeding robots to eliminate herbicide use altogether, aligning with urban sustainability goals. This application diversity is significantly expanding the market scope across both industrial and non-industrial agricultural spaces.

How Are Regulatory Shifts, Input Cost Pressures, and Sustainability Goals Driving Adoption?

Mounting environmental concerns, herbicide bans, and pressure to reduce chemical residues in food are fundamentally reshaping the economics and policy environment surrounding weed management. Regulatory bodies in Europe and North America are tightening restrictions on glyphosate and other non-selective herbicides, driving interest in alternative weed control methods that align with integrated pest management (IPM) protocols. Precision weeding technologies are gaining traction as a non-chemical solution that supports organic certification and compliance with sustainable farming standards such as GlobalG.A.P. and EU Green Deal targets.

Escalating input costs, especially for herbicides and manual labor, are incentivizing large-scale farmers to invest in autonomous or semi-autonomous precision weeders that offer cost savings over multiple cropping cycles. Precision weeding also addresses the rising challenge of herbicide resistance in major weed species, which is making chemical control increasingly ineffective. Furthermore, the transition to regenerative and conservation agriculture practices-emphasizing soil health, biodiversity, and reduced chemical dependence-is positioning precision weeding as a cornerstone of future farming strategies. These overlapping economic, regulatory, and ecological trends are accelerating the commercial viability of precision weeding technologies.

What Is Fueling Growth in the Global Precision Weeding Market Across Regions?

The growth in the global precision weeding market is driven by a combination of technology availability, government incentives, and increased demand for sustainable farming systems. In North America, leading agritech startups and equipment manufacturers are launching robotic weeders tailored to row crops, supported by venture capital and digital agriculture accelerators. U.S. states such as California, which have banned certain herbicides and are incentivizing automation in agriculture, are at the forefront of adoption. In Europe, regulatory pressures, shrinking labor pools, and carbon-neutral farming objectives under the Common Agricultural Policy (CAP) are driving widespread adoption of precision weeding in countries like Germany, France, and the Netherlands.

Asia-Pacific presents high growth potential due to rising food security needs, increasing input costs, and public-private investments in smart farming infrastructure. Countries like Japan and South Korea are adopting camera-guided precision weeders to address aging farmer populations, while India is witnessing pilot programs supported by agri-tech incubators and sustainability-linked financing. Latin America and the Middle East are seeing emerging demand from large commercial farms looking to reduce water contamination and improve field efficiency. Partnerships between equipment manufacturers, AI developers, and cooperative farming organizations are enabling technology diffusion in price-sensitive markets.

Major players such as Ecorobotix, Blue River Technology (John Deere), Naio Technologies, and Garford Farm Machinery are investing in AI algorithm refinement, cloud-based monitoring, and multi-crop adaptability. With a robust innovation pipeline and growing awareness of the environmental and economic cost of conventional weed control, the global precision weeding market is poised for exponential growth, particularly in digitally enabled and environmentally regulated regions.

SCOPE OF STUDY:

The report analyzes the Precision Weeding market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Weed Detection Platform, Weed Management); Application (Agriculture Application, Non-Agriculture Application)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 32 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â