¼¼°èÀÇ O-RAN ±Ù½Ç½Ã°£ RAN Áö´ÉÇü ÄÁÆ®·Ñ·¯ ½ÃÀå
O-RAN Near-Real-Time RAN Intelligent Controllers
»óǰÄÚµå : 1794567
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 188 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

O-RAN ±Ù½Ç½Ã°£ RAN Áö´ÉÇü ÄÁÆ®·Ñ·¯ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 870¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 74¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â O-RAN ±Ù½Ç½Ã°£ RAN Áö´ÉÇü ÄÁÆ®·Ñ·¯ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 50.7%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 870¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ A1 Mediator ±¸¼º¿ä¼Ò´Â CAGR 43.9%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 172¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù. RIC Alarm System ±¸¼º¿ä¼Ò ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 55.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 19¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 48.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ O-RAN ±Ù½Ç½Ã°£ RAN Áö´ÉÇü ÄÁÆ®·Ñ·¯ ½ÃÀåÀº 2024³â¿¡ 19¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 128¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 48.4%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 45.2%¿Í 44.4%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 35.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ O-RAN ±Ù½Ç½Ã°£ RAN Áö´ÉÇü ÄÁÆ®·Ñ·¯ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

±Ù½Ç½Ã°£ RIC°¡ O-RAN »ýŰèÀÇ RAN ¾ÆÅ°ÅØÃ³¸¦ ¾î¶»°Ô º¯È­½Ãų °ÍÀΰ¡?

O-RAN ±Ù½Ç½Ã°£ RAN Áö´ÉÇü ÄÁÆ®·Ñ·¯(±Ù½Ç½Ã°£ RIC)´Â °³¹æÇü ¹«¼± ¾×¼¼½º ³×Æ®¿öÅ©¿¡¼­ ¸Å¿ì Áß¿äÇÑ ±¸¼º¿ä¼ÒÀÔ´Ï´Ù. RIC´Â 1ÃÊ ÀÌÇÏÀÇ Áö¿¬½Ã°£À¸·Î RAN ±â´ÉÀ» °ü¸® ¹× ÃÖÀûÈ­Çϰí, °£¼· ¿ÏÈ­, Æ®·¡ÇÈ ½ºÆ¼¾î¸µ, ºÎÇÏ ºÐ»ê µî ³×Æ®¿öÅ© µ¿ÀÛÀ» µ¿ÀûÀ¸·Î Á¦¾îÇÕ´Ï´Ù. ÀÌ ÄÁÆ®·Ñ·¯´Â ºñ½Ç½Ã°£ RIC(¼­ºñ½º °ü¸® ¹× ¿ÀÄɽºÆ®·¹ÀÌ¼Ç °èÃþ)¿Í ºÐ»ê À¯´Ö ¶Ç´Â ±âÁö±¹ »çÀÌ¿¡ À§Ä¡Çϸç, Á¤Ã¥À» ÀûÀÀÇü ¾×¼ÇÀ¸·Î º¯È¯ÇÕ´Ï´Ù.

Near-RT RIC¸¦ ÅëÇØ »ç¾÷ÀÚ´Â ÁÖ¿ä RAN ÆÄ¶ó¹ÌÅ͸¦ Á¦¾îÇϱâ À§ÇØ º¥´õ Á߸³ÀûÀÎ ¾ÖÇø®ÄÉÀ̼Ç(xApps)À» µµÀÔÇÒ ¼ö ÀÖ¾î º¥´õ Á¾¼Ó ¾øÀÌ È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI ±â¹Ý Á¦¾î ¾Ë°í¸®Áò ¹× ÀÇ»ç°áÁ¤ ¿£ÁøÀÇ ¼­µåÆÄƼ °³¹ßÀ» °¡´ÉÇϰÔÇÔÀ¸·Î½á ¼­ºñ½º Çõ½ÅÀ» Áö¿øÇÕ´Ï´Ù. ÀÌ ¾ÆÅ°ÅØÃ³´Â Æó¼âÀûÀÌ°í ¼öÁ÷ÀûÀ¸·Î ÅëÇÕµÈ ³×Æ®¿öÅ© Àåºñ¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ¾ø¾Ö´Â °ÍÀ» ¸ñÇ¥·Î ÇÏ´Â ±¤¹üÀ§ÇÑ O-RAN ÀÌ´Ï¼ÅÆ¼ºêÀÇ À¯¿¬¼º°ú ºñ¿ë È¿À²¼ºÀ̶ó´Â ¸ñÇ¥¸¦ Áö¿øÇÕ´Ï´Ù.

Near-RT RICÀÇ °æÀï·ÂÀ» Á¤ÀÇÇÏ´Â ±â¼ú·ÂÀº ¹«¾ùÀΰ¡?

Near-RT RICÀÇ ÇÙ½É ¿ª·®Àº RAN¿¡¼­ ½ºÆ®¸®¹Ö µ¥ÀÌÅ͸¦ ó¸®Çϰí, Ã˹ÚÇÑ ½Ã°£ ³»¿¡ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ´Â ´É·Â¿¡ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °áÁ¤¿¡´Â Àü¼Û Àü·Â Á¶Á¤, ¹«¼± ¸®¼Ò½º ÀçÇÒ´ç, ½Ç½Ã°£ Æ®·¡ÇÈ ÆÐÅÏ¿¡ µû¸¥ ÇÚµå¿À¹ö Æ®¸®°Å¸µ µîÀÌ Æ÷ÇԵ˴ϴÙ. °í±Þ ±¸Çö¿¡¼­´Â AI¿Í ¸Ó½Å·¯´× ¸ðµ¨ÀÌ ÅëÇÕµÇ¾î °üÂû µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ³×Æ®¿öÅ©ÀÇ µ¿ÀÛÀ» Áö¼ÓÀûÀ¸·Î ÇнÀÇÏ°í °³¼±ÇÕ´Ï´Ù.

ÁÖ¿ä Àο¡ÀÌºí·¯·Î´Â E2¿Í °°Àº Ç¥ÁØÈ­µÈ ÀÎÅÍÆäÀ̽º¸¦ ÅëÇØ ´Ï¾î RT RIC°¡ ´Ù¾çÇÑ º¥´õÀÇ ¹«¼± ÀåÄ¡ ¹× ºÐ»ê ÀåÄ¡¿Í »óÈ£ ÀÛ¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â °ÍÀÌ ÀÖ½À´Ï´Ù. ÄÁÅ×À̳ÊÈ­ ¹× Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê ¾ÆÅ°ÅØÃ³´Â ÇÁ¶óÀ̺ø, ÆÛºí¸¯, ÇÏÀ̺긮µå Ŭ¶ó¿ìµå¿¡ °ÉÄ£ È®À强°ú ¹èÆ÷ À¯¿¬¼ºÀ» Áö¿øÇÕ´Ï´Ù. º¸¾È ÇÁ·¹ÀÓ¿öÅ©µµ ¿©·¯ ºÐ»êµÈ º¥´õ¿Í ¾ÖÇø®ÄÉÀ̼ǿ¡ °ÉÃÄ µ¥ÀÌÅÍ È帧°ú Á¦¾îÀÇ ¹«°á¼ºÀ» º¸È£Çϱâ À§ÇØ ÁøÈ­Çϰí ÀÖ½À´Ï´Ù.

µµÀÔÀÌ ÁøÇàµÇ°í ÀÖ´Â °÷Àº ¾îµðÀ̸ç, ¾î¶² »ç¿ë»ç·Ê°¡ µµÀÔÀ» ÁÖµµÇϰí Àִ°¡?

Near-RT RICÀÇ µµÀÔÀº ƯÈ÷ º¥´õÀÇ ´Ù¾ç¼º°ú 5G ³×Æ®¿öÅ©ÀÇ ¹Îø¼ºÀ» ¿ì¼±½ÃÇÏ´Â Áö¿ª¿¡¼­ »ó¿ë ¹× ¿¹ºñ »ó¿ë O-RAN ³×Æ®¿öÅ©¿¡¼­ ÃßÁø·ÂÀ» ¾ò°í ÀÖ½À´Ï´Ù. ¹Ì±¹, ÀϺ», À¯·´ÀÇ ÀϺΠÅë½Å»çµéÀº ¹ÐÁýµÈ µµ½Ã ȯ°æ°ú ±â¾÷ »ç¼³ ³×Æ®¿öÅ©¿¡¼­ Near RT RIC¸¦ Å×½ºÆ®Çϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö È¿À²ÀûÀÎ ¹«¼± ½ºÄÉÁÙ¸µ, ¸ðºô¸®Æ¼ÀÇ °ß°í¼º ÃÖÀûÈ­, ÀÌ»ó °¨Áö µîÀÇ »ç¿ë »ç·Ê´Â Ãʱâ xApp °³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Á¦Á¶, ±¹¹æ, °ø°ø»ç¾÷ µî ÇÁ¶óÀ̺ø 5G ³×Æ®¿öÅ©¿¡¼­´Â °áÁ¤·ÐÀû ¼­ºñ½º ǰÁú°ú ÀÚÀ² Á¦¾î¸¦ Áö¿øÇϱâ À§ÇØ ´Ï¾î RT RIC¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. Åë½Å»ç¾÷ÀÚµéÀÌ ÃѼÒÀ¯ºñ¿ëÀ» Àý°¨ÇÏ°í ½ºÆåÆ®·³ È¿À²¼ºÀ» °³¼±ÇϰíÀÚ ÇÏ´Â °¡¿îµ¥, Near RT RIC´Â Áö¼ÓÀûÀÎ ³×Æ®¿öÅ© ÃÖÀûÈ­¸¦ À§ÇÑ ÇÁ·Î±×·¡¸Óºí ÀÎÅÍÆäÀ̽º¸¦ Á¦°øÇÕ´Ï´Ù. ¿ÀÇ ¼Ò½º Ä¿¹Â´ÏƼ, Çмú ¿¬±¸ ±×·ì, RAN º¥´õ °£ÀÇ Çù¾÷À¸·Î ±â´É Å×½ºÆ®¿Í »óÈ£¿î¿ë¼º °ËÁõÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

O-RAN ±Ù½Ç½Ã°£ RAN Áö´ÉÇü ÄÁÆ®·Ñ·¯ ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁý´Ï´Ù.

O-RAN ±Ù½Ç½Ã°£ RIC ½ÃÀåÀÇ ¼ºÀåÀº ¸ð¹ÙÀÏ ÀÎÇÁ¶óÀÇ µð¾Ö±×¸®°ÔÀÌ¼Ç Æ®·»µå, ÇÁ·Î±×·¡¸Óºí ¹× AI ±â¹Ý RAN ÃÖÀûÈ­¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, °³¹æÀûÀ̰í À¯¿¬ÇÑ ³×Æ®¿öÅ© ¾ÆÅ°ÅØÃ³¿¡ ´ëÇÑ Åë½Å»ç¾÷ÀÚÀÇ ÅõÀÚ Áõ°¡ µîÀÇ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ƯÁ¤ RAN »ç¿ë »ç·Ê¿¡ ¸ÂÃá xAppsÀÇ Ã¤ÅÃÀº ¸ðµâÇü Çõ½Å°ú º¥´õ Á߸³¼ºÀ» µÞ¹ÞħÇÕ´Ï´Ù.

E2, RIC-to-xApp API µîÀÇ ÀÎÅÍÆäÀ̽º Ç¥ÁØÈ­¸¦ ÅëÇØ »ýŰ迡 ´ëÇÑ Æø³ÐÀº Âü¿©¿Í ¹èÆ÷ Áֱ⸦ ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. 5G ³×Æ®¿öÅ©°¡ È®ÀåµÊ¿¡ µû¶ó °í¹Ðµµ ¹× ÀÌÁ¾ ¹«¼± ȯ°æÀ» °ü¸®ÇØ¾ß ÇÒ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Áö´ÉÇü Á¦¾îÀÇ ¿ªÇÒÀÌ °­È­µÇ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê ¿ÀÄɽºÆ®·¹ÀÌ¼Ç Ç÷§Æû ¹× AI ¸ðµ¨ È£½ºÆÃ ±â´É°úÀÇ ÅëÇÕÀ» ÅëÇØ ¿ÀÇ RAN ±¸Ãà¿¡¼­ ´Ï¾î RT RICÀÇ À¯¿ë¼º°ú °¡Ä¡ Á¦¾ÈÀÌ ´õ¿í °­È­µÇ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

±¸¼º¿ä¼Ò(A1 Mediator ±¸¼º¿ä¼Ò, RIC Alarm System ±¸¼º¿ä¼Ò, RIC Message Router ±¸¼º¿ä¼Ò, Routing Manager ±¸¼º¿ä¼Ò, XAPP Framework for CXX ±¸¼º¿ä¼Ò, XAPP Framework for Go ±¸¼º¿ä¼Ò, XAPP Framework for Python ±¸¼º¿ä¼Ò, ±âŸ ±¸¼º¿ä¼Ò), Àü°³(ÁýÁßÇü Àü°³, ºÐ»êÇü Àü°³)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global O-RAN Near-Real-Time RAN Intelligent Controllers Market to Reach US$87.0 Billion by 2030

The global market for O-RAN Near-Real-Time RAN Intelligent Controllers estimated at US$7.4 Billion in the year 2024, is expected to reach US$87.0 Billion by 2030, growing at a CAGR of 50.7% over the analysis period 2024-2030. A1 Mediator Component, one of the segments analyzed in the report, is expected to record a 43.9% CAGR and reach US$17.2 Billion by the end of the analysis period. Growth in the RIC Alarm System Component segment is estimated at 55.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.9 Billion While China is Forecast to Grow at 48.4% CAGR

The O-RAN Near-Real-Time RAN Intelligent Controllers market in the U.S. is estimated at US$1.9 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$12.8 Billion by the year 2030 trailing a CAGR of 48.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 45.2% and 44.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 35.4% CAGR.

Global O-RAN Near-Real-Time RAN Intelligent Controllers Market - Key Trends & Drivers Summarized

How Are Near-Real-Time RICs Transforming RAN Architecture in O-RAN Ecosystems?

O-RAN near-real-time RAN intelligent controllers (near-RT RICs) are pivotal components within open and disaggregated radio access networks. They manage and optimize RAN functions with latencies of under one second, enabling dynamic control over network behaviors such as interference mitigation, traffic steering, and load balancing. These controllers sit between the non-real-time RIC (in the service management and orchestration layer) and the distributed units or base stations, translating policy into adaptive action.

Near-RT RICs enable operators to deploy vendor-neutral applications (xApps) for controlling key RAN parameters, improving efficiency without vendor lock-in. They support service innovation by allowing third-party development of AI-driven control algorithms and decision engines. This architecture underpins the flexibility and cost-efficiency goals of the broader O-RAN initiative, which aims to break the dependence on closed, vertically integrated network equipment.

What Technological Capabilities Define the Competitive Edge of Near-RT RICs?

The core capability of near-RT RICs lies in their ability to process streaming data from the RAN and make decisions within tight timeframes. These decisions include adjusting transmission power, reallocating radio resources, or triggering handovers based on real-time traffic patterns. Advanced implementations integrate AI and machine learning models that continuously learn and refine network behavior based on observed data.

Key enablers include standardized interfaces such as E2, which allow the near-RT RIC to interact with radio units and distributed units from various vendors. Containerization and cloud-native architectures support scalability and deployment flexibility across private, public, and hybrid clouds. Security frameworks are also evolving to protect data flow and control integrity across multiple disaggregated vendors and applications.

Where Is Deployment Growing and Which Use Cases Are Leading Adoption?

Near-RT RIC deployment is gaining momentum in commercial and pre-commercial O-RAN networks, particularly in regions prioritizing vendor diversity and 5G network agility. Operators in the United States, Japan, and parts of Europe are testing near-RT RICs in dense urban environments and enterprise private networks. Use cases such as energy-efficient radio scheduling, mobility robustness optimization, and anomaly detection are driving initial xApp development.

Private 5G networks in manufacturing, defense, and utilities are adopting near-RT RICs to support deterministic service quality and autonomous control. As telcos seek to reduce total cost of ownership and increase spectral efficiency, near-RT RICs provide a programmable interface for ongoing network optimization. Collaborations between open-source communities, academic research groups, and RAN vendors are accelerating functional testing and interoperability validation.

Growth in the O-RAN Near-Real-Time RAN Intelligent Controllers market is driven by several factors…

Growth in the O-RAN near-real-time RIC market is driven by factors such as disaggregation trends in mobile infrastructure, rising demand for programmable and AI-driven RAN optimization, and increasing operator investment in open, flexible network architectures. The adoption of xApps tailored to specific RAN use cases is supporting modular innovation and vendor neutrality.

Standardization of interfaces such as E2 and RIC-to-xApp APIs is enabling broader ecosystem participation and faster deployment cycles. As 5G networks expand, the need to manage dense, heterogeneous radio environments is intensifying the role of intelligent control. Integration with cloud-native orchestration platforms and AI model hosting capabilities is further enhancing the utility and value proposition of near-RT RICs in open RAN deployments.

SCOPE OF STUDY:

The report analyzes the O-RAN Near-Real-Time RAN Intelligent Controllers market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (A1 Mediator Component, RIC Alarm System Component, RIC Message Router Component, Routing Manager Component, XAPP Framework for CXX Component, XAPP Framework for Go Component, XAPP Framework for Python Component, Other Components); Deployment (Centralized Deployment, Distributed Deployment)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â