¼¼°èÀÇ À¥ ½ºÅ©·¡ÇÎ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå
Web Scraping Software
»óǰÄÚµå : 1793962
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 373 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ À¥ ½ºÅ©·¡ÇÎ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀº 2030³â±îÁö 19¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 9¾ï 990¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ À¥ ½ºÅ©·¡ÇÎ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀº 2024-2030³â¿¡ 13.4%ÀÇ CAGR·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 19¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ¹ü¿ë À¥ Å©·Ñ·¯´Â CAGR 14.0%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 12¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÎÅ©¸®¸àÅÐ À¥ Å©·Ñ·¯ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 11.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2¾ï 4,790¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 18.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ À¥ ½ºÅ©·¡ÇÎ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀº 2024³â¿¡ 2¾ï 4,790¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 18.0%·Î ÃßÀÌÇϸç, 2030³â¿¡´Â 4¾ï 1,200¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 9.7%¿Í 12.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 10.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ À¥ ½ºÅ©·¡ÇÎ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

±â¾÷ÀÌ µ¥ÀÌÅͺ£À̽º °æÀï ¿ìÀ§¸¦ À§ÇØ À¥ ½ºÅ©·¡Çο¡ ÁÖ¸ñÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

¿À´Ã³¯ÀÇ ÇÏÀÌÆÛ Ä¿³ØÆ¼µå °æÁ¦¿¡¼­ µ¥ÀÌÅÍ´Â °æÀïÀû ÀÇ»ç°áÁ¤ÀÇ ±Ù°£ÀÌ µÇ°í ÀÖÀ¸¸ç, ±â¾÷Àº À¥ ½ºÅ©·¡ÇÎ ¼ÒÇÁÆ®¿þ¾î¸¦ ÅëÇØ ÀÎÅÍ³Ý Àüü¿¡¼­ ½Ç½Ã°£À¸·Î ´ë·®ÀÇ ´Ù¾çÇÑ µ¥ÀÌÅÍ¿¡ Á¢±ÙÇϱâ À§ÇØ À¥ ½ºÅ©·¡ÇÎ ¼ÒÇÁÆ®¿þ¾î¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¼öÀÛ¾÷ Á¶»ç³ª Á¤ÀûÀÎ µ¥ÀÌÅͺ£À̽º¿Í °°Àº ÀüÅëÀûÀÎ µ¥ÀÌÅÍ ¼öÁý ¹æ½ÄÀº ½ÃÀå ȯ°æÀÌ ºü¸£°Ô º¯È­ÇÏ°í ¼ÒºñÀÚ ÇൿÀÌ ³¯·Î ÁøÈ­Çϴ ȯ°æ¿¡¼­´Â ÃæºÐÇÏÁö ¾Ê½À´Ï´Ù. À¥ ½ºÅ©·¡ÇÎ ¼ÒÇÁÆ®¿þ¾î´Â À¥ »çÀÌÆ®¿¡¼­ ±¸Á¶È­µÈ µ¥ÀÌÅ͸¦ ´ë±Ô¸ð·Î ÃßÃâÇÏ¿© °¡°Ý Àü·«, »óǰ °³¹ß, °í°´ °¨Á¤ ºÐ¼®, °æÀï»ç º¥Ä¡¸¶Å·¿¡ µµ¿òÀÌ µÇ´Â ÀλçÀÌÆ®À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. E-Commerce ±â¾÷Àº ½ºÅ©·¡ÇÎ ÅøÀ» ÅëÇØ °æÀï»çÀÇ °¡°Ý Ã¥Á¤, Àç°í ¼öÁØ, ÆÇÃË È°µ¿À» ¸ð´ÏÅ͸µÇϰí, ±ÝÀ¶È¸»ç´Â ´º½º Æ÷ÅÐ, Á¤ºÎ »çÀÌÆ®, ȸ»ç Á¦Ãâ ¼­·ù¸¦ ½ºÅ©·¡ÇÎÇÏ¿© ½ÃÀåÀÇ ½ÅÈ£¸¦ ºü¸£°Ô °¨ÁöÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ¿©Çà ¾Ö±×¸®°ÔÀÌÅÍ´Â ½ºÅ©·¡ÇÎÀ» ÅëÇØ Ç×°ø±Ç, È£ÅÚ ¿ä±Ý, ¸®ºä¸¦ ½Ç½Ã°£À¸·Î ºñ±³ÇÏ¿© »ç¿ëÀÚ¿¡°Ô ´õ ³ªÀº °¡Ä¡¸¦ Á¦°øÇÕ´Ï´Ù. µ¥ÀÌÅÍ ¼öÁýÀÇ ÀÚµ¿È­, ¼Óµµ, Á¤È®¼º¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó À¥ ½ºÅ©·¡ÇÎÀº ´Ü¼øÇÑ ±â¼úÀû ÅøÀÌ ¾Æ´Ñ Àü·«Àû ½ÇÇö ¼ö´ÜÀÌ µÇ¾ú½À´Ï´Ù. ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º ¿Ü¿¡µµ ½ºÅ©·¡ÇÎ ¼ÒÇÁÆ®¿þ¾î´Â Àú³Î¸®Áò, ¹ý·ü ¿¬±¸, Çмú¿¬±¸, °ø°ø ºÎ¹® ºÐ¼®¿¡ µµÀÔµÇ¾î ¿ÀÇ µ¥ÀÌÅ͸¦ ¹ß±¼Çϰí ÀλçÀÌÆ®¸¦ ¾ò±â À§ÇÑ °ø°ø ºÎ¹® ºÐ¼®¿¡µµ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. Á¶Á÷Àº ¶ÇÇÑ À§Á¶Ç° °¨Áö, ±ÔÁ¤ Áؼö ¸ð´ÏÅ͸µ, µðÁöÅÐ ÆòÆÇ ÃßÀû¿¡ ½ºÅ©·¡ÇÎÀ» »ç¿ëÇϰí ÀÖ½À´Ï´Ù. µðÁöÅÐ ¹ßÀÚÃë°¡ È®´ëµÇ°í °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥, À¥ ½ºÅ©·¡ÇÎÀº ±Þº¯ÇÏ´Â Á¤º¸ ȯ°æ ¼Ó¿¡¼­ ÇÑ ¹ß ¾Õ¼­ ³ª°¡·Á´Â µ¥ÀÌÅÍ Á᫐ ±â¾÷¿¡°Ô ÇʼöÀûÀÎ ¿ª·®À¸·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀ¸·Î À¥ ½ºÅ©·¡ÇÎÀº ¾î¶»°Ô Á¢±ÙÇϱ⠽±°í °­·ÂÇØÁ³À»±î¿ä?

À¥ ½ºÅ©·¡ÇÎ ¼ÒÇÁÆ®¿þ¾îÀÇ ÁøÈ­´Â ÀÚµ¿È­, ÀΰøÁö´É, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ ´õ¿í È¿À²ÀûÀ̰í Á¤È®ÇÏ¸ç »ç¿ëÀÚ Ä£È­ÀûÀ¸·Î ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ¿À´Ã³¯ÀÇ ÅøÀº ´õ ÀÌ»ó ±íÀº ÄÚµù Áö½ÄÀÌ ÇÊ¿äÇÏÁö ¾Ê½À´Ï´Ù. ¸¹Àº ÅøÀº ½Ã°¢Àû ÀÎÅÍÆäÀ̽º, µå·¡±× ¾Ø µå·Ó ¿ä¼Ò, ¹Ì¸® ÁغñµÈ ÅÛÇø´À» Á¦°øÇÏ¿© ±â¼úÀû ¹è°æÀÌ ¾ø´Â »ç¿ëÀÚµµ ½±°Ô Á¢±ÙÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ °í±Þ Ç÷§ÆûÀº µ¥ÀÌÅÍ ÃßÃâ ÇÁ·Î¼¼½º¸¦ º¸´Ù ¼¼¹ÐÇÏ°Ô Á¦¾îÇØ¾ß ÇÏ´Â °³¹ßÀÚ¸¦ À§ÇØ »ç¿ëÀÚ Á¤ÀÇ °¡´ÉÇÑ ½ºÅ©¸³ÆÃ ȯ°æÀ» Á¦°øÇÕ´Ï´Ù. ÀΰøÁö´É°ú ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ÆÐÅÏÀ» ½Äº°Çϰí, º¹ÀâÇÑ »çÀÌÆ® ±¸Á¶¸¦ ÀÚµ¿ Ž»öÇϸç, ÀÚ¹Ù½ºÅ©¸³Æ® ·»´õ¸µ ¹× AJAX ·Îµå ¿ä¼Ò¿Í °°Àº µ¿Àû ÄÁÅÙÃ÷¿¡ ÀûÀÀÇÒ ¼ö ÀÖµµ·Ï ³»ÀåµÇ¾î ÀÖ½À´Ï´Ù. ÇöÀç ÀÚµ¿ CAPTCHA ÇØ°á, IP ·ÎÅ×À̼Ç, Àΰ£ ÇൿÀ» ¸ð¹æÇÏ´Â Çìµå¸®½º ºê¶ó¿ì¡ ±â´ÉÀ» Á¦°øÇÏ´Â ¼Ö·ç¼Çµµ ÀÖÀ¸¸ç, »ç¿ëÀÚ´Â °¨Áö¸¦ ÇÇÇÏ°í °íµµ·Î º¸È£µÈ À¥»çÀÌÆ®¿¡ Á¢¼ÓÇÒ ¼ö ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ½ºÅ©·¡ÇÎ Ç÷§ÆûÀº ºÐ»êµÈ ÀÎÇÁ¶ó¿¡¼­ ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖÀ¸¸ç, ·ÎÄà ¸®¼Ò½º »ç¿ëÀ» ÃÖ¼ÒÈ­ÇÏ°í ´ë±Ô¸ð ½ºÅ©·¡ÇÎ ÀÛ¾÷À» º´·Ä·Î ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ½Ã°¢È­ ¹× ºÐ¼® Ç÷§Æû°úÀÇ ÅëÇÕÀ» ÅëÇØ ¹ë·ùüÀÎÀ» ´õ¿í °­È­ÇÏ¿© »ç¿ëÀÚ°¡ µ¥ÀÌÅÍ ¼öÁý¿¡¼­ ÀλçÀÌÆ® »ý¼ºÀ¸·Î Á÷Á¢ À̵¿ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ API ¹× Ç÷¯±×ÀÎ Áö¿øÀ» ÅëÇØ ½ºÅ©·¡ÇÎ Åø¿Í °í°´ °ü°è °ü¸® ½Ã½ºÅÛ, ½ÃÀå ÀÎÅÚ¸®Àü½º Ç÷§Æû, ½Ç½Ã°£ ´ë½Ãº¸µå¿Í ½±°Ô ¿¬°áÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû °­È­´Â ½ºÅ©·¡ÇÎÇÒ ¼ö ÀÖ´Â ¹üÀ§¸¦ È®´ëÇÒ »Ó¸¸ ¾Æ´Ï¶ó, °íǰÁú À¥ µ¥ÀÌÅ͸¦ ´ë±Ô¸ð·Î ÃßÃâÇÏ´Â µ¥ ÇÊ¿äÇÑ ½Ã°£, ºñ¿ë, ±â¼úÀû À庮À» ³·Ãß°í ÀÖ½À´Ï´Ù.

¾î¶² ¹ýÀû, À±¸®Àû, ½ÃÀåÀû ¾Ð·ÂÀÌ À¥ ½ºÅ©·¡ÇÎÀÇ °üÇàÀ» À籸¼ºÇϰí Àִ°¡?

À¥ ½ºÅ©·¡ÇÎ ¼ÒÇÁÆ®¿þ¾îÀÇ ±â´ÉÀÌ È®ÀåµÇ´Â µ¿½Ã¿¡ ¹ýÀû, À±¸®Àû, ±ÔÁ¦Àû ¹®Á¦·Î ÀÎÇØ »ýŰ谡 ÀçÆíµÇ°í ÀÖ½À´Ï´Ù. ½ºÅ©·¡ÇÎµÈ µ¥ÀÌÅ͸¦ ¾÷¹«¿¡ Ȱ¿ëÇÏ´Â ±â¾÷ÀÌ ´Ã¾î³²¿¡ µû¶ó µ¥ÀÌÅÍ ¼ÒÀ¯±Ç, »ç¿ëÀÚ ÇÁ¶óÀ̹ö½Ã, ÁöÀûÀç»ê±Ç ¹®Á¦°¡ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¸ñÇÒ ¸¸ÇÑ ÆÇ·Ê¸¦ ÅëÇØ ¹ýÀû °æ°è°¡ ¾î´À Á¤µµ ¸íÈ®ÇØÁ³Áö¸¸, ¿©ÀüÈ÷ ¸¹Àº ºÎºÐÀÌ °üÇÒ±Ç, ºÐ¾ß, ÀÌ¿ë »ç·Ê¿¡ µû¶ó ´Ù¸¥ ȸ»öÁö´ë¿¡¼­ ¿î¿µµÇ°í ÀÖ½À´Ï´Ù. À¥»çÀÌÆ®´Â ´ëºÎºÐ ½ºÅ©·¡ÇÎÀ» ¸í½ÃÀûÀ¸·Î ±ÝÁöÇÏ´Â ÀÌ¿ë¾à°üÀ» µÎ°í ÀÖÀ¸¸ç, À̸¦ À§¹ÝÇÒ °æ¿ì ¹ýÀû Á¶Ä¡³ª ¼­ºñ½º ±ÝÁö·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, Ã¥ÀÓ°¨ ÀÖ´Â µ¥ÀÌÅÍ ¼öÁýÀÌ ¿ì¼±¼øÀ§·Î ¶°¿À¸£¸é¼­ Á¶Á÷Àº °ø°³ µ¥ÀÌÅÍ °¡¿ë¼º, robots.txt ±ÔÁ¤, GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤) ¹× CCPA¿Í °°Àº Áö¿ª µ¥ÀÌÅÍ º¸È£¹ýÀ» ÁؼöÇÏ´Â ½ºÅ©·¡ÇÎ Àü·«À» ¼±ÅÃÇÏ°Ô µÇ¾ú½À´Ï´Ù. µ¿½Ã¿¡ ½ÃÀåÀÇ ¾Ð·ÂÀ¸·Î ÀÎÇØ ½ºÅ©·¡ÇÎ Åø Á¦°ø ¾÷ü´Â ¿ÉÆ®¾Æ¿ô °¨Áö, ¼Óµµ Á¦ÇÑ, ¾×¼¼½º Á¦¾î ·Î±ë µî ÄÄÇöóÀ̾𽺿¡ ÃÊÁ¡À» ¸ÂÃá ±â´ÉÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ¾Ç¿ë, °¨½Ã, ¿Àº¸¿¡ ´ëÇÑ À±¸®Àû ¿ì·Á´Â ƯÈ÷ ¹Ìµð¾î ¸ð´ÏÅ͸µ, ¼Ò¼È ºÐ¼®, °ø°ø Á¤Ã¥ ¿¬±¸ µîÀÇ ºÐ¾ß¿¡¼­ À¥ ½ºÅ©·¡ÇÎÀ» µµÀÔÇÏ´Â ¹æ½Ä¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ÇöÀç ±â¾÷Àº ´ë±Ô¸ð ½ºÅ©·¡ÇÎ ÇÁ·ÎÁ§Æ®¸¦ ½ÃÀÛÇϱâ Àü¿¡ ¸®½ºÅ© Æò°¡¸¦ ½ÃÇàÇÏ´Â °æÇâÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÄÄÇöóÀÌ¾ð½º¿Í ÇÕ¹ý¼ºÀ» º¸ÀåÇÏ´Â µ¥ÀÌÅÍ º¥´õ¸¦ ÀÌ¿ëÇÏ´Â ±â¾÷µµ µîÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿òÁ÷ÀÓÀº ¿ø½Ã µ¥ÀÌÅÍ ½ºÅ©·¡Çο¡¼­ Åõ¸íÇÑ °üÇà°ú Ã¥ÀÓ°¨ ÀÖ´Â ±â¼ú ¼³°è·Î Áö¿øµÇ´Â ÅëÁ¦µÇ°í À±¸®ÀûÀÎ µ¥ÀÌÅÍ ¼öÁýÀ¸·ÎÀÇ ÀüȯÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, À¥ ½ºÅ©·¡ÇÎ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀº ½Å¼ÓÇÏ°í ¹«°áÁ¡ ½ºÅ©·¡ÇÎ Åø¿Í ÄÄÇöóÀ̾𽺠¹× Áö¼Ó°¡´É¼ºÀ» À§ÇØ ±¸ÃàµÈ °­·ÂÇÑ ±â¾÷±Þ Ç÷§Æû »çÀÌ¿¡¼­ Á¡Á¡ ´õ ¾ç±ØÈ­µÇ¾î °¡°í ÀÖ½À´Ï´Ù.

¼¼°è À¥ ½ºÅ©·¡ÇÎ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀÇ ±Þ¼ºÀå ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?

À¥ ½ºÅ©·¡ÇÎ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀÇ ¼ºÀåÀº ¿Â¶óÀÎ µ¥ÀÌÅÍÀÇ Æø¹ßÀûÀÎ Áõ°¡, ½Ç½Ã°£ ½ÃÀå ÀÎÅÚ¸®Àü½º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, °ÅÀÇ ¸ðµç ºÐ¾ß¿¡¼­ µ¥ÀÌÅͺ£À̽º Àü·«ÀÇ Ã¤Åà µî ¿©·¯ °¡Áö º¹ÇÕÀûÀÎ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. µðÁöÅÐ ÀüȯÀÌ º¸ÆíÀûÀÎ ¿ì¼±¼øÀ§°¡ µÇ¸é¼­ ±â¾÷Àº E-Commerce Ç÷§Æû, ¼Ò¼È ³×Æ®¿öÅ©, ´º½º »çÀÌÆ®, äÅà Æ÷ÅÐ, ±ÔÁ¦ µ¥ÀÌÅͺ£À̽º¿Í °°Àº ¿Â¶óÀÎ ¼Ò½º¿¡¼­ Á÷Á¢ Àû½Ã¿¡ ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ Á¦°øÇÒ ¼ö ÀÖ´Â ÅøÀ» ã°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä Áõ°¡´Â ¼¿ÇÁ ¼­ºñ½º ½ºÅ©·¡ÇÎ Ç÷§Æû°ú ¸ÂÃãÇü ½ºÅ©·¡ÇÎ ¼­ºñ½º ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â ¾÷üµé¿¡°Ô ºñÁî´Ï½º ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÇÉÅ×Å©, ¼Ò¸Å, ¹°·ù, ºÎµ¿»ê, »çÀ̹ö º¸¾È, µðÁöÅÐ ¸¶ÄÉÆÃ µî ¿ÜºÎ µ¥ÀÌÅÍ¿¡ Å©°Ô ÀÇÁ¸ÇÏ´Â »ê¾÷ÀÇ È®´ëµµ ÁÖ¿ä ¼ºÀå ¿äÀÎÀÔ´Ï´Ù. ¶ÇÇÑ ÀÚµ¿È­ ¹× ÀΰøÁö´ÉÀ¸·ÎÀÇ ÀüȯÀÌ ÁøÇàµÇ¸é¼­ ½ºÅ©·¡ÇÎµÈ µ¥ÀÌÅÍ´Â ¸Ó½Å·¯´× ¸ðµ¨, ¿¹Ãø ºÐ¼®, °³ÀÎÈ­µÈ µðÁöÅÐ °æÇèÀ» ÃËÁøÇÏ°í ½Ã³ÊÁö¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºñÁî´Ï½ºÀÇ ¼¼°èÈ­·Î ÀÎÇØ Áö¿ª ½ÃÀå ¿ªÇÐÀ» ½Ç½Ã°£À¸·Î ÆÄ¾ÇÇÒ ¼ö ÀÖ´Â ´Ù±¹¾î, Áö¿ª Ÿ°ÙÆÃ ½ºÅ©·¡ÇÎ ±â´ÉÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇÕ¸®ÀûÀÎ °¡°ÝÀÇ Å¬¶ó¿ìµå ÀÎÇÁ¶ó¿Í ¿ÀǼҽº ÇÁ·¹ÀÓ¿öÅ©´Â Áß¼Ò±â¾÷ÀÌ Ã·´Ü ½ºÅ©·¡ÇÎ ÀÛ¾÷À» Àü°³Çϱâ À§ÇÑ ÁøÀÔÀ庮À» ³·Ãß°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ Å¬¸®´×, ±¸Á¶È­, API ÅëÇÕ ±â´ÉÀÌ ³»ÀåµÈ ½ºÅ©·¡ÇÎ ÅøÀÇ °¡¿ë¼ºÀÌ ³ô¾ÆÁö¸é¼­ µ¥ÀÌÅÍ ¼öÁýºÎÅÍ ÀλçÀÌÆ® µµÃâ±îÁö °É¸®´Â ½Ã°£ÀÌ ´ÜÃàµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû, »ó¾÷Àû, ¿î¿µÀû ¿äÀεéÀÌ Á¾ÇÕÀûÀ¸·Î À¥ ½ºÅ©·¡ÇÎ ¼ÒÇÁÆ®¿þ¾î ¼¼°è ½ÃÀå È®´ë¸¦ °ßÀÎÇϰí ÀÖÀ¸¸ç, Ãֽе¥ÀÌÅÍ »ýŰè¿Í °æÀï Á¤º¸ Àü·«ÀÇ Áß¿äÇÑ ±¸¼º ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(¹ü¿ë À¥ Å©·Ñ·¯, ÀÎÅ©¸®¸àÅÐ À¥ Å©·Ñ·¯, µö À¥ Å©·Ñ·¯), ¹èÆ÷(Ŭ¶ó¿ìµå ¹èÆ÷, ¿ÂÇÁ·¹¹Ì½º ¹èÆ÷), ÃÖÁ¾»ç¿ëÀÚ(BFSI ÃÖÁ¾»ç¿ëÀÚ, ¼Ò¸Å¡¤E-Commerce ÃÖÁ¾»ç¿ëÀÚ, ºÎµ¿»ê ÃÖÁ¾»ç¿ëÀÚ, Á¤ºÎ ÃÖÁ¾»ç¿ëÀÚ, ÇコÄɾî ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Web Scraping Software Market to Reach US$1.9 Billion by 2030

The global market for Web Scraping Software estimated at US$909.9 Million in the year 2024, is expected to reach US$1.9 Billion by 2030, growing at a CAGR of 13.4% over the analysis period 2024-2030. General-Purpose Web Crawlers, one of the segments analyzed in the report, is expected to record a 14.0% CAGR and reach US$1.2 Billion by the end of the analysis period. Growth in the Incremental Web Crawlers segment is estimated at 11.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$247.9 Million While China is Forecast to Grow at 18.0% CAGR

The Web Scraping Software market in the U.S. is estimated at US$247.9 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$412.0 Million by the year 2030 trailing a CAGR of 18.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 9.7% and 12.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 10.6% CAGR.

Global Web Scraping Software Market - Key Trends & Drivers Summarized

Why Are Organizations Turning to Web Scraping for Data-Driven Competitive Advantage?

In today’s hyperconnected economy, data is the foundation of competitive decision-making, and organizations are increasingly turning to web scraping software to gain access to real-time, high-volume, and diverse data from across the internet. Traditional methods of data collection, such as manual research or static databases, are proving insufficient in an environment where market conditions shift rapidly and consumer behavior evolves daily. Web scraping software allows businesses to extract structured data from websites at scale, enabling insights that fuel pricing strategies, product development, customer sentiment analysis, and competitive benchmarking. E-commerce companies are using scraping tools to monitor rivals’ pricing, stock levels, and promotional activity, while financial firms scrape news portals, government sites, and company filings to detect early market signals. Meanwhile, travel aggregators use scraping to compare flights, hotel rates, and reviews in real time, offering better value to users. The growing need for automation, speed, and accuracy in data gathering has made web scraping not just a technical tool but a strategic enabler. In addition to business intelligence, scraping software is being deployed in journalism, legal research, academic studies, and even public sector analysis to mine open data for insights. Organizations are also using scraping to detect counterfeit goods, monitor regulatory compliance, and track digital reputations. As digital footprints expand and competition intensifies, web scraping has become a critical capability for any data-centric enterprise seeking to stay ahead of the curve in a rapidly shifting information landscape.

How Are Technological Advances Making Web Scraping More Accessible and Powerful?

The evolution of web scraping software has been significantly shaped by advances in automation, artificial intelligence, and cloud computing, making it more efficient, accurate, and user-friendly. Today’s tools no longer require deep coding knowledge to operate; many offer visual interfaces, drag-and-drop elements, and prebuilt templates that democratize access for non-technical users. At the same time, more advanced platforms provide customizable scripting environments for developers needing greater control over data extraction processes. Artificial intelligence and machine learning algorithms have been incorporated to identify patterns, auto-navigate complex site structures, and adapt to dynamic content such as JavaScript rendering or AJAX-loaded elements. Some solutions now offer automated CAPTCHA solving, IP rotation, and headless browsing capabilities that mimic human behavior, helping users avoid detection and access even highly guarded websites. Cloud-based scraping platforms allow tasks to run on distributed infrastructure, minimizing local resource usage and enabling parallel processing of large-scale scraping jobs. Integration with data visualization and analytics platforms further enhances the value chain, allowing users to move directly from data collection to insight generation. Additionally, APIs and plugin support have made it easier to connect scraping tools with customer relationship management systems, market intelligence platforms, and real-time dashboards. These technological enhancements are not only expanding the scope of what can be scraped but also reducing the time, cost, and technical barriers to extracting high-quality web data at scale.

What Legal, Ethical, and Market Pressures Are Reshaping Web Scraping Practices?

While the capabilities of web scraping software are expanding, the ecosystem is simultaneously being reshaped by legal, ethical, and regulatory concerns. As organizations increasingly rely on scraped data for business operations, questions around data ownership, user privacy, and intellectual property have become more prominent. High-profile court cases have clarified some legal boundaries, but much of the practice still operates in a gray area that varies by jurisdiction, sector, and use case. Websites often implement terms of service that explicitly prohibit scraping, and breaches can lead to legal action or service bans. Consequently, responsible data acquisition is becoming a priority, with organizations opting for scraping strategies that comply with public data availability, robots.txt rules, and regional data protection laws like the GDPR and CCPA. At the same time, market pressures are driving providers of scraping tools to embed compliance-focused features such as opt-out detection, rate limiting, and access control logging. Ethical concerns around data misuse, surveillance, and misinformation are also influencing how web scraping is deployed, particularly in sectors like media monitoring, social analytics, and public policy research. Businesses are now more likely to conduct risk assessments before launching large-scale scraping projects, and some are turning to data vendors who guarantee compliance and legality. These dynamics are fostering a shift from raw data scraping to curated, ethical data harvesting supported by transparent practices and responsible technology design. As a result, the web scraping software market is increasingly bifurcating between quick-and-dirty scraping tools and robust, enterprise-grade platforms built for compliance and sustainability.

What Is Driving the Rapid Growth of the Web Scraping Software Market Worldwide?

The growth in the web scraping software market is driven by several interlinked factors, including the explosion of online data, the rising demand for real-time market intelligence, and the adoption of data-driven strategies across nearly every sector. With digital transformation becoming a universal priority, organizations are seeking tools that can provide timely and actionable insights directly from online sources such as e-commerce platforms, social networks, news sites, job portals, and regulatory databases. This rising demand is creating opportunities for vendors offering both self-service scraping platforms and customized scraping-as-a-service solutions. Another key growth driver is the expansion of industries that rely heavily on external data, such as fintech, retail, logistics, real estate, cybersecurity, and digital marketing. The ongoing shift toward automation and artificial intelligence is also creating synergy, as scraped data fuels machine learning models, predictive analytics, and personalized digital experiences. Furthermore, the globalization of business has increased the need for multilingual, geo-targeted scraping capabilities that can capture local market dynamics in real time. Affordable cloud infrastructure and open-source frameworks are lowering entry barriers for small and mid-sized businesses to deploy sophisticated scraping operations. Additionally, the growing availability of scraping tools with built-in data cleaning, structuring, and API integration features is reducing the time between data acquisition and insight deployment. These technological, commercial, and operational factors are collectively driving the expansion of the global web scraping software market, turning it into a critical component of modern data ecosystems and competitive intelligence strategies.

SCOPE OF STUDY:

The report analyzes the Web Scraping Software market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (General-Purpose Web Crawlers, Incremental Web Crawlers, Deep Web Crawlers); Deployment (Cloud Deployment, On-Premise Deployment); End-Use (BFSI End-Use, Retail & E-Commerce End-Use, Real Estate End-Use, Government End-Use, Healthcare End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â