¼¼°èÀÇ V2I(Vehicle to Infrastructure Communication) ½ÃÀå
Vehicle to Infrastructure Communication
»óǰÄÚµå : 1793937
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 379 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ V2I(Vehicle to Infrastructure Communication) ½ÃÀåÀº 2030³â±îÁö 10¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 4¾ï 1,270¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ V2I(Vehicle to Infrastructure Communication) ½ÃÀåÀº 2024-2030³â¿¡ CAGR 15.9%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 10¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ Çϵå¿þ¾î ÄÄÆ÷³ÍÆ®´Â CAGR 16.5%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 6¾ï 1,260¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ÄÄÆ÷³ÍÆ® ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 14.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 1,240¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 21.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ V2I(Vehicle to Infrastructure Communication) ½ÃÀåÀº 2024³â¿¡ 1¾ï 1,240¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 21.1%·Î ÃßÀÌÇϸç, 2030³â¿¡´Â 2¾ï 1,910¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 11.7%¿Í 14.3%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 12.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Â÷Â÷°£(V2I) Åë½Å ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Çö´ë ¸ðºô¸®Æ¼ ½Ã½ºÅÛ¿¡ Â÷·® °£ Åë½ÅÀÌ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

V2I(Vehicle-to-Infrastructure) Åë½ÅÀº Â÷·®°ú ±³Åë ½ÅÈ£µî, ¿ä±Ý¼Ò, ÁÖÂ÷ ½Ã½ºÅÛ, Ç¥ÁöÆÇ µî µµ·Îº¯ ÀÎÇÁ¶ó¿ÍÀÇ ¹«¼± µ¥ÀÌÅÍ ±³È¯À» ÀǹÌÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿¬°á¼ºÀº Â÷·®°ú µµ½Ã ½Ã½ºÅÛ °£ÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ ÀÛ¿ëÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ½Ç½Ã°£ ±³Åë °ü¸®¸¦ Áö¿øÇϰí, ±³Åë¾ÈÀüÀ» °³¼±Çϸç, ¿¡³ÊÁö È¿À²À» ³ôÀÔ´Ï´Ù. V2I´Â Áö´ÉÇü ±³Åë½Ã½ºÅÛ(ITS)ÀÇ ±âº» ÄÄÆ÷³ÍÆ®À̸ç, Ä¿³ØÆ¼µåÄ« ¹× ÀÚÀ²ÁÖÇàÂ÷ Ç÷§ÆûÀÇ ÁøÈ­¿¡ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ä¼ÒÀÔ´Ï´Ù.

V2I´Â ½ÅÈ£ ŸÀ̹Ö, Á¦ÇÑ ¼Óµµ, Â÷¼± Æó¼â, Á¤Ã¼ ±¸°£¿¡ ´ëÇÑ µ¥ÀÌÅ͸¦ Àü¼ÛÇÔÀ¸·Î½á Â÷·®ÀÌ ½Ç½Ã°£À¸·Î ¿îÀü Çൿ°ú °æ·Î °áÁ¤À» Á¶Á¤ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ Åë½ÅÀ» ÅëÇØ °øÈ¸Àü ½Ã°£ ´ÜÃà, ±³Â÷·Î Ãæµ¹ ¹æÁö, ±ä±Þ Â÷·® ¿ì¼± ¼øÀ§ ÁöÁ¤ÀÌ °¡´ÉÇÕ´Ï´Ù. V2I ¿ëµµ´Â ±³Åë ¹Ðµµ°¡ ³ô°í ÀÎÇÁ¶ó°¡ º¹ÀâÇÑ µµ½Ã ȯ°æ¿¡¼­ ƯÈ÷ Áß¿äÇϸç, Á¶Á¤µÈ ±³Åë È帧°ú ¹ÝÀÀ¼ºÀÌ ³ôÀº Á¦¾î°¡ ¿ä±¸µË´Ï´Ù.

Á¤ºÎ ¹× ÀÎÇÁ¶ó ±â°üÀº V2I µµÀÔÀ» ¾î¶»°Ô ÃßÁøÇϰí Àִ°¡?

°ø°ø ÀÎÇÁ¶ó Çö´ëÈ­ ³ë·ÂÀº ½º¸¶Æ® µµ·Î ¹× µµ½Ã °èȹ ±¸»ó¿¡ V2I ±â¼úÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ¿©·¯ ±¹°¡ÀÇ ±³Åë ´ç±¹Àº µµ·Îº¯ ÀåÄ¡(RSU), µðÁöÅÐ ½ÅÈ£ Á¦¾î ÀåÄ¡, Â÷·®°úÀÇ ¾ÈÀüÇÑ µ¥ÀÌÅÍ ±³È¯À» ÃËÁøÇϴ Ŭ¶ó¿ìµå ¿¬°á Ç÷§Æû¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® ½ÃƼ ÇÁ·ÎÁ§Æ®, ¹è±â°¡½º °¨Ãà, ±³ÅëüÁõ °ü¸®¸¦ À§ÇÑ ÀÚ±Ý Á¶´Þ ÇÁ·Î±×·¥Àº Á¡Á¡ ´õ V2I ±¸¼º ¿ä¼ÒÀÇ ±¸Çö°ú ¿¬°èµÇ°í ÀÖ½À´Ï´Ù.

ºÏ¹Ì, À¯·´, ¾Æ½Ã¾Æ ÀϺΠÁö¿ª¿¡¼­´Â ½Ã¹ü ÇÁ·ÎÁ§Æ® ¹× ´Ü°èÀû ¹èÆ÷¸¦ ÅëÇØ Àû»ö ½ÅÈ£ À§¹Ý °æ°í, º¸ÇàÀÚ °¨Áö, ÀûÀÀÇü ±³Åë ½ÅÈ£ ŸÀÌ¹Ö µîÀÇ ¿ëµµ¸¦ Å×½ºÆ®Çϰí ÀÖ½À´Ï´Ù. DSRC¿Í C-V2X¸¦ Æ÷ÇÔÇÑ »óÈ£¿î¿ë¼º ¹× Åë½Å ÇÁ·ÎÅäÄÝ¿¡ ´ëÇÑ ±ÔÁ¦ ±âÁØÀº ÅëÀÏµÈ ¹èÆ÷¸¦ º¸ÀåÇϱâ À§ÇØ È®¸³µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³ë·ÂÀ¸·Î ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í Â÷·® ¿î¿µ»ç°¡ V2I ½Ã½ºÅÛÀ» Ä¿³ØÆ¼µå ¾ÆÅ°ÅØÃ³¿¡ ÅëÇÕÇÒ ¼ö ÀÖ´Â ±â¹ÝÀÌ ¸¶·ÃµÇ°í ÀÖ½À´Ï´Ù.

½Å·ÚÇÒ ¼ö ÀÖ°í È®Àå °¡´ÉÇÑ V2I Åë½ÅÀ» Áö¿øÇÏ´Â ±â¼úÀ̶õ?

V2I Åë½ÅÀº ´Ü°Å¸® Åë½Å°ú ¼¿·ê·¯ ±â¹Ý ±â¼úÀÇ Á¶ÇÕ¿¡ ÀÇÁ¸ÇÏ¿© ÃÖ¼ÒÇÑÀÇ ´ë±â ½Ã°£À¸·Î Áß¿äÇÑ µ¥ÀÌÅ͸¦ Àü¼ÛÇÕ´Ï´Ù. Àü¿ë ´Ü°Å¸® Åë½Å(DSRC)Àº ÀüÅëÀûÀ¸·Î ½Ã°£¿¡ ¹Î°¨ÇÑ V2I ±â´É¿¡ »ç¿ëµÇ¾î ¿ÔÀ¸³ª, Cellular-V2X(C-V2X)´Â ±¤¹üÀ§ÇÑ ¹üÀ§, È®À强 ¹× 5G ÀÎÇÁ¶ó¿ÍÀÇ ÅëÇÕÀ¸·Î ÀÎÇØ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¸ÖƼ ¾×¼¼½º ¿§Áö ÄÄÇ»ÆÃ¿¡ ÀÇÇØ Áö¿øµÇ¸ç, ³×Æ®¿öÅ© ¿¡Áö ±Ùó¿¡¼­ µ¥ÀÌÅ͸¦ °ü¸®ÇÏ¿© ó¸® Áö¿¬À» ÁÙÀÔ´Ï´Ù.

ÀÎÇÁ¶ó¿¡ ³»ÀåµÈ ¼¾¼­, Ä«¸Þ¶ó, LiDAR À¯´ÖÀº Â÷·®¿¡ žÀçµÈ ½Ã½ºÅÛ°ú ¿¬µ¿ÇÏ¿© »óȲ ÀνÄÀ» Á¦°øÇÕ´Ï´Ù. °í±Þ ¸Þ½ÃÁö ÀÎÄÚµù, »çÀ̹ö º¸¾È °èÃþ, ÀÎÁõ ÇÁ·ÎÅäÄÝÀº Åë½ÅÀÇ ¹«°á¼ºÀ» º¸È£ÇÏ°í µ¥ÀÌÅÍ Á¶ÀÛÀ» ¹æÁöÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Â÷·®ÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤Àǰ¡ ÁøÇàµÊ¿¡ µû¶ó V2I ¸ðµâÀº Áß¾Ó Á¦¾î ÀåÄ¡¿¡ ³»ÀåµÇ¾î ¹«¼± ¾÷µ¥ÀÌÆ® ¹× ³»ºñ°ÔÀ̼Ç, ¾ÈÀü, ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ°úÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

V2I ½Ã½ºÅÛ º¸±ÞÀ» Áö¿øÇÏ´Â ÁÖ¿ä ¿äÀÎÀº ¹«¾ùÀΰ¡?

Â÷·®-ÀÎÇÁ¶ó Åë½Å ½ÃÀåÀÇ ¼ºÀåÀº Ä¿³ØÆ¼µåÄ«ÀÇ È®´ë, ÀÎÇÁ¶óÀÇ µðÁöÅÐÈ­, ±³Åë È¿À²È­ Àǹ«È­ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁöÀÚü¿Í ±¹°¡ÀÇ ½º¸¶Æ® µµ·Î ±â¼ú µµÀÔÀº V2I Åë½ÅÀÇ ±â¹Ý ·¹À̾ Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ½Â¿ëÂ÷ ¹× »ó¿ëÂ÷¿¡ ADAS ¹× ÀÚÀ²ÁÖÇà ±â´ÉÀÇ µµÀÔÀ¸·Î ÀÎÇÁ¶ó¿ÍÀÇ ½Ç½Ã°£ Åë½ÅÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. µµ½ÉÀÇ ±³ÅëüÁõ Áõ°¡¿Í ±³Åë¾ÈÀüÀÇ ¿ì¼±¼øÀ§°¡ ³ô¾ÆÁü¿¡ µû¶ó V2I Ç¥ÁØ¿¡ ´ëÀÀÇÏ´Â ÀûÀÀÇü ½ÅÈ£Á¦¾î, ºñ»ó°æ·Î, µðÁöÅÐ »çÀÌ´ÏÁö ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¼¿·ê·¯ ¿¬°áÀÇ ¹ßÀü°ú 5G ³×Æ®¿öÅ©ÀÇ °¡¿ë¼ºÀ¸·Î ÀÎÇØ ´Ù¾çÇÑ Áö¿ª¿¡¼­ º¸´Ù ±¤¹üÀ§Çϰí È®Àå °¡´ÉÇÑ V2I ¿ëµµÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ¶ÇÇÑ Åë½Å»ç, ÀÚµ¿Â÷ OEM, °ø°ø ±â°ü °£ÀÇ Çù·ÂÀû ³ë·ÂÀ¸·Î Ç¥ÁØÈ­ ³ë·ÂÀÌ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, Áö´ÉÇü ±³Åë »ýŰ迡 V2IÀÇ Àå±âÀûÀÎ ÅëÇÕÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(Çϵå¿þ¾î ÄÄÆ÷³ÍÆ®, ¼ÒÇÁÆ®¿þ¾î ÄÄÆ÷³ÍÆ®, ¼­ºñ½º ÄÄÆ÷³ÍÆ®); ¾ÖÇø®ÄÉÀ̼Ç(¼¿·ê·¯ ¾ÖÇø®ÄÉÀ̼Ç, Wi-Fi ¾ÖÇø®ÄÉÀ̼Ç, DSRC ¾ÖÇø®ÄÉÀ̼Ç, WiMAX ¾ÖÇø®ÄÉÀ̼Ç, Bluetooth ¾ÖÇø®ÄÉÀ̼Ç); ÃÖÁ¾ ¿ëµµ(½Â¿ëÂ÷ ÃÖÁ¾ ¿ëµµ, »ó¿ëÂ÷ ÃÖÁ¾ ¿ëµµ, ´ëÁß±³Åë ÃÖÁ¾ ¿ëµµ, ±ä±Þ Â÷·® ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Vehicle to Infrastructure Communication Market to Reach US$1.0 Billion by 2030

The global market for Vehicle to Infrastructure Communication estimated at US$412.7 Million in the year 2024, is expected to reach US$1.0 Billion by 2030, growing at a CAGR of 15.9% over the analysis period 2024-2030. Hardware Component, one of the segments analyzed in the report, is expected to record a 16.5% CAGR and reach US$612.6 Million by the end of the analysis period. Growth in the Software Component segment is estimated at 14.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$112.4 Million While China is Forecast to Grow at 21.1% CAGR

The Vehicle to Infrastructure Communication market in the U.S. is estimated at US$112.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$219.1 Million by the year 2030 trailing a CAGR of 21.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 11.7% and 14.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 12.7% CAGR.

Global Vehicle-to-Infrastructure (V2I) Communication Market - Key Trends & Drivers Summarized

Why Is Vehicle-to-Infrastructure Communication Essential to Modern Mobility Systems?

Vehicle-to-Infrastructure (V2I) communication refers to the wireless exchange of data between vehicles and roadside infrastructure, such as traffic signals, toll booths, parking systems, and signage. This connectivity supports real-time traffic management, improves road safety, and enhances energy efficiency by enabling dynamic interaction between vehicles and urban systems. V2I is a fundamental component of intelligent transport systems (ITS) and is crucial for the evolution of connected and autonomous vehicle platforms.

By transmitting data about signal timing, speed limits, lane closures, and congestion zones, V2I allows vehicles to adjust driving behavior and routing decisions in real time. This communication reduces idling time, prevents collisions at intersections, and enables emergency vehicle prioritization. V2I applications are particularly important in urban environments, where high traffic density and infrastructure complexity require coordinated traffic flow and responsive control.

How Are Governments and Infrastructure Agencies Driving V2I Deployment?

Public infrastructure modernization efforts are incorporating V2I technology into smart road and urban planning initiatives. Transportation authorities in several countries are investing in roadside units (RSUs), digital signal controllers, and cloud-connected platforms that facilitate secure data exchange with vehicles. Funding programs for smart city projects, emissions reduction, and congestion management are increasingly tied to implementation of V2I components.

In North America, Europe, and parts of Asia, pilot projects and phased rollouts are testing applications such as red light violation warnings, pedestrian detection, and adaptive traffic signal timing. Regulatory standards for interoperability and communication protocols, including DSRC and C-V2X, are being established to ensure uniform deployment. These initiatives are laying the groundwork for vehicle manufacturers and fleet operators to integrate V2I systems into their connectivity architecture.

What Technologies Are Supporting Reliable and Scalable V2I Communication?

V2I communication relies on a combination of short-range and cellular-based technologies to transmit critical data with minimal latency. Dedicated Short Range Communication (DSRC) has traditionally been used for time-sensitive V2I functions, while Cellular-V2X (C-V2X) is gaining traction for its broader range, scalability, and integration with 5G infrastructure. These systems are supported by multi-access edge computing, which reduces processing delays by managing data close to the network edge.

Sensors, cameras, and LiDAR units embedded in infrastructure work in conjunction with onboard vehicle systems to deliver contextual awareness. Advanced message encoding, cybersecurity layers, and authentication protocols are essential to protect communication integrity and prevent data manipulation. As vehicles become increasingly software-defined, V2I modules are being embedded into central control units, enabling over-the-air updates and seamless integration with navigation, safety, and infotainment systems.

What Are the Key Drivers Supporting Widespread Adoption of V2I Systems?

Growth in the vehicle-to-infrastructure communication market is driven by several factors related to connected vehicle expansion, infrastructure digitization, and traffic efficiency mandates. Deployment of smart road technologies by municipal and national governments is creating a foundational layer for V2I communication. Adoption of ADAS and autonomous driving features in passenger and commercial vehicles is increasing the need for real-time communication with infrastructure. Rising congestion in urban centers and increased prioritization of traffic safety are prompting investment in adaptive signal control, emergency routing, and digital signage systems compatible with V2I standards. Advancements in cellular connectivity and 5G network availability are enabling broader and more scalable V2I applications across diverse geographies. Additionally, collaborative initiatives between telecom providers, automotive OEMs, and public agencies are accelerating standardization efforts, supporting long-term integration of V2I into intelligent transportation ecosystems.

SCOPE OF STUDY:

The report analyzes the Vehicle to Infrastructure Communication market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Hardware Component, Software Component, Services Component); Application (Cellular Application, Wi-Fi Application, DSRC Application, WiMAX Application, Bluetooth Application); End-Use (Passenger Cars End-Use, Commercial Vehicles End-Use, Public Transportation End-Use, Emergency Vehicles End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â