¼¼°èÀÇ À°»ó ¹æÀ§ ½Ã½ºÅÛ¿ë °ü¼º ¼¾¼­ ½ÃÀå
Inertial Sensors for Land Defense Systems
»óǰÄÚµå : 1792961
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 277 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,242,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,727,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

À°»ó ¹æÀ§ ½Ã½ºÅÛ¿ë °ü¼º ¼¾¼­ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 11¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 9¾ï 870¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â À°»ó ¹æÀ§ ½Ã½ºÅÛ¿ë °ü¼º ¼¾¼­ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 3.6%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 11¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ FOG ±â¼úÀº CAGR 2.8%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 6¾ï 4,800¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. MEMS ±â¼ú ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 4.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2¾ï 4,760¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 6.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ À°»ó ¹æÀ§ ½Ã½ºÅÛ¿ë °ü¼º ¼¾¼­ ½ÃÀåÀº 2024³â¿¡ 2¾ï 4,760¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 6.5%·Î 2030³â±îÁö 2¾ï 2,270¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 1.5%¿Í 2.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ À°»ó ¹æÀ§ ½Ã½ºÅÛ¿ë °ü¼º ¼¾¼­ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

°ü¼º ¼¾¼­°¡ Çö´ë À°»ó ¹æ¾î Àü·«ÀÇ Áß½ÉÀÌ µÇ°í ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

°ü¼º ¼¾¼­´Â ±º»ç ÀÛÀüÀÇ º¹À⼺ Áõ°¡¿Í °¡È¤ÇÑ Á¶°Ç¿¡¼­ Á¤È®¼º, ÀÚÀ²¼º, ½Å·Ú¼º¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó À°»ó ¹æÀ§ ½Ã½ºÅÛ¿¡ ÇʼöÀûÀÎ ±¸¼º¿ä¼Ò·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. °¡¼Óµµ, °¢¼Óµµ, ¹æÀ§°¢À» ÃøÁ¤ÇÏ´Â ÀÌ ¼¾¼­´Â ÅÊÅ©, Àå°©Â÷, Æ÷º´ ½Ã½ºÅÛ, ¹«ÀÎÁö»óÂ÷·®(UGV) µî ´Ù¾çÇÑ Áö»ó Ç÷§ÆûÀÇ Ç×¹ý, Á¶ÁØ, ¾ÈÁ¤È­ ¾ÖÇø®ÄÉÀ̼ǿ¡ ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¹ÐÁýµÈ µµ½Ã Áö¿ª, ÁöÇÏ ½Ã¼³, ÀüÀÚÀü Àü¼úÀÌ Àü°³µÉ ¼ö ÀÖ´Â ÀüÅõ Áö¿ª µî GPS¸¦ »ç¿ëÇÒ ¼ö ¾ø°Å³ª ½ÅÈ£°¡ Ãæµ¹Çϴ ȯ°æ¿¡¼­ °ü¼º ¼¾¼­´Â Áö¼ÓÀûÀÎ À§Ä¡ Àνİú ¹æÇâ ÀνÄÀ» º¸ÀåÇÏ´Â Áß¿äÇÑ ³»ºñ°ÔÀÌ¼Ç µ¥ÀÌÅ͸¦ Á¦°øÇÕ´Ï´Ù. ¿ÜºÎ ½ÅÈ£·ÎºÎÅÍ µ¶¸³ÀûÀ¸·Î ÀÛµ¿ÇÏ´Â ÀÌ ´É·ÂÀº ±º»ç ȯ°æ¿¡¼­ °¡Àå °¡Ä¡ Àִ Ư¼º Áß ÇϳªÀÔ´Ï´Ù. Çö´ëÀÇ À°»ó ¹æ¾î Àü·«Àº ±âµ¿¼º°ú ¹ÝÀÀ¼º¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, °ü¼º ¼¾¼­´Â ½Ç½Ã°£ ¸ð¼Ç ÃßÀû, Æ÷žÀÇ ¾ÈÁ¤È­, »ç°Ý Ç÷§ÆûÀÇ ¹Ýµ¿ º¸Á¤À» °¡´ÉÇϰÔÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¸ñÇ¥¸¦ Áö¿øÇÕ´Ï´Ù. ƯÈ÷ ÇÕµ¿ÀÛÀü ¹× ºñ´ëĪÀü ½Ã³ª¸®¿À¿¡¼­ ±º»ç ±³ÀüÀº ¼Óµµ¿Í Á¤È®¼º¿¡ Á¡Á¡ ´õ ÀÇÁ¸Çϰí Àֱ⠶§¹®¿¡ °ü¼º ¼¾¼­´Â À̵¿°ú È­·ÂÀÇ ¿øÈ°ÇÑ Á¶Á¤À» Áö¿øÇÔÀ¸·Î½á Àü¼úÀû ¿ìÀ§¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, °ü¼ºÃøÁ¤ÀåÄ¡(IMU)´Â ¹«±âÀÇ À¯µµ ½Ã½ºÅÛ¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î, ¹ß»ç ÈÄ¿¡µµ ź¾àÀÌ ¸ñÇ¥¹°¿¡ µµ´ÞÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àü·«Àû ½Å·Ú¼ºÀÇ Áõ°¡·Î ÀÎÇØ À°»ó ¹æÀ§ ¾ÖÇø®ÄÉÀ̼ÇÀ» À§ÇØ Æ¯º°È÷ ¼³°èµÈ °ß°íÇÑ °í¼º´É °ü¼º ¼¾¼­ÀÇ ¿¬±¸ °³¹ß ¹× ¹èÄ¡¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ±º´ë°¡ ÇԴ븦 Çö´ëÈ­Çϰí ÀÚÀ² ½Ã½ºÅÛÀ» µµÀÔÇÔ¿¡ µû¶ó °ü¼º ¼¾¼­ÀÇ ¿ªÇÒÀº Á¤È®¼º°ú ÀÛÀü»ó ¿ìÀ§¸¦ À§ÇÑ ÇÙ½É ±â¼ú·Î °è¼Ó È®´ëµÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

±â¼ú Çõ½ÅÀÌ ±º»ç ȯ°æ¿¡¼­ °ü¼º ¼¾¼­ÀÇ ¼º´É°ú ½Ç¿ë¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖÀ»±î?

À°»ó ¹æÀ§ ½Ã½ºÅÛ¿ë °ü¼º ¼¾¼­¸¦ µÑ·¯½Ñ ±â¼ú ȯ°æÀº ºü¸£°Ô ¹ßÀüÇϰí ÀÖÀ¸¸ç, ±â¼ú Çõ½ÅÀ» ÅëÇØ ¼º´É ´É·Â°ú ±â´É ÅëÇÕÀÌ ¸ðµÎ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÃÖ±Ù ¸¶ÀÌÅ©·ÎÀüÀÚ±â°è½Ã½ºÅÛ(MEMS) ±â¼ú µ¿ÇâÀº ¼¾¼­ÀÇ ¼ÒÇüÈ­¿¡ Çõ¸íÀ» °¡Á®¿ÔÀ¸¸ç, ³»±¸¼ºÀ» ¼Õ»ó½ÃŰÁö ¾Ê°í ´õ ÀÛÀº Å©±âÀÇ ±¹¹æ Ç÷§ÆûÀ̳ª ±ºÀÎÀÌ Âø¿ëÇÏ´Â ½Ã½ºÅÛ¿¡ ÅëÇÕÇÒ ¼ö ÀÖ´Â ÃʼÒÇü °æ·® °ü¼º ¼¾¼­ÀÇ Á¦Á¶¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÇüÈ­´Â ƯÈ÷ Çö´ë ÀüÅõ¿¡¼­ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ±×°÷¿¡¼­ ÇÏÂ÷ÇÑ º´»ç³ª ¸ð¹ÙÀÏ Ç÷§ÆûÀº ºÎÇǰ¡ Å« Àåºñ¿¡ ±¸¾Ö¹ÞÁö ¾Ê°í ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. ¶ÇÇÑ, ¼¾¼­ À¶ÇÕ ¾Ë°í¸®ÁòÀÇ ¹ßÀüÀ¸·Î °ü¼º ¼¾¼­¸¦ GPS, ÁöÀڱ⠼¾¼­ ¹× ±âŸ žÀçµÈ ¼¾¼­ÀÇ µ¥ÀÌÅÍ¿Í °áÇÕÇÏ¿© º¸´Ù Á¤È®ÇÏ°í °­·ÂÇÑ ³»ºñ°ÔÀÌ¼Ç ¹× »óȲ ÀνÄÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÏÀÌ¿£µå ±¤¼¶À¯ ÀÚÀ̷νºÄÚÇÁ(FOG)¿Í ¸µ ·¹ÀÌÀú ÀÚÀ̷νºÄÚÇÁ(RLG)´Â ¶Ù¾î³­ Á¤È®µµ¿Í µå¸®ÇÁÆ® ÀúÇ×¼ºÀ¸·Î ÀÎÇØ ¹Ì¼Ç Å©¸®Æ¼Äà Ç÷§Æû¿¡ Áö¼ÓÀûÀ¸·Î äÅõǰí ÀÖ½À´Ï´Ù. °­È­µÈ ¼ÒÀç¿Í Á¦Á¶ °øÁ¤Àº Ãæ°Ý, Áøµ¿, ±ØÇÑÀÇ ¿Âµµ¿¡ ´ëÇÑ ¼¾¼­ÀÇ ³»¼ºÀ» Çâ»ó½ÃÄÑ À°»ó ¹æÀ§ Ȱµ¿¿¡¼­ ¹ß»ýÇÏ´Â °¡È¤ÇÑ Á¶°Ç¿¡ ´õ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, °ü¼º ¼¾¼­¸¦ ÀΰøÁö´É ¹× ¸Ó½Å·¯´× ½Ã½ºÅÛ°ú ÅëÇÕÇÏ¿© ȯ°æ º¯È­¸¦ ½Ç½Ã°£À¸·Î ¿¹ÃøÇÏ°í ´ëÀÀÇÒ ¼ö ÀÖ´Â ÀûÀÀÇü Á¦¾î ½Ã½ºÅÛÀÌ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½º¸¶Æ® °ü¼º ½Ã½ºÅÛÀº ÁöÇü Á¶°Ç, Ç÷§Æû »óÅÂ, ¹Ì¼Ç ÆÄ¶ó¹ÌÅÍ¿¡ µû¶ó µ¿ÀûÀ¸·Î ÀçÁ¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±º´ë°¡ ³×Æ®¿öÅ© Á᫐ ÀüÀï°ú ¸ÖƼ µµ¸ÞÀÎ ÀÛÀüÀ¸·Î ÀüȯÇÔ¿¡ µû¶ó Áö´ÉÇü ºÐ»êÇü ½Ã½ºÅÛÀÇ Áß¿äÇÑ ½ÇÇö ¼ö´ÜÀ¸·Î¼­ °ü¼º ¼¾¼­ÀÇ Á߿伺Àº °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ¸·Î °ü¼º ¼¾¼­´Â ¼öµ¿ÀûÀÎ ±¸¼º¿ä¼Ò¿¡¼­ ÀÇ»ç°áÁ¤ ¹× Àü¼ú ½ÇÇàÀÇ ´Éµ¿ÀûÀÎ ¿ä¼Ò·Î º¯¸ðÇϰí ÀÖ½À´Ï´Ù.

Ç÷§Æûº° ¿ä±¸»çÇ×ÀÌ Àüü À°»ó ½Ã½ºÅÛ ¼¾¼­ °³¹ßÀ» ¾î¶»°Ô Çü¼ºÇÒ °ÍÀΰ¡?

ÁßÀå°©Â÷¿¡¼­ °æ·® Á¤Âû À¯´Ö¿¡ À̸£±â±îÁö À°»ó ¹æ¾î Ç÷§ÆûÀº ´Ù¾çÇϸç, °ü¼º ¼¾¼­ ½Ã½ºÅÛ¿¡ ´Ù¾çÇÏ°í ¾ö°ÝÇÑ ¿ä±¸ »çÇ×À» ºÎ°úÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÁÖ·Â ÀüÂ÷ÀÇ °æ¿ì, žÀçµÈ ¹«±â ½Ã½ºÅÛ ¹× ±¤ÇÐ ½Ã½ºÅÛÀÇ Á¤È®ÇÑ ¾ÈÁ¤È­¸¦ À¯ÁöÇϸ鼭 °Ý·ÄÇÑ Áøµ¿, ³ôÀº Ãæ°Ý ÇÏÁß, ±¤¹üÀ§ÇÑ ¿Âµµ º¯µ¿¿¡µµ ¾ÈÁ¤ÀûÀ¸·Î ÀÛµ¿ÇÏ´Â °ü¼º ¼¾¼­°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ ¼¾¼­µéÀº ¶ÇÇÑ GPS¸¦ »ç¿ëÇÒ ¼ö ¾ø´Â ȯ°æ¿¡¼­µµ ½±°Ô Ž»öÇÒ ¼ö ÀÖ¾î¾ß Çϸç, °í±Þ ÀÚÀ̷νºÄÚÇÁ°¡ ÀåÂøµÈ °í±Þ °ü¼º ³»ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛÀÌ ÇʼöÀûÀÔ´Ï´Ù. ¹Ý´ë·Î ¹«ÀÎÁö»óÂ÷·®À̳ª ¼ÒÇü À̵¿ ½Ã½ºÅÛ¿¡¼­´Â Å« ÆäÀ̷ε带 Ãß°¡Çϰųª ±âµ¿¼ºÀ» ¶³¾î¶ß¸®Áö ¾ÊÀ¸¸é¼­µµ ÀÚÀ²ÁÖÇà°ú Àå¾Ö¹° ȸÇǸ¦ Áö¿øÇÏ´Â °¡º±°í ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ¼¾¼­°¡ ¿ì¼±½ÃµË´Ï´Ù. ÀÚÁÖÆ÷ ½Ã½ºÅÛ¿¡¼­ °ü¼º ¼¾¼­´Â Æ÷žÀÇ Á¤·Ä°ú Á¶ÁØ Á¤È®µµ¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, Á¶±Ý¸¸ ¾î±ß³ªµµ ÀÓ¹« ½ÇÆÐ·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. º¸º´ ÀüÅõ Â÷·®Àº Â÷·® ³»ºñ°ÔÀ̼ǰú ¸¶½ºÆ® ¹× ¹«±â ½ºÅ×À̼ǿ¡ ÀåÂøµÈ °¨½Ã ¹× Á¶ÁØ ½Ã½ºÅÛÀÇ ¾ÈÁ¤È­¸¦ À§ÇØ ÀÌ·¯ÇÑ ¼¾¼­¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. °ü¼º ¼¾¼­´Â À̵¿ Áß¿¡µµ Åë½Å ¾î·¹ÀÌ¿Í ¾ÈÅ׳ª ½Ã½ºÅÛÀÇ Á¤·ÄÀ» À¯ÁöÇÏ¿© Áö¼ÓÀûÀÎ ¿¬°á°ú µ¥ÀÌÅÍ È帧À» Áö¿øÇÕ´Ï´Ù. ¼¾¼­ÀÇ ¼³°è´Â ÀüÀÚ±â ȣȯ¼º, ·¹°Å½Ã ½Ã½ºÅÛ°úÀÇ ÅëÇÕ ¿ëÀ̼º, Àü·Â ¼Òºñ Á¦ÇÑ, ƯÈ÷ ºü¸£°Ô ¹èÆ÷ÇÒ ¼ö ÀÖ´Â Ç÷§ÆûÀ̳ª ¹èÅ͸® ±¸µ¿ Ç÷§Æû°ú °°Àº ¿ä¼Òµµ °í·ÁÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ´Ù¾çÇÑ »ç¿ë »ç·Ê·Î ÀÎÇØ Àúºñ¿ë MEMS ÀåÄ¡¿¡¼­ °íÁ¤¹Ð ³»ºñ°ÔÀÌ¼Ç µî±Þ ¼¾¼­¿¡ À̸£±â±îÁö ƯÁ¤ Ç÷§ÆûÀÇ ¿î¿µ ¿ä±¸ »çÇ×°ú ¹Ì¼Ç ÇÁ·ÎÆÄÀÏ¿¡ ¸Â´Â ¼Ö·ç¼Ç Æ÷Æ®Æú¸®¿À°¡ ÇÊ¿äÇÕ´Ï´Ù. ¸ðµâ½Ä ¹× ¾÷±×·¹ÀÌµå °¡´ÉÇÑ ¹æÀ§ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¼¾¼­ Á¦Á¶¾÷üµéÀº ¼º´ÉÀ̳ª ½Å·Ú¼ºÀ» ÀúÇϽÃŰÁö ¾ÊÀ¸¸é¼­µµ ¿©·¯ Ç÷§Æû¿¡ Àû¿ëÇÒ ¼ö ÀÖ´Â À¯¿¬ÇÑ ¾ÆÅ°ÅØÃ³¸¦ °³¹ßÇØ¾ß ÇÏ´Â °úÁ¦¸¦ ¾È°í ÀÖ½À´Ï´Ù.

À°»ó ¹æ»ê¿ë °ü¼º ¼¾¼­ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÈ­ÇÏ´Â ÁÖ¿ä ¿äÀÎÀº ¹«¾ùÀΰ¡?

À°»ó ¹æÀ§ ½Ã½ºÅÛ¿ë °ü¼º ¼¾¼­ ½ÃÀåÀÇ ¼ºÀåÀº º¯È­ÇÏ´Â ±º»ç ±³¸®, ±â¼ú ¼º¼÷µµ, ÁøÈ­ÇÏ´Â ÀüÀå ¿ä°Ç¿¡ ±â¹ÝÇÑ ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â Àü ¼¼°è ±¹¹æ±º¿¡¼­ ÀÚÀ²¼º°ú ¹«ÀÎ ½Ã½ºÅÛÀÌ °­Á¶µÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Áö»ó ±â¹Ý µå·Ð, ·Îº¿ Áö¿ø Â÷·®, ÀÚµ¿È­ ¹°·ù Ç÷§ÆûÀÌ º¸ÆíÈ­µÊ¿¡ µû¶ó À§¼º ±â¹Ý ÃøÀ§¿Í´Â µ¶¸³ÀûÀ¸·Î ÀÛµ¿ÇÏ´Â Á¤¹ÐÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â °ü¼º Ç×¹ý ½Ã½ºÅÛ¿¡ ´ëÇÑ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº ±¹¹æ Çö´ëÈ­ °èȹÀ» ÇâÇÑ ¼¼°è µ¿ÇâÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¿¡´Â ±âÁ¸ Àå°©Â÷ÀÇ ¾÷±×·¹À̵å¿Í °ü¼º ¼¾¼­°¡ »ç°ÝÅëÁ¦, Ç×¹ý, ½Ã½ºÅÛ Áø´Ü¿¡¼­ Áß½ÉÀûÀÎ ¿ªÇÒÀ» ÇÏ´Â µðÁöÅÐ Á¦¾î ½Ã½ºÅÛÀÇ ÅëÇÕÀÌ Æ÷ÇԵ˴ϴÙ. ÁöÁ¤ÇÐÀû ±äÀåÀÌ °íÁ¶µÇ°í ´Ù¾çÇÑ ÁöÇü°ú ȯ°æ¿¡¼­ Áï°¢ÀûÀÎ ´ëÀÀÀÌ ÇÊ¿äÇÑ »óȲ¿¡¼­ °¡È¤ÇÑ Á¶°Ç¿¡¼­µµ ±âµ¿¼º°ú Á¶ÁØÀ» Áö¿øÇÒ ¼ö ÀÖ´Â °ß°íÇÑ ÀüõÈÄ ¼¾¼­ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀüÀÚÀü ¹× GPS Àç¹ÖÀÇ À§ÇùÀ¸·Î ÀÎÇØ µ¶¸³Çü ³»ºñ°ÔÀÌ¼Ç ¼Ö·ç¼ÇÀº ´Ü¼øÈ÷ ¹Ù¶÷Á÷ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¿ä¼Ò°¡ µÇ¾î °ü¼º ¼¾¼­°¡ Àü·«ÀûÀ¸·Î Áß¿äÇÑ À§Ä¡¸¦ Â÷ÁöÇÏ°Ô µÇ¾ú½À´Ï´Ù. MEMS, FOG ¹× RLG ±â¼úÀÇ ±â¼ú ¹ßÀüÀº °í¼º´É ¼¾¼­¸¦ º¸´Ù ºñ¿ë È¿À²ÀûÀ̰í ÄÄÆÑÆ®ÇÏ°Ô ¸¸µé¸é¼­ µ¿½Ã¿¡ º¸´Ù ±¤¹üÀ§ÇÑ Ç÷§Æû¿¡ ¹èÄ¡ÇÒ ¼ö ÀÖ´Â ±æÀ» ¿­¾îÁÖ¾ú½À´Ï´Ù. °ü¼º ½Ã½ºÅÛ°ú AI, ¼¾¼­ À¶ÇÕ ¾Ë°í¸®Áò, Â÷¼¼´ë ÀüÀå °ü¸® ½Ã½ºÅÛ°úÀÇ ÅëÇÕµµ ¿©·¯ ºÎ´ë¿Í ¿µ¿ª¿¡ °ÉÄ£ º¸´Ù º¹ÀâÇϰí Çùµ¿ÀûÀÎ ÀÛÀüÀ» Áö¿øÇÔÀ¸·Î½á ±× °¡Ä¡¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ƯÈ÷ ¹Ì±¹, Àεµ, Áß±¹, NATO ȸ¿ø±¹ µîÀÇ ±¹¹æºñ ÁöÃâ Áõ°¡´Â ¼¾¼­ äÅÃÀ» °¡¼ÓÈ­ÇÏ´Â µ¥ ÇÊ¿äÇÑ ÀçÁ¤Àû µÞ¹ÞħÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ÃËÁø¿äÀÎÀÌ °áÇÕµÇ¾î °ü¼º ¼¾¼­°¡ Çö´ë À°»ó ¹æÀ§ ½Ã½ºÅÛÀÇ À¯È¿¼º, »ýÁ¸¼º, Áö´ÉÀÇ ±âÃʰ¡ µÇ´Â °ß°íÇÏ°í ºü¸£°Ô ¼ºÀåÇÏ´Â ½ÃÀåÀÌ Çü¼ºµÇ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

±â¼ú(FOG ±â¼ú, MEMS ±â¼ú), ¿ëµµ(¾ÈÁ¤È­ ¹Ì»çÀÏ ½Ã½ºÅÛ ¿ëµµ, ¾ÈÁ¤È­ Æ÷žÆ÷ ½Ã½ºÅÛ ¿ëµµ, À°»ó Ãø·®À» Æ÷ÇÔÇÑ À°»ó ³»ºñ°ÔÀÌ¼Ç ¿ëµµ, ¹Ì»çÀÏ GGM-SSM ¿ëµµ, ¾ÈÁ¤È­ ¾×Ƽºê º¸È£ ½Ã½ºÅÛ ¿ëµµ, ¾ÈÁ¤È­ ¿ÉÆ®·Î´Ð½º ½Ã½ºÅÛ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°è °íÀ¯ÀÇ SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Inertial Sensors for Land Defense Systems Market to Reach US$1.1 Billion by 2030

The global market for Inertial Sensors for Land Defense Systems estimated at US$908.7 Million in the year 2024, is expected to reach US$1.1 Billion by 2030, growing at a CAGR of 3.6% over the analysis period 2024-2030. FOG Technology, one of the segments analyzed in the report, is expected to record a 2.8% CAGR and reach US$648.0 Million by the end of the analysis period. Growth in the MEMS Technology segment is estimated at 4.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$247.6 Million While China is Forecast to Grow at 6.5% CAGR

The Inertial Sensors for Land Defense Systems market in the U.S. is estimated at US$247.6 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$222.7 Million by the year 2030 trailing a CAGR of 6.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.5% and 2.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.0% CAGR.

Global Inertial Sensors for Land Defense Systems Market - Key Trends & Drivers Summarized

Why Are Inertial Sensors Becoming Central to Modern Land Defense Strategies?

Inertial sensors are emerging as indispensable components in land defense systems, driven by the increasing complexity of military operations and the growing need for precision, autonomy, and reliability under challenging conditions. These sensors, which measure acceleration, angular velocity and orientation, are used extensively in navigation, targeting and stabilization applications across a wide range of ground-based platforms, including tanks, armored vehicles, artillery systems and autonomous unmanned ground vehicles (UGVs). In GPS-denied or signal-contested environments, such as dense urban areas, underground facilities, or active combat zones where electronic warfare tactics may be deployed, inertial sensors provide critical navigation data that ensures continuous positioning and orientation awareness. This ability to operate independently of external signals is one of their most valuable attributes in military settings. Modern land defense strategies are also focusing on mobility and responsiveness, and inertial sensors support these objectives by enabling real-time motion tracking, turret stabilization, and recoil compensation for firing platforms. As military engagements increasingly rely on speed and accuracy, especially in joint operations or asymmetric warfare scenarios, inertial sensors provide a tactical advantage by supporting the seamless coordination of movement and firepower. Additionally, inertial measurement units (IMUs) are integral to weapon guidance systems, ensuring that munitions remain on target even after launch. This rising strategic reliance has spurred extensive investment in the research, development, and deployment of ruggedized, high-performance inertial sensors specifically designed for land defense applications. As militaries modernize their fleets and incorporate autonomous systems, the role of inertial sensors will only continue to expand as a backbone technology for precision and operational superiority.

Can Technological Innovation Enhance the Performance and Utility of Inertial Sensors in Military Environments?

The technological landscape surrounding inertial sensors for land defense systems is advancing rapidly, with innovations enhancing both performance capabilities and functional integration. Recent developments in micro-electromechanical systems (MEMS) technology have revolutionized sensor miniaturization, enabling the production of highly compact, lightweight inertial sensors that can be embedded in smaller defense platforms and soldier-worn systems without compromising durability. This miniaturization is especially valuable in modern combat where dismounted soldiers and mobile platforms require real-time data without being burdened by bulky equipment. Additionally, advancements in sensor fusion algorithms allow inertial sensors to be combined with data from GPS, magnetometers, and other onboard sensors to provide more accurate and robust navigation and situational awareness. High-end fiber-optic gyroscopes (FOGs) and ring laser gyroscopes (RLGs) continue to be deployed in mission-critical platforms due to their superior accuracy and resistance to drift, while MEMS-based sensors are finding their niche in less demanding yet vital applications. Enhanced materials and fabrication processes have improved sensor resilience against shock, vibration, and temperature extremes, making them more suitable for the harsh conditions encountered in land defense operations. Furthermore, the integration of inertial sensors with artificial intelligence and machine learning systems is allowing for adaptive control systems that can predict and respond to environmental changes in real time. These smart inertial systems can dynamically recalibrate themselves based on terrain conditions, platform status, and mission parameters. As militaries move toward network-centric warfare and multi-domain operations, the importance of inertial sensors as a key enabler of intelligent, decentralized systems continues to grow. These innovations are transforming inertial sensors from passive components into active elements of decision-making and tactical execution.

How Do Platform-Specific Requirements Shape Sensor Development Across Land-Based Systems?

The wide range of land defense platforms, from heavy armored vehicles to lightweight reconnaissance units, imposes diverse and demanding requirements on inertial sensor systems. Main battle tanks, for example, require inertial sensors that can function reliably under intense vibration, high shock loads, and wide temperature fluctuations, all while maintaining precise stabilization for onboard weapon systems and optics. These sensors must also facilitate navigation in GPS-denied environments, making high-end inertial navigation systems with advanced gyroscopes a necessity. Conversely, unmanned ground vehicles and smaller mobile systems prioritize lightweight, energy-efficient sensors that support autonomous navigation and obstacle avoidance without adding significant payload or reducing mobility. In self-propelled artillery systems, inertial sensors play a vital role in turret alignment and targeting accuracy, where even a minor deviation can result in mission failure. Infantry fighting vehicles rely on these sensors for both vehicular navigation and stabilization of surveillance and targeting systems mounted on masts or weapon stations. Another critical application is in mobile command centers and battlefield logistics vehicles, where inertial sensors ensure that communication arrays and antenna systems remain aligned during movement, supporting continuous connectivity and data flow. Sensor design must also account for factors like electromagnetic compatibility, ease of integration with legacy systems, and power consumption limitations, particularly in rapidly deployable or battery-powered platforms. This wide range of use cases demands a portfolio of solutions ranging from low-cost MEMS units to high-precision navigation-grade sensors, each tailored to the operational needs and mission profiles of specific platforms. The growing demand for modular and upgradable defense systems is further encouraging sensor manufacturers to develop flexible architectures that can be adapted across multiple platforms without compromising performance or reliability.

What Key Drivers Are Accelerating the Growth of the Inertial Sensor Market for Land Defense Applications?

The growth in the inertial sensors for land defense systems market is driven by several critical factors rooted in changing military doctrines, technological maturity, and evolving battlefield requirements. One of the primary growth drivers is the increasing emphasis on autonomy and unmanned systems within defense forces worldwide. As ground-based drones, robotic support vehicles, and automated logistics platforms become more common, the need for precise and reliable inertial navigation systems that function independently of satellite-based positioning grows correspondingly. Another significant factor is the global trend toward defense modernization programs, which involve upgrading existing armored fleets and integrating digital control systems, where inertial sensors play a central role in fire control, navigation, and system diagnostics. Heightened geopolitical tensions and the need for readiness in various terrains and environments have also spurred investment in rugged, all-weather sensor systems capable of supporting mobility and targeting in extreme conditions. Additionally, the threat of electronic warfare and GPS jamming has made self-contained navigation solutions not just desirable but mission-critical, placing inertial sensors in a position of strategic importance. Technological advancements in MEMS, FOG, and RLG technologies have simultaneously made high-performance sensors more cost-effective and compact, opening the door for wider deployment across a broader array of platforms. The integration of inertial systems with AI, sensor fusion algorithms, and next-generation battlefield management systems is also enhancing their value by supporting more complex, coordinated operations across multiple units and domains. Furthermore, increased defense spending, particularly in countries like the United States, India, China, and members of NATO, is providing the financial backing necessary to accelerate sensor adoption. Together, these drivers are shaping a robust and rapidly expanding market where inertial sensors are becoming foundational to the effectiveness, survivability, and intelligence of modern land-based defense systems.

SCOPE OF STUDY:

The report analyzes the Inertial Sensors for Land Defense Systems market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (FOG Technology, MEMS Technology); Application (Stabilization Missile Systems Application, Stabilization Turret-Cannon Systems Application, Land Navigation Including Land Survey Application, Missile GGM-SSM Application, Stabilization Active Protection System Application, Stabilization of Optronics System Application)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â