¼¼°èÀÇ ³ª³ëÆ÷¾î ½ÃÄö½Ì ½ÃÀå
Nanopore Sequencing
»óǰÄÚµå : 1792742
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 575 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

³ª³ëÆ÷¾î ½ÃÄö½Ì ¼¼°è ½ÃÀåÀº 2030³â±îÁö 9¾ï 6,860¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 3¾ï 7,880¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ³ª³ëÆ÷¾î ½ÃÄö½Ì ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 9¾ï 6,860¸¸ ´Þ·¯¿¡ ´ÞÇϰí, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 16.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼Ò¸ðǰ Á¦°øÀº CAGR 15.6%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 6¾ï 2,420¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù. ±â±â Á¦°ø ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 19.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 320¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 22.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ³ª³ëÆ÷¾î ½ÃÄö½Ì ½ÃÀåÀº 2024³â¿¡ 1¾ï 320¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2024³âºÎÅÍ 2030³â ºÐ¼® ±â°£ µ¿¾È CAGR 22.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 2¾ï 1,120¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 12.7%¿Í 15.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 13.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ³ª³ëÆ÷¾î ½ÃÄö½Ì ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

³ª³ëÆ÷¾î ½ÃÄö½ÌÀÌ DNA ¹× RNA ºÐ¼®À» À籸¼ºÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

³ª³ëÆ÷¾î ½ÃÄö½ÌÀº DNA ¹× RNA ºÐÀÚ¸¦ ½Ç½Ã°£À¸·Î ºÐ¼®ÇÒ ¼ö ÀÖ´Â ºü¸£°í ÈÞ´ë °¡´ÉÇϸç È®Àå °¡´ÉÇÑ ¹æ¹ýÀ¸·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ½ÃÄö½Ì Ç÷§Æû°ú ´Þ¸® ³ª³ëÆ÷¾î ±â¼úÀº ÇÙ»ê »ç½½ÀÌ ³ª³ëÆ÷¾î¸¦ Åë°úÇÒ ¶§ Àü·ùÀÇ º¯È­¸¦ ÃøÁ¤ÇÏ¿© ´ºÅ¬·¹¿ÀƼµå ¼­¿­À» °ËÃâÇÕ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ÁõÆøÀ̳ª ¶óº§¸µÀÌ ÇÊ¿äÇÏÁö ¾Ê±â ¶§¹®¿¡ ½Ã·á Àü󸮰¡ °£¼ÒÈ­µÇ°í °á°ú¸¦ ºü¸£°Ô ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, ÇöÀå À¯ÀüÀÚ °Ë»ç, °¨¿°º´ °¨½Ã, ȯ°æ ¸ð´ÏÅ͸µ, ÀÓ»ó ¿¬±¸¸¦ À§ÇÑ ±ÍÁßÇÑ µµ±¸·Î µîÀåÇß½À´Ï´Ù.

·Õ¸®µå ½ÃÄö½Ì µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î Á¦°øÇÒ ¼ö ÀÖ¾î º¹ÀâÇÑ ±¸Á¶Àû º¯ÀÌ ½Äº°, ÇÏÇÁ·ÎŸÀÔ À§»ó ºÐ¼®, ÀüÀå Àü»çü ºÐ¼®¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ¿¬±¸ÀÚµéÀº À¯Àüü Àüü ¸ÅÇÎ, ÈÄ»ýÀ¯ÀüÇÐÀû º¯Çü °ËÃâ, Èñ±ÍÇϰųª ½ÃÄö½ÌÀÌ ¾î·Á¿î »ý¹°Ã¼ ¿¬±¸¿¡ ³ª³ëÆ÷¾î ½ÃÄö½ÌÀ» Á¡Á¡ ´õ ¸¹ÀÌ È°¿ëÇϰí ÀÖ½À´Ï´Ù. ³ª³ëÆ÷¾î µð¹ÙÀ̽ºÀÇ ÄÄÆÑÆ®ÇÑ µðÀÚÀΰú È޴뼺À¸·Î ÀÎÇØ ½ÇÇè½Ç ¹Û¿¡¼­ ºÐ»êÇü À¯Àüü ºÐ¼®ÀÌ °¡´ÉÇØÁ® ÇöÀå Á¶»ç, Áø´Ü, ¾Æ¿ôºê·¹ÀÌÅ© ´ëÀÀ¿¡ ´ëÇÑ Á¢±Ù°ú Ȱ¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

±â¼ú °³¹ßÀº ¾î¶»°Ô Á¤È®¼º°ú ½Ç¿ë¼ºÀ» ³ôÀ̰í Àִ°¡?

ÃÖ±Ù ±â°ø È­ÇÐ, ¸ðÅÍ ´Ü¹éÁú, º£À̽º ÄÝ ¾Ë°í¸®ÁòÀÇ ¹ßÀüÀ¸·Î ³ª³ëÆ÷¾î ½ÃÄö½Ì ½Ã½ºÅÛÀÇ Á¤È®µµ¿Í 󸮷®ÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. °­È­µÈ ³ª³ë±â°ø ¼ÒÀç´Â º¸´Ù ÀϰüµÈ ½ÅÈ£ ÆÐÅϰú ´õ ±ä ÆÇµ¶ ½Ã°£À» Á¦°øÇÕ´Ï´Ù. ³ª³ë±â°øÀ» Åë°úÇÏ´Â ÇÙ»êÀÇ À̵¿ ¼Óµµ¸¦ Á¶ÀýÇÏ´Â È¿¼Ò¸¦ ¾÷µ¥ÀÌÆ®ÇÏ¿© ÇØ»óµµ¿Í ÆÇµ¶ ǰÁúÀ» Çâ»ó½ÃÄ×½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ·¹º§¿¡¼­´Â ¸Ó½Å·¯´× ±â¹ÝÀÇ º£À̽º ÄÝ ÅøÀÌ ¿À·ùÀ²À» Áö¼ÓÀûÀ¸·Î °¨¼Ò½Ã۰í, ´ÜÀÏ ¿°±â º¯ÀÌ ¹× ¸Þƿȭ ¸¶Å© °ËÃâÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

Ŭ¶ó¿ìµå ±â¹Ý Ç÷§Æû°úÀÇ ÅëÇÕÀº ´ë±Ô¸ð µ¥ÀÌÅÍ Ã³¸®, ¿ø°Ý ¾×¼¼½º, °øµ¿ ºÐ¼®À» Áö¿øÇÕ´Ï´Ù. Ç÷ο켿 ¼³°è¿Í ¸ÖƼÇ÷º½º ±â´ÉÀÇ Çâ»óÀ¸·Î ¿¬±¸ÀÚµéÀº ´õ ÀûÀº ºñ¿ëÀ¸·Î ´õ ¸¹Àº »ùÇÃÀ» ÇÑ ¹ø¿¡ ½ÃÄö½ÌÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¸ðµâÇü ½ÃÄö½Ì ŰƮ´Â º¹ÀâÇÑ Àüó¸® ¾øÀÌ ºÐÇØ »ùÇÃ, ¸ÞŸÀ¯Àüü È¥ÇÕ¹°, Á÷Á¢ RNA »ç½½ µî ´Ù¾çÇÑ ÀԷ¿¡ ´ëÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ °³¼±À» ÅëÇØ ÀÌ ±â¼úÀº ´õ ¸¹Àº ¿¬±¸ÀÚµéÀÌ º¸´Ù Æø³Ð°Ô »ç¿ëÇÒ ¼ö ÀÖ´Â ´ÙÀç´Ù´ÉÇÏ°í »ç¿ëÇϱ⠽¬¿î ±â¼ú·Î °Åµì³µ½À´Ï´Ù.

³ª³ëÆ÷¾î ½ÃÄö½ÌÀÇ Àû¿ëÀ» ÃËÁøÇϰí ÀÖ´Â ºÐ¾ß¿Í »ç¿ë »ç·Ê´Â ¹«¾ùÀΰ¡?

Çмú ¿¬±¸±â°üÀº À¯Àüü, ÈÄ»ýÀ¯ÀüÇÐ, ¹Ì»ý¹°ÇÐ, ÁøÈ­·Ð ¿¬±¸¿¡¼­ÀÇ À¯¿ë¼º ¶§¹®¿¡ ³ª³ëÆ÷¾î ½ÃÄö½ÌÀ» ÀÏÂïÀÌ Ã¤ÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÓ»ó ½ÇÇè½Ç¿¡¼­´Â ½Å¼ÓÇÑ º´¿øÃ¼ ½Äº°, Ç×±ÕÁ¦ ³»¼º ÇÁ·ÎÆÄÀϸµ, À¯Àüº´ ½ºÅ©¸®´×¿¡ »ç¿ëµË´Ï´Ù. Á¾¾çÇп¡¼­´Â Á¾¾ç ÇÁ·ÎÆÄÀϸµ, À¶ÇÕ À¯ÀüÀÚ °ËÃâ, Àü»çü ºÐ¼®À» Áö¿øÇÕ´Ï´Ù. ³ó¾÷ ºÐ¾ß¿¡¼­´Â ÀÛ¹° À¯Àüü ºÐ¼®, Åä¾ç ¸¶ÀÌÅ©·Î¹ÙÀÌ¿È ÇÁ·ÎÆÄÀϸµ, µ¿¹° °Ç°­ ¸ð´ÏÅ͸µ¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù.

ÇöÀå ±â¹Ý ¾ÖÇø®ÄÉÀ̼ÇÀº ÁÖ¿ä ¼ºÀå ºÐ¾ßÀÔ´Ï´Ù. °øÁß º¸°Ç ±â°üÀº ÀúÀÚ¿ø ¹× ¿ø°ÝÁö¿¡¼­ÀÇ º´¿øÃ¼ ÃßÀûÀ» Æ÷ÇÔÇÑ ½Ç½Ã°£ ¹ßº´ ¸ð´ÏÅ͸µÀ» À§ÇØ ³ª³ëÆ÷¾î Ç÷§ÆûÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¾ß»ýµ¿¹° ¿¬±¸ÀÚ¿Í ÀÚ¿¬º¸È£ Ȱµ¿°¡µéÀº »ý¹° ´Ù¾ç¼º Á¶»ç ¹× Á¾ ½Äº°¿¡ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ºñ¿ëÀÌ ³·¾ÆÁö°í »ç¿ëÀÚ ÀÎÅÍÆäÀ̽º°¡ ´õ ½±°Ô »ç¿ëÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó ¼Ò±Ô¸ð ½ÇÇè½Ç°ú ÇöÀå Áø·á¼Ò¿¡¼­ ºÐ»êÇü °Ë»ç ¹× Á¶±â Áø´ÜÀ» À§ÇØ ³ª³ëÆ÷¾î ±â¹Ý µµ±¸°¡ ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù.

³ª³ëÆ÷¾î ½ÃÄö½Ì ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù....

³ª³ëÆ÷¾î ½ÃÄö½Ì ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ½Å¼Ó, ½Ç½Ã°£, ±ä ¸®µå ½ÃÄö½Ì ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä´Â ¿¬±¸ ¹× ÀÓ»ó ºÐ¾ß¿¡¼­ ½ÃÄö½Ì ±â¼úÀÇ Áö¼ÓÀûÀΠäÅÃÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. º£À̽º ÄÝ Á¤È®µµ, È¿¼Ò È­ÇÐ, ½ÅÈ£ ó¸®ÀÇ ¹ßÀüÀ¸·Î ½Å·Ú¼ºÀ» ³ôÀ̰í À¯¿ë¼ºÀ» È®´ë. Àú·ÅÇÑ °¡°ÝÀÇ ÈÞ´ë¿ë ½ÃÄö½Ì µð¹ÙÀ̽ºÀÇ È®´ë·Î ¿ø°ÝÁö, ¸ð¹ÙÀÏ, ºÐ»êÇü ȯ°æ¿¡¼­ÀÇ »ç¿ëÀ» ÃËÁøÇÕ´Ï´Ù. ¸ÂÃãÇü ÀÇ·á, °¨¿°º´ °¨½Ã, Á÷Á¢ RNA ½ÃÄö½Ì¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¾ÖÇø®ÄÉÀÌ¼Ç °³¹ßÀÌ ´õ¿í °¡¼ÓÈ­µÉ °ÍÀÔ´Ï´Ù. ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º Ç÷§Æû ¹× Ŭ¶ó¿ìµå ¼­ºñ½º¿ÍÀÇ ÅëÇÕÀ» ÅëÇØ È¿À²ÀûÀÎ µ¥ÀÌÅÍ ºÐ¼® ¹× °øÀ¯¸¦ ÃËÁøÇÕ´Ï´Ù. Çмú ±â°ü, ÀÇ·á ½Ã½ºÅÛ, Á¤ºÎÀÇ ÅõÀÚ´Â µµÀÔ°ú Çõ½Å ÆÄÀÌÇÁ¶óÀÎÀÇ È®Àå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦°ø ºÐ¾ß(¼Ò¸ðǰ, ±â±â), ½ÃÄö½Ì À¯Çü(Á÷·ù, ÇÕ¼º DNA&¼öÆò ÅͳΠÀü·ù, ±¤ÇÐÀû ÆÇµ¶ ±â¼ú, ¿¢¼Ò´ºÅ¬·¹¾ÆÁ¦), ³ª³ëÆ÷¾î À¯Çü(¼Ö¸®µå ½ºÅ×ÀÌÆ® ³ª³ëÆ÷¾î, ¹ÙÀÌ¿À·ÎÁöÄ«¸£³ª³ëÆ÷¾Æ, ÇÏÀ̺긮µå ³ª³ëÆ÷¾î), ¿ëµµ(Àΰ£ À¯ÀüÇÐ ¿ëµµ, ÀÓ»ó ¿¬±¸ ¿ëµµ, ½Ä¹° ¿¬±¸ ¿ëµµ, ¹Ì»ý¹°ÇÐ ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷ ÃÖÁ¾ ¿ëµµ, ÀÓ»ó ¿¬±¸¼Ò ÃÖÁ¾ ¿ëµµ, Çмú¡¤¿¬±¸±â°ü ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Nanopore Sequencing Market to Reach US$968.6 Million by 2030

The global market for Nanopore Sequencing estimated at US$378.8 Million in the year 2024, is expected to reach US$968.6 Million by 2030, growing at a CAGR of 16.9% over the analysis period 2024-2030. Consumables Offering, one of the segments analyzed in the report, is expected to record a 15.6% CAGR and reach US$624.2 Million by the end of the analysis period. Growth in the Instruments Offering segment is estimated at 19.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$103.2 Million While China is Forecast to Grow at 22.1% CAGR

The Nanopore Sequencing market in the U.S. is estimated at US$103.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$211.2 Million by the year 2030 trailing a CAGR of 22.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 12.7% and 15.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 13.5% CAGR.

Global Nanopore Sequencing Market - Key Trends & Drivers Summarized

Why Is Nanopore Sequencing Reshaping DNA and RNA Analysis?

Nanopore sequencing is gaining attention as a fast, portable, and scalable method for analyzing DNA and RNA molecules in real time. Unlike traditional sequencing platforms, nanopore technology detects nucleotide sequences by measuring changes in electrical current as a nucleic acid strand passes through a nanopore. This approach does not require amplification or labeling, which simplifies sample preparation and speeds up results. As a result, it has emerged as a valuable tool for on-site genetic testing, infectious disease surveillance, environmental monitoring, and clinical research.

Its ability to deliver long-read sequencing data in real time makes it especially useful for identifying complex structural variations, haplotype phasing, and full-length transcript analysis. Researchers are increasingly adopting nanopore sequencing to map entire genomes, detect epigenetic modifications, and study rare or hard-to-sequence organisms. The compact design and portability of nanopore devices allow for decentralized genomic analysis outside laboratory settings, broadening access and use in field research, diagnostics, and outbreak response.

How Are Technology Developments Enhancing Accuracy and Utility?

Recent advances in pore chemistry, motor proteins, and basecalling algorithms have improved the accuracy and throughput of nanopore sequencing systems. Enhanced nanopore materials provide more consistent signal patterns and longer reading durations. Updated enzymes that control the translocation speed of nucleic acids through the nanopore offer better resolution and read quality. At the software level, machine learning-based basecalling tools continue to reduce error rates and enable detection of single-nucleotide variants and methylation marks.

Integration with cloud-based platforms supports large-scale data processing, remote access, and collaborative analysis. Improvements in flow cell design and multiplexing capabilities allow researchers to sequence more samples per run at lower cost. Modular sequencing kits now accommodate a wide range of inputs, including degraded samples, metagenomic mixtures, or direct RNA strands, without the need for complex pre-processing. These improvements are making the technology more versatile and user-friendly for a broader research audience.

Which Sectors and Use Cases Are Driving Adoption of Nanopore Sequencing?

Academic research institutions remain early adopters of nanopore sequencing due to its utility in genomics, epigenetics, microbiology, and evolutionary studies. Clinical laboratories use it for rapid pathogen identification, antimicrobial resistance profiling, and genetic disease screening. In oncology, it supports tumor profiling, fusion gene detection, and transcriptomic analysis. The agricultural sector leverages the technology for crop genome analysis, soil microbiome profiling, and animal health monitoring.

Field-based applications are a key growth area. Public health agencies deploy nanopore platforms for real-time outbreak monitoring, including pathogen tracking in low-resource or remote settings. Wildlife researchers and conservationists use it for biodiversity studies and species identification. As costs decline and user interfaces become more accessible, small laboratories and point-of-care settings are exploring nanopore-based tools for decentralized testing and early diagnostics.

Growth in the Nanopore Sequencing Market Is Driven by Several Factors…

Growth in the nanopore sequencing market is driven by several factors. Demand for rapid, real-time, and long-read sequencing technologies supports continued adoption across research and clinical sectors. Advances in basecalling accuracy, enzyme chemistry, and signal processing enhance reliability and broaden utility. Expansion of low-cost, portable sequencing devices encourages use in remote, mobile, and decentralized environments. Growing interest in personalized medicine, infectious disease surveillance, and direct RNA sequencing further accelerates application development. Integration with bioinformatics platforms and cloud services facilitates efficient data analysis and sharing. Investments from academic institutions, healthcare systems, and governments contribute to expanding adoption and innovation pipelines.

SCOPE OF STUDY:

The report analyzes the Nanopore Sequencing market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Offering (Consumables Offering, Instruments Offering); Sequencing Type (Direct Current, Synthetic DNA & Horizontal Tunneling Current, Optical Reading Technique, Exonuclease); Nanopore Type (Solid State Nanopore, Biological Nanopore, Hybrid Nanopore); Application (Human Genetics Application, Clinical Research Application, Plant Research Application, Microbiology Application, Other Applications); End-Use (Biotechnology Companies End-Use, Clinical Laboratories End-Use, Academic & Research Institutes End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â