¼¼°èÀÇ GaN ±âÆÇ ½ÃÀå
GaN Substrate
»óǰÄÚµå : 1791857
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 517 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,274,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,824,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ GaN ±âÆÇ ½ÃÀåÀº 2030³â±îÁö 4¾ï 620¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 2¾ï 5,770¸¸ ´Þ·¯·Î ÃßÁ¤µÈ GaN ±âÆÇ ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 4¾ï 620¸¸ ´Þ·¯¿¡ À̸£°í, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 7.9%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ GaN-on-SiC ±âÆÇÀº CAGR 6.9%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á±îÁö 9,790¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. GaN-on-Si ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 6.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 7,020¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 12.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ GaN ±âÆÇ ½ÃÀåÀº 2024³â¿¡ 7,020¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ 2024-2030³â°£ CAGR 12.1%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿©, 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð 8,580¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 4.1%¿Í 7.5%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 5.2%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ GaN ±âÆÇ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

GaN ±âÆÇÀÌ °í¼º´É ÀüÀÚÁ¦Ç°¿¡ ÇʼöÀûÀÎ ÀÌÀ¯

ÁúÈ­°¥·ý(GaN) ±âÆÇÀº ±âÁ¸ ½Ç¸®ÄÜ ¹× »çÆÄÀÌ¾î ±â¹Ý ±âÆÇ¿¡ ºñÇØ ¿ì¼öÇÑ È¿À², Àü·Â ó¸® ¹× ¿­ °ü¸®·Î ÀÎÇØ °í¼º´É ÀüÀÚÁ¦Ç°ÀÇ ÇÙ½É ºÎǰÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. GaN ±âÆÇÀº °íÁÖÆÄ, °íÃâ·Â ¹× ±¤ÀüÀÚ ¿ëµµ¿¡ »ç¿ëµÇ´Â ÷´Ü ¹ÝµµÃ¼ÀÇ ±âÃÊ Àç·á·Î »ç¿ëµË´Ï´Ù. ±âÁ¸ Àç·á¿Í ´Þ¸® GaNÀº ³ÐÀº ¹êµå°¸ ±¸Á¶¸¦ Á¦°øÇϱ⠶§¹®¿¡ ¼º´É ÀúÇÏ ¾øÀÌ ´õ ³ôÀº Àü¾Ð, ´õ ºü¸¥ ½ºÀ§Äª ¼Óµµ, ´õ ³ôÀº ¿Âµµ¿¡¼­ ÀÛµ¿ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ GaN ±âÆÇÀº ¹«¼± Á֯ļö(RF) Åë½Å, Àü·Â ÀüÀÚ, ·¹ÀÌÀú ´ÙÀÌ¿Àµå, Â÷¼¼´ë µð½ºÇ÷¹ÀÌ ±â¼ú µîÀÇ ºÐ¾ß¿¡¼­ °ÔÀÓ Ã¼ÀÎÀú·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

GaN ±âÆÇÀÇ °¡Àå Å« ÀåÁ¡ Áß Çϳª´Â °íÈ¿À² ÆÄ¿ö ¹ÝµµÃ¼ ¼ÒÀÚ¸¦ ±¸ÇöÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î, Àü±âÀÚµ¿Â÷(EV), Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ, °í¼Ó µ¥ÀÌÅÍ Àü¼Û ³×Æ®¿öÅ©¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº Àü·Â º¯È¯ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó GaN ±â¹Ý Æ®·£Áö½ºÅÍ¿Í ´ÙÀÌ¿Àµå´Â Àü·Â ¾î´ðÅÍ, Àü·Â¸Á ÀÎÇÁ¶ó, 5G ±âÁö±¹ µîÀÇ ¿ëµµ¿¡¼­ ±âÁ¸ ½Ç¸®ÄÜ ±â¹Ý ºÎǰÀ» ´ëüÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, GaN ±âÆÇÀº °íÈÖµµ LED, ¸¶ÀÌÅ©·Î LED µð½ºÇ÷¹ÀÌ, »ê¾÷¿ë ¹× ÀÇ·á¿ë ¿ëµµ¿¡ »ç¿ëµÇ´Â ½ÉÀڿܼ±(DUV) ·¹ÀÌÀúÀÇ °³¹ß¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¼ÒÇüÈ­ ¹× °íÈ¿À² ÀüÀÚ±â±â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÏ´Â °¡¿îµ¥, GaN ±âÆÇÀº Çö´ë ¹ÝµµÃ¼ Á¦Á¶ÀÇ ±Ù°£ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

GaN ±âÆÇ Á¦Á¶ÀÇ ¹ßÀüÀº ¼º´É°ú ºñ¿ë È¿À²¼ºÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

GaN ±âÆÇ Á¦Á¶ ±â¼úÀÇ ¹ßÀüÀ¸·Î Àç·áÀÇ Ç°Áú, È®À强, ºñ¿ë È¿À²¼ºÀÌ Å©°Ô Çâ»óµÇ¾î ´ë·® ½ÃÀå Àû¿ëÀÇ ½ÇÇö °¡´É¼ºÀÌ ³ô¾ÆÁ³½À´Ï´Ù. ±âÁ¸¿¡ GaNÀº ÁÖ·Î ½Ç¸®ÄÜ(GaN-on-Si), »çÆÄÀ̾î(GaN-on-Sapphire), źȭ±Ô¼Ò(GaN-on-SiC) µî ¿Ü±¹ ±âÆÇ À§¿¡ ¼ºÀåµÇ¾î ¿Ô½À´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ ¹æ¹ýÀº Àç·áÀÇ ºÒÀÏÄ¡·Î ÀÎÇØ °ÝÀÚ °áÇÔÀÌ ¹ß»ýÇÏ¿© ¼ÒÀÚÀÇ ¼º´É ¹× ½Å·Ú¼º¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ³×ÀÌÆ¼ºê GaN °áÁ¤ ¼ºÀåÀ» ÀÌ¿ëÇÑ ¹úÅ© GaN ±âÆÇÀÇ °³¹ßÀº ÀüÀÚ À̵¿µµ¿Í ¿­Àüµµµµ¸¦ Çâ»ó½ÃŰ´Â °áÇÔ ¾ø´Â °í¼øµµ Àç·á¸¦ Á¦°øÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ÇѰ踦 ÇØ°áÇØ ¿Ô½À´Ï´Ù.

GaN ±âÆÇ Á¦Á¶¿¡¼­ °¡Àå À¯¸ÁÇÑ ±â¼ú Çõ½Å Áß Çϳª´Â ¼ö ¼ÒÈ­¹° ±â»ó ¼ºÀå¹ý(HVPE)À¸·Î, ÀüÀ§°¡ Àû°í ±¸Á¶Àû ¹«°á¼ºÀÌ °³¼±µÈ °íǰÁú GaN ¿þÀÌÆÛ¸¦ Á¦Á¶ÇÒ ¼ö ÀÖ´Â ±â¼úÀÔ´Ï´Ù. ¶ÇÇÑ, ºñ´Ü¿­ ¼ºÀå°ú À¯±â ±Ý¼Ó ±â»ó ¼ºÀå¹ý(MOCVD)ÀÇ ¹ßÀüÀ¸·Î GaN °áÁ¤ ÇÕ¼ºÀÌ ´õ¿í ÃÖÀûÈ­µÇ¾î Á¦Á¶ ºñ¿ëÀ» Àý°¨ÇÏ°í ¿þÀÌÆÛ Å©±â¸¦ È®´ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. 6ÀÎÄ¡ ¹× 8ÀÎÄ¡ ¿þÀÌÆÛ¿Í °°Àº ´ë±¸°æ GaN ±âÆÇÀ¸·ÎÀÇ ÀüȯÀº ´ë·® »ý»ê ¹ÝµµÃ¼ Á¦Á¶ÀÇ È®À强À» Çâ»ó½ÃŰ¸é¼­ ¼ÒÀÚ´ç ºñ¿ëÀ» Àý°¨ÇÏ´Â Áß¿äÇÑ µ¹ÆÄ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù. ÁõÂø ±â¼ú°ú ¿þÀÌÆÛ °øÁ¤ÀÇ Áö¼ÓÀûÀÎ °³¼±À¸·Î GaN ±âÆÇÀº Â÷¼¼´ë ¹ÝµµÃ¼ ¼ÒÀ縦 ã´Â »ê¾÷°è¿¡ ´õ¿í Ä£¼÷ÇÏ°Ô ´Ù°¡¿À°í ÀÖ½À´Ï´Ù.

GaN ±âÆÇ ¼ö¿ä¸¦ ÁÖµµÇÏ´Â »ê¾÷ ¹× ÀÀ¿ë ºÐ¾ß´Â?

Åë½Å ¹× RF ÀüÀÚ ºÐ¾ß´Â GaN ±âÆÇÀ» °¡Àå ¸¹ÀÌ Ã¤ÅÃÇϰí ÀÖ´Â ºÐ¾ß Áß Çϳª·Î, ³ôÀº ÀüÀÚ À̵¿µµ¿Í ³·Àº Àü·Â ¼Õ½ÇÀ» °íÁÖÆÄ ¿ëµµ¿¡ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. GaN ±â¹Ý RF ÁõÆø±â¿Í Æ®·£Áö½ºÅÍ´Â °í¼Ó ½ÅÈ£ Àü¼Û°ú ¿­ ¾ÈÁ¤¼ºÀÌ Áß¿äÇÑ À§¼º Åë½Å, ·¹ÀÌ´õ ½Ã½ºÅÛ, 5G ÀÎÇÁ¶ó¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. 5G ³×Æ®¿öÅ©ÀÇ È®´ë¿Í ¹Ð¸®¹ÌÅÍÆÄ(mmWave) ±â¼úÀÇ º¸±ÞÀÌ Áõ°¡ÇÔ¿¡ µû¶ó RF Àü·Â ¼ÒÀÚ¿¡¼­ GaN ±âÆÇ¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ç×°ø¿ìÁÖ ¹× ¹æÀ§»ê¾÷Àº ÷´Ü ÀüÀÚÀü ½Ã½ºÅÛ, °íÃâ·Â ·¹ÀÌ´õ, Â÷¼¼´ë Ç×°øÀüÀÚ°øÇп¡ GaN ±â¹Ý ºÎǰÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º »ê¾÷Àº ƯÈ÷ Àü±âÀÚµ¿Â÷, ±Þ¼Ó ÃæÀü Àü¿ø, Àç»ý ¿¡³ÊÁö ÀιöÅÍ¿¡¼­ GaN ±âÆÇ äÅÃÀÇ ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. GaN ±â¹Ý Àü·Â Æ®·£Áö½ºÅÍ¿Í ´ÙÀÌ¿Àµå´Â ½Ç¸®ÄÜ ±â¹Ý ´ëüǰ¿¡ ºñÇØ ³ôÀº È¿À²°ú Àü·Â ¹Ðµµ¸¦ Á¦°øÇϰí, ¿¡³ÊÁö ¼Õ½ÇÀ» ÁÙÀ̸ç, º¸´Ù ÄÄÆÑÆ®ÇÑ ¼³°è¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, GaN ±âÆÇÀº ±¤ÀüÀÚ »ê¾÷¿¡¼­ Àα⸦ ¾ò°í ÀÖÀ¸¸ç, °íÈÖµµ LED, ·¹ÀÌÀú ´ÙÀÌ¿Àµå, Áõ°­Çö½Ç(AR) ¹× °¡»óÇö½Ç(VR) ÀåÄ¡¿¡ »ç¿ëµÇ´Â ¸¶ÀÌÅ©·Î LED µð½ºÇ÷¹ÀÌÀÇ °³¹ßÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. °íÇØ»óµµ ¹× ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº µð½ºÇ÷¹ÀÌ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó °¡Àü ¹× Â÷·®¿ë Á¶¸í ¿ëµµ¿¡¼­ °íǰÁú GaN ±âÆÇ¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀåÀ» À̲ô´Â ÁÖ¿ä ¿äÀÎÀº?

GaN ±âÆÇ ½ÃÀåÀÇ ¼ºÀåÀº ¹ÝµµÃ¼ Á¦Á¶ ±â¼úÀÇ ¹ßÀü, °íÃâ·Â ¹× °íÁÖÆÄ ÀüÀÚ Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, 5G ¹× EV ÀÎÇÁ¶ó È®´ë µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁý´Ï´Ù. ½Ç¸®ÄÜ ±â¹Ý ¹ÝµµÃ¼¿¡¼­ GaN°ú °°Àº ±¤´ë¿ª °¸ Àç·á·ÎÀÇ ÀüȯÀÌ ÁøÇàµÊ¿¡ µû¶ó RF Åë½Å, Àü·Â º¯È¯, ±¤ÀüÀÚ ºÐ¾ßÀÇ ±â¼ú Çõ½ÅÀÌ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, GaN ±âÆÇ °ø±Þ¾÷ü¿¡ »õ·Î¿î ±âȸ°¡ âÃâµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °¡ÀüÁ¦Ç°ÀÇ ¿¡³ÊÁö È¿À² Çâ»ó°ú ¼ÒÇüÈ­ ÃßÁøÀº GaN ±â¹Ý ºÎǰ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÏ°í ½ÃÀå È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Àü±âÂ÷ ¹× Àç»ý ¿¡³ÊÁö ½Ã½ºÅÛ¿¡ GaN ±âÆÇÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ¿¡³ÊÁö ±â¾÷ÀÌ º¸´Ù È¿À²ÀûÀÎ Àü·Â °ü¸® ¼Ö·ç¼ÇÀ» ã°í Àֱ⠶§¹®¿¡ Áß¿äÇÑ ÃËÁø¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ºñ¿ë È¿À²¼ºÀÌ ¶Ù¾î³­ ´ë±¸°æ GaN ¿þÀÌÆÛÀÇ °³¹ß·Î ½ÃÀå °³Ã´ÀÌ ´õ¿í °¡¼ÓÈ­µÇ¾î ¹ÝµµÃ¼ Á¦Á¶¾÷ü´Â »ý»ê ±Ô¸ð¸¦ È®´ëÇϰí Àüü ¼ÒÀÚ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ¿¡³ÊÁö È¿À²ÀûÀÎ ±â¼ú°ú Áö¼Ó °¡´ÉÇÑ Àü·Â ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÀüȯÀ» ÃËÁøÇϱâ À§ÇÑ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê´Â ¿©·¯ »ê¾÷ ºÐ¾ß¿¡¼­ GaNÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ ¿¬±¸°¡ Àç·á °úÇаú ¼ÒÀÚ ¼º´ÉÀÇ ÇѰ迡 µµÀüÇÏ´Â °¡¿îµ¥, GaN ½ÃÀåÀº Áö¼ÓÀûÀ¸·Î ¼ºÀåÇÏ¿© Â÷¼¼´ë ÷´Ü ÀüÀÚ ½Ã½ºÅÛ¿¡¼­ ±× ¿ªÇÒÀ» È®°íÈ÷ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

Á¦Ç°(GaN-on-SiC ±âÆÇ, GaN-on-Si±âÆÇ, GaN-on-»çÆÄÀÌ¾î ±âÆÇ, ¹úÅ© GaN ±âÆÇ, ±âŸ GaN ±âÆÇ), ¿þÀÌÆÛ »çÀÌÁî(2ÀÎÄ¡ ¿þÀÌÆÛ, 4ÀÎÄ¡ ¿þÀÌÆÛ, 6ÀÎÄ¡ ¿þÀÌÆÛ, 8ÀÎÄ¡ ¿þÀÌÆÛ ÀÌ»ó), ¿ëµµ(LED ¿ëµµ, ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿ëµµ, °íÁÖÆÄ µð¹ÙÀ̽º ¿ëµµ, ·¹ÀÌÀú ´ÙÀÌ¿Àµå ¿ëµµ, ¼ö±¤ µð¹ÙÀ̽º ¿ëµµ, MEMS ¿ëµµ, žçÀüÁö ¿ëµµ, ¼¾¼­ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(°¡Àü ÃÖÁ¾ ¿ëµµ, Åë½Å ÃÖÁ¾ ¿ëµµ, ÀÚµ¿Â÷ ÃÖÁ¾ ¿ëµµ, Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ÃÖÁ¾ ¿ëµµ, ÇコÄɾî ÃÖÁ¾ ¿ëµµ, »ê¾÷ ÃÖÁ¾ ¿ëµµ, ¿¡³ÊÁö ¹× Àü·Â ÃÖÁ¾ ¿ëµµ, µ¥ÀÌÅͼ¾ÅÍ ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global GaN Substrate Market to Reach US$406.2 Million by 2030

The global market for GaN Substrate estimated at US$257.7 Million in the year 2024, is expected to reach US$406.2 Million by 2030, growing at a CAGR of 7.9% over the analysis period 2024-2030. GaN-on-SiC Substrates, one of the segments analyzed in the report, is expected to record a 6.9% CAGR and reach US$97.9 Million by the end of the analysis period. Growth in the GaN-on-Si segment is estimated at 6.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$70.2 Million While China is Forecast to Grow at 12.1% CAGR

The GaN Substrate market in the U.S. is estimated at US$70.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$85.8 Million by the year 2030 trailing a CAGR of 12.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.1% and 7.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 5.2% CAGR.

Global GaN Substrate Market - Key Trends & Drivers Summarized

Why Are GaN Substrates Becoming Essential in High-Performance Electronics?

Gallium Nitride (GaN) substrates have emerged as a critical component in high-performance electronics, enabling superior efficiency, power handling, and thermal management compared to traditional silicon and sapphire-based substrates. GaN substrates serve as the foundational material for advanced semiconductors used in high-frequency, high-power, and optoelectronic applications. Unlike conventional materials, GaN offers a wide-bandgap structure, allowing devices to operate at higher voltages, faster switching speeds, and elevated temperatures without compromising performance. These attributes have positioned GaN substrates as a game-changing technology in sectors such as radio frequency (RF) communications, power electronics, laser diodes, and next-generation display technology.

One of the most significant advantages of GaN substrates is their ability to enable highly efficient power semiconductor devices, making them ideal for electric vehicles (EVs), renewable energy systems, and high-speed data transmission networks. With the increasing global push for energy-efficient power conversion systems, GaN-based transistors and diodes are replacing traditional silicon-based components in applications such as power adapters, grid infrastructure, and 5G base stations. Additionally, GaN substrates are playing a crucial role in the development of high-brightness LEDs, micro-LED displays, and deep ultraviolet (DUV) lasers used in industrial and medical applications. As demand for miniaturized, high-efficiency electronics continues to rise, GaN substrates are becoming the backbone of modern semiconductor manufacturing.

How Are Advancements in GaN Substrate Manufacturing Improving Performance and Cost Efficiency?

Technological advancements in GaN substrate production have significantly improved material quality, scalability, and cost-effectiveness, making it more viable for mass-market applications. Traditionally, GaN was primarily grown on foreign substrates such as silicon (GaN-on-Si), sapphire (GaN-on-Sapphire), or silicon carbide (GaN-on-SiC). However, these methods introduced material mismatches that led to lattice defects, affecting device performance and reliability. The development of bulk GaN substrates, which utilize native GaN crystal growth, has addressed these limitations by providing defect-free, high-purity materials that enhance electron mobility and thermal conductivity.

One of the most promising innovations in GaN substrate manufacturing is Hydride Vapor Phase Epitaxy (HVPE), a technique that enables high-quality GaN wafer production with fewer dislocations and improved structural integrity. Additionally, advancements in ammonothermal growth and Metal-Organic Chemical Vapor Deposition (MOCVD) have further optimized GaN crystal synthesis, reducing production costs and increasing wafer sizes. The shift toward larger-diameter GaN substrates, such as 6-inch and 8-inch wafers, has been a significant breakthrough in reducing cost per device while improving scalability for high-volume semiconductor fabrication. With continuous improvements in deposition techniques and wafer processing, GaN substrates are becoming more accessible to industries seeking next-generation semiconductor materials.

Which Industries and Applications Are Driving the Demand for GaN Substrates?

The telecommunications and RF electronics sectors are among the largest adopters of GaN substrates, leveraging their high electron mobility and low power losses for high-frequency applications. GaN-based RF amplifiers and transistors are widely used in satellite communications, radar systems, and 5G infrastructure, where high-speed signal transmission and thermal stability are critical. The expansion of 5G networks and the increasing deployment of millimeter-wave (mmWave) technology have significantly accelerated the demand for GaN substrates in RF power devices. Additionally, the aerospace and defense industries are utilizing GaN-based components for advanced electronic warfare systems, high-power radar, and next-generation avionics.

The power electronics industry is another key driver of GaN substrate adoption, particularly in electric vehicles, fast-charging power supplies, and renewable energy inverters. GaN-based power transistors and diodes offer higher efficiency and power density compared to silicon-based alternatives, reducing energy losses and enabling more compact designs. Additionally, GaN substrates are gaining traction in the optoelectronics industry, supporting the development of high-brightness LEDs, laser diodes, and micro-LED displays used in augmented reality (AR) and virtual reality (VR) devices. The growing demand for high-resolution, energy-efficient display technology is further boosting the need for high-quality GaN substrates in consumer electronics and automotive lighting applications.

What Key Factors Are Driving Market Growth?

The growth in the GaN substrate market is driven by several factors, including advancements in semiconductor fabrication technology, increasing demand for high-power and high-frequency electronics, and the expansion of 5G and EV infrastructure. The ongoing transition from silicon-based semiconductors to wide-bandgap materials such as GaN has accelerated innovation in RF communications, power conversion, and optoelectronics, creating new opportunities for GaN substrate suppliers. Additionally, the push for higher energy efficiency and miniaturization in consumer electronics has fueled investment in GaN-based components, driving market expansion.

The increasing adoption of GaN substrates in electric vehicles and renewable energy systems is another critical growth driver, as automakers and energy companies seek more efficient power management solutions. The development of cost-effective, large-diameter GaN wafers has further strengthened market accessibility, allowing semiconductor manufacturers to scale production and reduce overall device costs. Furthermore, government initiatives promoting energy-efficient technologies and the shift toward sustainable power solutions have accelerated GaN adoption across multiple industries. As semiconductor research continues to push the boundaries of material science and device performance, the GaN substrate market is expected to experience sustained growth, solidifying its role in the next generation of advanced electronic systems.

SCOPE OF STUDY:

The report analyzes the GaN Substrate market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (GaN-on-SiC Substrates, GaN-on-Si, Substrates, GaN-on-Sapphire Substrates, Bulk GaN Substrates, Other GaN Substrates); Wafer Size (2-inch Wafers, 4-inch Wafers, 6-inch Wafers, 8-inch Wafers & Above); Application (LEDs Application, Power Electronics Application, Radio Frequency Devices Application, Laser Diodes Application, Photodetectors Application, MEMS Application, Solar Cells Application, Sensors Application); End-Use (Consumer Electronics End-Use, Telecommunications End-Use, Automotive End-Use, Aerospace & Defense End-Use, Healthcare End-Use, Industrial End-Use, Energy & Power End-Use, Data Center End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 43 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â