¼¼°èÀÇ º¿ º¸¾È ½ÃÀå
Bot Security
»óǰÄÚµå : 1791817
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 581 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ º¿ º¸¾È ¼¼°è ½ÃÀåÀº 2030³â±îÁö 26¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 8¾ï 6,870¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â º¿ º¸¾È ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 19.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 26¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ º¿ º¸¾È ¼Ö·ç¼ÇÀº CAGR 23.2%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 17¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º¿ º¸¾È ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 14.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2¾ï 3,670¸¸ ´Þ·¯, Áß±¹Àº CAGR 26.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ º¿ º¸¾È ½ÃÀåÀº 2024³â¿¡ 2¾ï 3,670¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 5¾ï 9,750¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 26.5%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß¿¡ °¢°¢ 14.3%¿Í 18.0%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 15.8%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ º¿ º¸¾È ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

º¿ º¸¾È ¼Ö·ç¼ÇÀ» Çü¼ºÇÏ´Â ±â¼ú Çõ½ÅÀ̶õ?

º¿ º¸¾È ½ÃÀåÀº ÃÖ÷´Ü ±â¼ú Çõ½ÅÀÌ ÀÚµ¿È­ À§ÇùÀ¸·ÎºÎÅÍ µðÁöÅÐ ÀÚ»êÀ» º¸È£ÇÏ´Â ¹æ¹ýÀ» ÀçÁ¤ÀÇÇϸ鼭 ºü¸£°Ô º¯È­Çϰí ÀÖ½À´Ï´Ù. °í±Þ ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú Çൿ ºÐ¼®ÀÌ ÃÖÀü¼±¿¡ ÀÖÀ¸¸ç, ½Ã½ºÅÛÀÌ ½Ç½Ã°£À¸·Î ÇÕ¹ýÀûÀÎ »ç¿ëÀÚ È°µ¿°ú °í±Þ º¿ ÇൿÀ» ½Äº°ÇÏ°í ±¸ºÐÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. µö·¯´×°ú ÀΰøÁö´É(AI) ¸ðµ¨Àº ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ® ºÐ¼®¿¡ µµÀÔµÇ¾î ¾ÇÀÇÀûÀÎ º¿ Æ®·¡ÇÈÀÇ ¹Ì¹¦ÇÑ ÆÐÅÏÀ» ÇнÀÇÏ°í »õ·Î¿î °ø°Ý º¤ÅÍ¿¡ Áö¼ÓÀûÀ¸·Î ÀûÀÀÇϰí ÀÖ½À´Ï´Ù. À§Çù ÀÎÅÚ¸®Àü½º Çǵ带 ÀÚµ¿È­ º¸¾È Ç÷§Æû°ú ÅëÇÕÇÏ¿© À§Çù °¨Áö ¹× ¿ÏÈ­ ¼Óµµ¿Í Á¤È®¼ºÀ» Çâ»ó½ÃÄÑ ÀáÀçÀûÀÎ Ä§ÇØ°¡ ÇÇÇØ¸¦ ÀÔÈ÷±â Àü¿¡ ½Äº°ÇÏ°í ¹«·ÂÈ­ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ½ÃÀå¿¡¼­´Â ÀÚ¿¬¾î ó¸®(NLP)¸¦ Ȱ¿ëÇÏ¿© °¡Â¥ Á¤º¸³ª »ç±â¼º ¸¶ÄÉÆÃ Ä·ÆäÀο¡ ÀÚÁÖ »ç¿ëµÇ´Â ÀÚµ¿È­µÈ ¼Ò¼È ¹Ìµð¾î º¿À» °¨ÁöÇϰí ÇÊÅ͸µÇÏ´Â ¿òÁ÷ÀÓÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀåÄ¡, Çൿ ¹× ³×Æ®¿öÅ© µ¥ÀÌÅ͸¦ °áÇÕÇÑ °í±Þ Áö¹®ÀÎ½Ä ±â¼úÀÌ º¸¾È ½Ã½ºÅÛ¿¡ ÅëÇÕµÇ¾î ºñÀΰ£ Æ®·¡ÇÈÀ» Á¤È®ÇÏ°Ô ½Äº°ÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â °­·ÂÇÑ ÇÁ·ÎÆÄÀÏÀ» »ý¼ºÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ±â¹Ý º¸¾È ¼Ö·ç¼ÇÀÇ ÁøÈ­·Î ºÐ»êµÈ ³×Æ®¿öÅ©¿¡¼­ º¿ Æ®·¡ÇÈÀÇ È®Àå °¡´ÉÇÑ ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× ºÐ¼®ÀÌ °¡´ÉÇØÁ® »ç°í ´ëÀÀ ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿ º¹±¸ µµ±¸¿Í ½ºÅ©¸³Æ® Â÷´Ü ±â¼úÀº ÀÚ°¡ ÇнÀ ±â´ÉÀ¸·Î °­È­µÇ¾î °¨Áö È¿À²À» Áö¼ÓÀûÀ¸·Î °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. API º¸¾ÈÀÇ Çõ½ÅÀº ½Ç½Ã°£ ÀÌ»ó ¡ÈÄ °¨Áö¿Í °áÇÕÇÏ¿© Å©¸®µ§¼È ½ºÅÍÇÎ ¹× µ¥ÀÌÅÍ ½ºÅ©·¡Çΰú °°Àº º¿ÀÌ ÁÖµµÇÏ´Â °ø°ÝÀ¸·ÎºÎÅÍ Áß¿äÇÑ ºñÁî´Ï½º ¿ëµµ¸¦ º¸È£ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÌ ¼º¼÷ÇØÁü¿¡ µû¶ó º¿ °¨Áö ¹× ¿¹¹æÀÇ Á¤È®µµ°¡ ³ô¾ÆÁú »Ó¸¸ ¾Æ´Ï¶ó, »çÀ̹ö º¸¾È¿¡ ´ëÇÑ º¸´Ù ´Éµ¿ÀûÀ̰í Áö´ÉÀûÀÎ Á¢±Ù ¹æ½ÄÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. IoT ±â±âÀÇ ÅëÇÕÀÌ Áõ°¡ÇÏ°í µðÁöÅÐ »ýŰ谡 È®ÀåµÊ¿¡ µû¶ó º¿ º¸¾È¿¡¼­ ÀÌ·¯ÇÑ Ã·´Ü ±â¼ú ´ëÃ¥ÀÇ Á߿伺Àº °è¼Ó Áõ°¡Çϰí ÀÖÀ¸¸ç, ÁøÈ­ÇÏ´Â »çÀ̹ö À§Çù¿¡ Á÷¸éÇßÀ» ¶§ ¼º´É°ú º¹¿ø·Â ¸ðµÎ¿¡ ´ëÇÑ »õ·Î¿î º¥Ä¡¸¶Å©¸¦ ¼³Á¤Çϰí ÀÖ½À´Ï´Ù.

ÁøÈ­ÇÏ´Â ÃÖÁ¾ ¿ëµµ¿Í »ê¾÷ ¿ä±¸»çÇ×Àº º¿ º¸¾ÈÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

º¿ º¸¾È ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â µ¥ ÀÖ¾î ÃÖÁ¾ ¿ëµµÀÇ ¹ßÀü°ú »ê¾÷º° ¿ä±¸»çÇ×ÀÌ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀüÀÚ»ó°Å·¡, ±ÝÀ¶ ¼­ºñ½º, µðÁöÅÐ ±¤°í µîÀÇ ºÐ¾ß¿¡¼­ ÀÚµ¿È­µÈ º¿ÀÇ ±ÞÁõÀº ¼öÀÍ À¯ÃâÀÇ ¿øÀÎÀÏ »Ó¸¸ ¾Æ´Ï¶ó ºê·£µå ÆòÆÇ°ú °í°´ ½Å·Ú¿¡ Å« À§ÇùÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌµé ¾÷°èÀÇ ±â¾÷µéÀº ¿Â¶óÀÎ °Å·¡¸¦ º¸È£ÇÏ°í ±â¹Ð µ¥ÀÌÅ͸¦ º¸È£Çϱâ À§ÇØ ½Ç½Ã°£ ºÐ¼®, ÀÌ»ó ¡ÈÄ °¨Áö, ¾Ç¼º Æ®·¡ÇÈÀÇ ÀÚµ¿ Â÷´ÜÀ» Á¦°øÇÏ´Â Àü¹® º¿ º¸¾È ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ¼Ò¼È ¹Ìµð¾î ¹× ÄÁÅÙÃ÷ Ç÷§Æû ºÐ¾ß¿¡¼­ °í±Þ º¿ °¨Áö µµ±¸´Â °¡Â¥ Á¤º¸ÀÇ È®»êÀ» ¸·°í »ç¿ëÀÚµé°úÀÇ »óÈ£ ÀÛ¿ëÀÇ ½Å·Ú¼ºÀ» º¸ÀåÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, µðÁöÅÐ ¹ðÅ·°ú ¸ð¹ÙÀÏ ¾ÖÇø®ÄÉÀ̼ÇÀÇ ±Þ¼ÓÇÑ È®»êÀ¸·Î ÀÎÇØ ±ÝÀ¶±â°üÀº »çÀ̹ö º¸¾È ÇÁ·¹ÀÓ¿öÅ©¿¡ ´ÙÃþÀûÀÎ º¿ º¸È£ Á¶Ä¡¸¦ ÅëÇÕÇÏ¿© ºÎÁ¤ÇàÀ§ÀÇ À§ÇèÀ» ÃÖ¼ÒÈ­ÇÏ°í ¾ö°ÝÇÑ ±ÔÁ¦ ±âÁØÀ» ÁؼöÇÒ ¼ö ÀÖµµ·Ï ÇØ¾ß ÇÕ´Ï´Ù. µðÁöÅÐ ¸¶ÄÉÆÃÀÇ ºÎ»óÀ¸·Î ÁøÁ¤ÇÑ °í°´ Âü¿©¿Í ÀÚµ¿È­µÈ º¿ ÀÎÅÍ·¢¼ÇÀ» ±¸ºÐÇϰí, Á¤È®ÇÑ ¾îÆ®¸®ºä¼Ç°ú ¼öÀÍ ½ºÆ®¸²À» º¸È£ÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. »ê¾÷°èÀÇ µðÁöÅÐ ÅëÇÕÀÌ ÁøÇàµÊ¿¡ µû¶ó °­·ÂÇϰí ÀûÀÀ·ÂÀÌ ¶Ù¾î³ª¸ç »ê¾÷º°·Î ƯȭµÈ º¿ º¸¾È ¼Ö·ç¼Ç¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, º¥´õµéÀº °íÀ¯ÇÑ ¿î¿µ °úÁ¦¿¡ ´ëÀÀÇÏ´Â ¸ÂÃãÇü Á¢±Ù ¹æ½ÄÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÃÖÁ¾ ¿ëµµ »ç·ÊÀÇ ´Ù¾çÈ­´Â ±âÁ¸ IT ÀÎÇÁ¶ó¿¡ ¿øÈ°ÇÏ°Ô ÅëÇÕµÉ ¼ö ÀÖ´Â ¸ðµâÇü È®À强 ³ôÀº º¸¾È Ç÷§ÆûÀÇ ±¸ÃàÀ» ÃËÁøÇÏ¿© ¿î¿µ È¿À²¼º Çâ»ó°ú »çÀ̹ö À§Çù ´ëÀÀ¿¡ ÀÖ¾î °æÀï ¿ìÀ§¸¦ °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù.

¾î¶² ±ÔÁ¦¿Í ½ÃÀå ¿ªÇÐÀÌ º¿ º¸¾ÈÀÇ È¯°æÀ» Çü¼ºÇϰí Àִ°¡?

º¿ º¸¾ÈÀÇ »óȲÀº Çõ½ÅÀ» ÃËÁøÇϰí ÄÄÇöóÀ̾𽺸¦ º¸ÀåÇϱâ À§ÇÑ ¾ö°ÝÇÑ ±ÔÁ¦ »óȲ°ú ÁøÈ­ÇÏ´Â ½ÃÀå ¿ªÇп¡ ÀÇÇØ Å©°Ô ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. Àü ¼¼°è Á¤ºÎ ¹× ±ÔÁ¦ ±â°üÀº À¯·´ÀÇ GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤), ͏®Æ÷´Ï¾ÆÀÇ CCPA¿Í °°Àº »çÀ̹ö º¸¾È Àǹ« ¹× µ¥ÀÌÅÍ º¸È£¹ýÀ» °­È­Çϰí ÀÖÀ¸¸ç, º¿ °ü·Ã À§Çù¿¡ ´ëÀÀÇϱâ À§ÇÑ °­·ÂÇÑ Á¶Ä¡¸¦ Á¶Á÷¿¡ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ, º¸°í ¹× °í±Þ º¸¾È ÇÁ·ÎÅäÄÝÀÇ ±¸ÇöÀ» ¿ä±¸Çϰí ÀÖÀ¸¸ç, ±â¾÷µéÀº Â÷¼¼´ë º¿ º¸¾È ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ¿Â¶óÀÎ »ç±â¿Í ÀÚµ¿È­µÈ °ø°ÝÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ±â¾÷µéÀº °í°´ µ¥ÀÌÅ͸¦ º¸È£ÇÏ°í ½Å·Ú¸¦ À¯ÁöÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖÀ¸¸ç, µðÁöÅÐ ½ÃÀå¿¡¼­ÀÇ °æÀïÀº ´õ¿í Ä¡¿­ÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦ ¾Ð·ÂÀº ºü¸¥ µðÁöÅÐ Àüȯ, ¿¬°á¼º Çâ»ó, ¼Ò¸Å¾÷¿¡¼­ ±ÝÀ¶¾÷¿¡ À̸£±â±îÁö ¸ðµç ºÐ¾ß¿¡¼­ ¿Â¶óÀΠȰµ¿ÀÌ ±ÞÁõÇÏ´Â ½ÃÀå ¿ªÇп¡ ÀÇÇØ º¸¿ÏµÇ°í ÀÖ½À´Ï´Ù. µðÁöÅÐ °ø±Þ¸Á °ü¸®¿Í Ŭ¶ó¿ìµå ±â¹Ý º¸¾È ¼­ºñ½ºÀÇ ÅëÇÕÀº º¸´Ù Åõ¸íÇϰí ź·ÂÀûÀΠȯ°æÀ» Á¶¼ºÇÏ¿© ±â¾÷ÀÌ »õ·Î¿î À§Çù¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ, »çÀ̹ö º¸¾È ±â¾÷, ±â¼ú Á¦°ø¾÷ü, ¾÷°è ÄÁ¼Ò½Ã¾ö °£ÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ÅëÇØ Áö½Ä °øÀ¯¿Í °øµ¿ Çõ½ÅÀ» ÃËÁøÇÏ°í ½ÃÀåÀÇ ±ÔÁ¦ ¿ä±¸»çÇ׿¡ ´ëÇÑ ´ëÀÀÀ» ´õ¿í °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ÀÎ½Ä Áõ°¡¿Í ÇÔ²² ½ÃÀå ¿ªÇÐÀ» À籸¼ºÇϰí Á¶Á÷ÀÌ º¿ º¸¾È Á¶Ä¡ÀÇ ¿ì¼±¼øÀ§¸¦ Á¤Çϰí Àü ¼¼°èÀûÀ¸·Î º¿ º¸¾È Á¶Ä¡¸¦ ÃëÇÏ´Â ¹æ½Ä¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.

º¿ º¸¾È ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù.

º¿ º¸¾È ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ÃÖÁ¾ »ç¿ëó È®´ë, ±ÔÁ¦ ¹× ¼ÒºñÀÚ ¿ªÇÐ º¯È­ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. AI, ¸Ó½Å·¯´×, ½Ç½Ã°£ Çൿ ºÐ¼®ÀÇ ±â¼ú Çõ½ÅÀº º¿ º¸¾È ½Ã½ºÅÛÀÇ °¨Áö ¹× ¹æÁö ±â´ÉÀ» °­È­ÇÏ¿© ¾ÇÀÇÀûÀÎ ÀÚµ¿È­ Ȱµ¿À» º¸´Ù Á¤È®ÇÏ°Ô ½Äº°ÇÏ°í ¹«·ÂÈ­ÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ÀüÀÚ»ó°Å·¡, ±ÝÀ¶ ¼­ºñ½º, ¼Ò¼È ¹Ìµð¾î, µðÁöÅÐ ±¤°í µî °¢ »ê¾÷ÀÇ ±Þ¼ÓÇÑ µðÁöÅÐ Çõ½ÅÀ¸·Î ÀÎÇØ ¼öÀÍ¿ø º¸È£, ±â¹Ð µ¥ÀÌÅÍ º¸È£, ¼ÒºñÀÚ ½Å·Ú À¯Áö¸¦ À§ÇÑ Àü¹®ÀûÀÎ º¿ º¸¾È ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¼ÒºñÀÚÀÇ µðÁöÅÐ Âü¿©°¡ Áõ°¡ÇÏ°í »çÀ̹ö º¸¾È À§Çè¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó, °íµµÀÇ »çÀü ¿¹¹æÀû º¸¾È Á¶Ä¡¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡, ¾ö°ÝÇÑ ±ÔÁ¦ ȯ°æ°ú ±¹Á¦ÀûÀÎ µ¥ÀÌÅÍ º¸È£¹ýÀ¸·Î ÀÎÇØ ±â¾÷Àº ÁøÈ­ÇÏ´Â À§Çù ȯ°æ¿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â °ß°íÇϰí ÄÄÇöóÀ̾𽺸¦ ÁؼöÇÏ´Â º¸¾È ÀÎÇÁ¶ó¿¡ ÅõÀÚÇØ¾ß ÇÏ´Â »óȲ¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µðÁöÅÐ °ø±Þ¸Á °ü¸®, IoT ±â±â, Ŭ¶ó¿ìµå ±â¹Ý ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ» ÅëÇÕÇÏ¿© º¸¾È ¿î¿µÀ» °£¼ÒÈ­ÇÏ°í »çÀ̹ö »ç°í¿¡ ´ëÇÑ ´ëÀÀ ½Ã°£À» ´ÜÃàÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú, ±ÔÁ¦, ½ÃÀå ÁÖµµÀû ¿äÀΰú ÇÔ²² R&D¿¡ ´ëÇÑ Àü·«Àû ÅõÀÚ ¹× ¼¼°è ¾÷°è Çù·Â°ú ÇÔ²² º¿ º¸¾È ½ÃÀåÀº Áö¼ÓÀûÀÎ ¼ºÀå°ú ±¹Á¦ÀûÀ¸·Î Æø³ÐÀº äÅÃÀ» ÇâÇØ ³ª¾Æ°¡°í ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ® À¯Çü(º¿ º¸¾È ¼Ö·ç¼Ç, º¿ º¸¾È ¼­ºñ½º);º¸¾È À¯Çü(À¥ º¸¾È, API º¸¾È, ¸ð¹ÙÀÏ º¸¾È, µð¹ÙÀ̽º º¸¾È, ³×Æ®¿öÅ© º¸¾È);Àü°³(Ŭ¶ó¿ìµå Àü°³, On-Premise Àü°³);±â¾÷ ±Ô¸ð(´ë±â¾÷, Áß¼Ò±â¾÷(SME));ÃÖÁ¾ ¿ëµµ(¼Ò¸Å ¹× E-Commerce ¿ëµµ, ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ® ¿ëµµ, ¿©Çà ¹× °ü±¤ ¿ëµµ, BFSI ¿ëµµ, ÅÚ·¹ÄÞ ¿ëµµ, Á¤ºÎ ¹× ¹æÀ§¿ëµµ, ÇコÄÉ¾î ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è µµ¸ÞÀÎ Àü¹®°¡·ÎºÎÅÍ Å¥·¹ÀÌÆ®µÈ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Bot Security Market to Reach US$2.6 Billion by 2030

The global market for Bot Security estimated at US$868.7 Million in the year 2024, is expected to reach US$2.6 Billion by 2030, growing at a CAGR of 19.8% over the analysis period 2024-2030. Bot Security Solution, one of the segments analyzed in the report, is expected to record a 23.2% CAGR and reach US$1.7 Billion by the end of the analysis period. Growth in the Bot Security Services segment is estimated at 14.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$236.7 Million While China is Forecast to Grow at 26.5% CAGR

The Bot Security market in the U.S. is estimated at US$236.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$597.5 Million by the year 2030 trailing a CAGR of 26.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 14.3% and 18.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 15.8% CAGR.

Global Bot Security Market - Key Trends & Drivers Summarized

What Are the Technological Innovations Reshaping Bot Security Solutions?

The bot security market is undergoing a rapid transformation as cutting-edge technological innovations redefine how organizations protect their digital assets from automated threats. Advanced machine learning algorithms and behavioral analytics are at the forefront, enabling systems to identify and differentiate between legitimate user activities and sophisticated bot behaviors in real time. Deep learning and artificial intelligence (AI) models are being deployed to analyze vast datasets, learning the subtle patterns of malicious bot traffic while continuously adapting to new attack vectors. Integration of threat intelligence feeds with automated security platforms is enhancing the speed and accuracy of threat detection and mitigation, ensuring that potential breaches are identified and neutralized before they can cause harm. Developers are increasingly leveraging natural language processing (NLP) to detect and filter out automated social media bots, which are often used for disinformation and fraudulent marketing campaigns. Furthermore, advanced fingerprinting techniques, which combine device, behavioral, and network data, are being integrated into security systems to create robust profiles that help in accurately identifying non-human traffic. The evolution of cloud-based security solutions has also enabled scalable, real-time monitoring and analysis of bot traffic across distributed networks, thereby improving incident response times. Additionally, automated remediation tools and script-blocking technologies are being enhanced with self-learning capabilities, which enable continuous improvement in detection efficiency. Innovations in API security, combined with real-time anomaly detection, are safeguarding critical business applications from bot-driven attacks such as credential stuffing and data scraping. As these technologies mature, they are not only elevating the precision of bot detection and prevention but are also facilitating a more proactive, intelligence-driven approach to cybersecurity. With increased integration of IoT devices and expanding digital ecosystems, the importance of these advanced technological measures in bot security continues to grow, setting new benchmarks for both performance and resilience in the face of evolving cyber threats.

How Are Evolving End-Use Applications and Industry Requirements Shaping Bot Security?

Evolving end-use applications and industry-specific requirements are playing a pivotal role in driving the expansion of the bot security market. In sectors such as e-commerce, financial services, and digital advertising, the proliferation of automated bots is not only a source of revenue leakage but also a major threat to brand reputation and customer trust. Companies in these industries are increasingly investing in specialized bot security solutions that provide real-time analytics, anomaly detection, and automated blocking of malicious traffic to safeguard online transactions and protect sensitive data. In the realm of social media and content platforms, advanced bot detection tools are essential to mitigate the spread of disinformation and ensure the authenticity of user interactions. Additionally, the rapid adoption of digital banking and mobile applications has compelled financial institutions to integrate multi-layered bot protection measures into their cybersecurity frameworks, minimizing the risk of fraud and ensuring compliance with strict regulatory standards. The rise of digital marketing has further fueled demand for solutions that can differentiate between genuine customer engagement and automated bot interactions, ensuring accurate attribution and protecting revenue streams. As industries become more digitally integrated, the need for robust, adaptable, and industry-specific bot security solutions is intensifying, prompting vendors to develop tailored approaches that address unique operational challenges. This diversification of end-use cases is driving the creation of modular, scalable security platforms that can be seamlessly integrated into existing IT infrastructures, thereby enhancing operational efficiency and providing a competitive edge in the fight against cyber threats.

What Regulatory and Market Dynamics Are Shaping the Bot Security Landscape?

The bot security landscape is being significantly influenced by stringent regulatory frameworks and evolving market dynamics that drive innovation and ensure compliance. Governments and regulatory bodies across the globe are tightening cybersecurity mandates and data protection laws, such as GDPR in Europe and the CCPA in California, which compel organizations to implement robust measures to combat bot-related threats. These regulations require continuous monitoring, reporting, and the implementation of advanced security protocols, pushing enterprises to invest heavily in next-generation bot security solutions. Simultaneously, the competitive nature of the digital marketplace is intensifying, as businesses strive to secure customer data and maintain trust in an era of increasing online fraud and automated attacks. This regulatory pressure is complemented by market dynamics characterized by rapid digital transformation, increased connectivity, and a surge in online activities across all sectors, from retail to finance. The integration of digital supply chain management and cloud-based security services is fostering a more transparent and resilient environment, enabling companies to respond swiftly to emerging threats. Moreover, strategic partnerships between cybersecurity firms, technology providers, and industry consortia are facilitating knowledge sharing and collaborative innovation, further strengthening the market’s response to regulatory demands. These factors, combined with growing consumer awareness about data privacy and security, are reshaping the market dynamics and influencing how organizations prioritize and implement bot security measures on a global scale.

The Growth in the Bot Security Market Is Driven by Several Factors…

The growth in the Bot Security market is driven by several factors, including significant technological advancements, expanding end-use applications, and evolving regulatory and consumer dynamics. Innovations in AI, machine learning, and real-time behavioral analytics are enhancing the detection and prevention capabilities of bot security systems, ensuring that malicious automated activities are identified and neutralized with greater precision. The rapid digital transformation across industries, particularly in e-commerce, financial services, social media, and digital advertising, is amplifying the need for specialized bot security solutions that protect revenue streams, safeguard sensitive data, and maintain consumer trust. Shifting consumer behavior towards increased digital engagement and heightened awareness of cybersecurity risks is fueling demand for advanced, proactive security measures. At the same time, stringent regulatory mandates and international data protection laws are compelling organizations to invest in robust, compliant security infrastructures that can adapt to an evolving threat landscape. Furthermore, the integration of digital supply chain management, IoT devices, and cloud-based monitoring systems is streamlining security operations and reducing response times to cyber incidents. These technological, regulatory, and market-driven factors, combined with strategic investments in R&D and global industry collaborations, are propelling the Bot Security market toward sustained growth and broader international adoption.

SCOPE OF STUDY:

The report analyzes the Bot Security market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component Type (Bot Security Solution, Bot Security Services); Security Type (Web Security, API Security, Mobile Security, Device Security, Network Security); Deployment (Cloud Deployment, On-Premise Deployment); Enterprise Size (Large Enterprises, Small and Medium Enterprises (SMEs)); End-Use (Retail and eCommerce Application, Media and Entertainment Application, Travel and Tourism Application, BFSI Application, Telecom Application, Government and Defense Application, Healthcare Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â