¼¼°èÀÇ ´º·² ÇÁ·Î¼¼¼­ ½ÃÀå
Neural Processors
»óǰÄÚµå : 1791743
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 155 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ´º·² ÇÁ·Î¼¼¼­ ½ÃÀåÀº 2030³â±îÁö 8¾ï 9,430¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 3¾ï 610¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ´º·² ÇÁ·Î¼¼¼­ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 19.6%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 8¾ï 9,430¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Ãß·Ð ¿ÀÆÛ·¹À̼ÇÀº CAGR 17.1%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 4¾ï 8,710¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Æ®·¹ÀÌ´× Á¶ÀÛ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 23.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8,050¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 18.6%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ´º·² ÇÁ·Î¼¼¼­ ½ÃÀåÀº 2024³â¿¡ 8,050¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 1¾ï 3,810¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 18.6%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, °¢°¢ ºÐ¼® ±â°£ Áß¿¡ 17.7%¿Í 17.2%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 14.6%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

´º·² ÇÁ·Î¼¼¼­ ¼¼°è ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

´º·² ÇÁ·Î¼¼¼­´Â ¾î¶»°Ô ÀΰøÁö´É¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í Àִ°¡?

½Å°æÃ³¸®ÀåÄ¡(Neural Processing Unit, NPU)¶ó°íµµ ºÒ¸®´Â ½Å°æÃ³¸®ÀåÄ¡´Â ¸Ó½Å·¯´×°ú ÀΰøÁö´É(AI)ÀÇ °è»ê ¼Óµµ¸¦ ³ôÀ̱â À§ÇØ ¼³°èµÈ Àü¿ë ĨÀÔ´Ï´Ù. ±âÁ¸ÀÇ Áß¾Óó¸®ÀåÄ¡(CPU)³ª ±×·¡ÇÈó¸®ÀåÄ¡(GPU)¿Í ´Þ¸® NPU´Â º´·Ä 󸮿¡ ÃÖÀûÈ­µÇ¾î ÀÖ¾î À̹ÌÁö ÀνÄ, ÀÚ¿¬¾î ó¸®, ½Ç½Ã°£ ÀÇ»ç°áÁ¤ µîÀÇ AI ¿öÅ©·Îµå¸¦ È¿À²ÀûÀ¸·Î ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·Î¼¼¼­´Â ¿§Áö ÄÄÇ»ÆÃ, ÀÚÀ²ÁÖÇàÂ÷, ½º¸¶Æ® ±â±â, °í¼º´É ÄÄÇ»ÆÃ¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¿ëµµ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϰí ÀÖ½À´Ï´Ù. ÇコÄɾî, ±ÝÀ¶, ·Îº¿°øÇÐ µîÀÇ »ê¾÷¿¡¼­ AI ±â¹Ý ¿ëµµÀÇ ºÎ»óÀ¸·Î ´º·² ÇÁ·Î¼¼¼­¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖÀ¸¸ç, º¸´Ù ºü¸£°í È¿À²ÀûÀÎ AI ¸ðµ¨ ÇнÀ ¹× Ãß·ÐÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. µö·¯´× ¾Ë°í¸®ÁòÀÌ º¹ÀâÇØÁü¿¡ µû¶ó ±âÁ¸ ÄÄÇ»ÆÃ ¾ÆÅ°ÅØÃ³·Î´Â ÇÊ¿äÇÑ ¿¬»ê ´É·ÂÀ» µû¶óÀâ±â ¾î·Á¿öÁö°í ÀÖ½À´Ï´Ù. Àü·Â ¼Òºñ¸¦ ÁÙÀ̸鼭 ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®ÇÒ ¼ö ÀÖ´Â NPU´Â ÇöÀç AI Çϵå¿þ¾î ÁøÈ­ÀÇ ÃÖÀü¼±¿¡ ¼­ ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý AI ¼­ºñ½º¿Í ¿Âµð¹ÙÀ̽º AI ó¸®ÀÇ È®´ë·Î ½Å°æ ÇÁ·Î¼¼¼­´Â Â÷¼¼´ë Áö´ÉÇü ÄÄÇ»ÆÃÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù.

´º·² ÇÁ·Î¼¼¼­ ½ÃÀåÀÇ ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

±Þ¼ÓÇÑ º¸±Þ¿¡µµ ºÒ±¸Çϰí, ½Å°æ ÇÁ·Î¼¼¼­´Â º¸±ÞÀ» Á¦ÇÑÇÏ´Â ¸î °¡Áö °úÁ¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿ì·Á »çÇ× Áß Çϳª´Â AI¿¡ ƯȭµÈ Çϵå¿þ¾î¸¦ °³¹ßÇϱâ À§Çؼ­´Â ¸¹Àº ¿¬±¸¿Í ÅõÀÚ°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ NPUÀÇ ¼³°è ¹× Á¦Á¶ ºñ¿ëÀÌ ³ô´Ù´Â °ÍÀÔ´Ï´Ù. ¹ü¿ë ÇÁ·Î¼¼¼­¿Í ´Þ¸® NPU´Â ƯÁ¤ AI ¿öÅ©·Îµå¿¡ ¸Â°Ô Á¶Á¤ÇØ¾ß Çϸç, ÀÌ´Â ¼­·Î ´Ù¸¥ AI ¸ðµ¨°ú ÇÁ·¹ÀÓ¿öÅ© °£ÀÇ È£È¯¼º ¹®Á¦·Î À̾îÁý´Ï´Ù. ¶Ç ´Ù¸¥ Å« °úÁ¦´Â Àü·Â ¼Òºñ·Î, ƯÈ÷ µ¥ÀÌÅͼ¾ÅÍ ¹× AI ±â¹Ý ¿ëµµ¿¡ »ç¿ëµÇ´Â °í¼º´É NPUÀÇ Àü·Â ¼Òºñ°¡ Å®´Ï´Ù. NPU´Â ±âÁ¸ ÇÁ·Î¼¼¼­º¸´Ù È¿À²ÀûÀÌÁö¸¸, ½Ç½Ã°£ AI 󸮿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Àü·Â ¿ä±¸·®ÀÌ Áõ°¡ÇÏ¿© ³Ã°¢ ¹× Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI Çϵå¿þ¾î ½ÃÀåÀÌ ¼¼ºÐÈ­µÇ¾î Àֱ⠶§¹®¿¡ °³¹ßÀڴ ƯÁ¤ NPU¿¡ ¸Â°Ô ¸Ó½Å·¯´× ¸ðµ¨À» ÃÖÀûÈ­ÇØ¾ß Çϱ⠶§¹®¿¡ À¯¿¬¼ºÀÌ ¶³¾îÁö°í ÅëÇÕÀÇ º¹À⼺ÀÌ Áõ°¡ÇÕ´Ï´Ù. ¶ÇÇÑ, AI¸¦ žÀçÇÑ ½Ã½ºÅÛÀº Àû´ëÀû °ø°Ý, µ¥ÀÌÅÍ À¯Ãâ, ºÎÁ¤ Á¶ÀÛ¿¡ Ãë¾àÇϱ⠶§¹®¿¡ º¸¾È À§Çè¿¡ ´ëÇÑ ¿ì·Áµµ Ä¿Áö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °ø±Þ¸ÁÀÇ È¥¶õ°ú ¼¼°è ¹ÝµµÃ¼ ºÎÁ·Àº NPUÀÇ °¡¿ë¼º¿¡ ¿µÇâÀ» ¹ÌÃÄ ÁÖ¿ä »ê¾÷ ºÐ¾ß·ÎÀÇ µµÀÔÀ» Áö¿¬½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦¸¦ ÇØ°áÇϱâ À§Çؼ­´Â Ĩ ¼³°èÀÇ Áö¼ÓÀûÀÎ ¹ßÀü, Ç¥ÁØÈ­ ³ë·Â, ´Ù¾çÇÑ ¿ëµµ¿¡ AI¸¦ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ´Â º¸¾È ÇÁ·ÎÅäÄÝ °­È­°¡ ÇÊ¿äÇÕ´Ï´Ù.

´º·² ÇÁ·Î¼¼½Ì À¯´ÖÀÇ ±â¼ú Çõ½ÅÀº ¾î¶»°Ô AI ¿ª·®À» °­È­Çϴ°¡?

´º·² ÇÁ·Î¼¼¼­ »ê¾÷Àº ±Þ¼ÓÇÑ ±â¼ú Çõ½ÅÀ» ÀÌ·ç°í ÀÖÀ¸¸ç, AIÀÇ ¼º´É, È¿À²¼º, È®À强À» Çâ»ó½ÃŰ´Â »õ·Î¿î ±â¼úÀÌ µîÀåÇϰí ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¹ßÀü Áß Çϳª´Â Àΰ£ µÎ³úÀÇ ±¸Á¶¸¦ ¸ð¹æÇÏ¿© Á¤º¸¸¦ º¸´Ù È¿À²ÀûÀ¸·Î ó¸®ÇÏ´Â ´º·Î¸ðÇÈ ÄÄÇ»ÆÃÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ·¯ÇÑ »ý¹°Çп¡¼­ ¿µ°¨À» ¹ÞÀº ÇÁ·Î¼¼¼­´Â ½ºÆÄÀÌÅ· ½Å°æ¸Á(SNN)À» »ç¿ëÇÏ¿© ÀúÀü·ÂÀ¸·Î ½Ç½Ã°£ AI °è»êÀ» °¡´ÉÇÏ°Ô Çϸç, ¿§Áö ÄÄÇ»ÆÃ ¹× ÀÚÀ² ½Ã½ºÅÛ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¶Ç ´Ù¸¥ µ¹ÆÄ±¸´Â ½º¸¶Æ®Æù, ½º¸¶Æ®È¨ ½Ã½ºÅÛ, ¿þ¾î·¯ºí ±â¼ú µî ¼ÒºñÀÚ ±â±â¿¡ NPU¸¦ ÅëÇÕÇÏ¿© ´ë±â ½Ã°£À» ÁÙÀÌ°í »ç¿ëÀÚ °æÇèÀ» Çâ»ó½ÃŰ´Â ¿Âµð¹ÙÀ̽º AI ±â´ÉÀ» ±¸ÇöÇÏ´Â °ÍÀÔ´Ï´Ù. ¾çÀÚ AIµµ ÁÖ¸ñ¹Þ°í ÀÖÀ¸¸ç, ¿¬±¸ÀÚµéÀº º¹ÀâÇÑ ¹®Á¦¸¦ Àü·Ê ¾ø´Â ¼Óµµ·Î ÇØ°áÇϱâ À§ÇØ ´º·² ÇÁ·Î¼¼¼­¿Í °áÇÕµÈ ¾çÀÚ ÄÄÇ»ÆÃÀÇ °¡´É¼ºÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÅÙ¼­ ÇÁ·Î¼¼½Ì À¯´Ö(TPU) ¹× Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ(FPGA)¿Í °°Àº AI °¡¼Ó±â´Â µö·¯´× ¿ëµµ¿¡ ÃÖÀûÈ­µÇ¾î AI ¸ðµ¨ ¹èÆ÷¿¡ À¯¿¬¼ºÀ» Á¦°øÇÕ´Ï´Ù. ¿§Áö AIµµ Áß¿äÇÑ Æ®·»µåÀ̸ç, NPU°¡ IoT µð¹ÙÀ̽º¿¡ ³»ÀåµÇ¾î Ŭ¶ó¿ìµå ¿¬°á¿¡ ÀÇÁ¸ÇÏÁö ¾Ê´Â ½Ç½Ã°£ AI 󸮰¡ °¡´ÉÇØÁý´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº AI ½Ã½ºÅÛÀÇ ±â´ÉÀ» È®ÀåÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¼Óµµ, ¿¡³ÊÁö È¿À²¼º, È®À强À» ¿ì¼±½ÃÇÏ´Â Â÷¼¼´ë ÄÄÇ»ÆÃ ¾ÆÅ°ÅØÃ³·Î ³ª¾Æ°¡´Â ±æÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù.

´º·² ÇÁ·Î¼¼¼­ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

´º·² ÇÁ·Î¼¼¼­ ½ÃÀåÀÇ ¼ºÀåÀº AI ¿ëµµÀÇ Ã¤Åà Ȯ´ë, µö·¯´× ¸ðµ¨ÀÇ ¹ßÀü, ¿§Áö ÄÄÇ»ÆÃÀÇ È®´ë µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁú °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ÇコÄɾî, ±ÝÀ¶, ÀÚµ¿Â÷ µîÀÇ »ê¾÷¿¡¼­ AI°¡ ³Î¸® Ȱ¿ëµÇ¸é¼­ º¹ÀâÇÑ ¸Ó½Å·¯´× ÀÛ¾÷À» ó¸®ÇÒ ¼ö ÀÖ´Â °í¼º´É NPU¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷¿Í AI¸¦ žÀçÇÑ ·Îº¿°øÇÐÀÇ ºÎ»óµµ Å« ¿øµ¿·ÂÀÌ µÇ°í ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ±â¼ú¿¡´Â ±âÁ¸ ÇÁ·Î¼¼¼­·Î´Â ´ëÀÀÇÒ ¼ö ¾ø´Â ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸® ¹× ÀÇ»ç°áÁ¤ ±â´ÉÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ® ±â±â ¹× IoT ¿ëµµÀÇ º¸±Þµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, NPU´Â À½¼º ÀνÄ, ¿¹Ãø ºÐ¼®, »ýü ÀÎ½Ä µî ¿Âµð¹ÙÀ̽º AI ±â´ÉÀ» ±¸ÇöÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI¸¦ Ȱ¿ëÇÑ Å¬¶ó¿ìµå ¼­ºñ½º°¡ È®´ëµÇ¸é¼­ µ¥ÀÌÅͼ¾ÅÍ´Â ¿¬»ê È¿À² Çâ»ó°ú ´ë±â½Ã°£ ´ÜÃàÀ» À§ÇØ NPU¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö È¿À²ÀûÀÎ AI 󸮿¡ ´ëÇÑ Á߿伺ÀÌ °­Á¶µÇ°í, ´ë±Ô¸ð AI µµÀÔÀ» À§ÇÑ Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» ã´Â ±â¾÷ÀÌ ´Ã¾î³ª¸é¼­ NPUÀÇ µµÀÔÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. Ĩ ¼³°è, AI ¸ðµ¨ ÃÖÀûÈ­, ¹ÝµµÃ¼ Á¦Á¶ÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ¸·Î ½Å°æ ÇÁ·Î¼¼¼­ ½ÃÀåÀº ±âÇϱ޼öÀûÀ¸·Î ¼ºÀåÇÏ¿© Áö´ÉÇü ÄÄÇ»ÆÃ°ú Â÷¼¼´ë AI ±â¼úÀÇ ¹Ì·¡¸¦ Çü¼ºÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

ºÎ¹®

µ¿ÀÛ À¯Çü(Ãß·Ð µ¿ÀÛ, Æ®·¹ÀÌ´× µ¿ÀÛ), ¿ëµµ(½º¸¶Æ®Æù£¦ÅÂºí¸´ ¿ëµµ, ÀÚÀ²ÁÖÇàÂ÷ ¿ëµµ, ·Îº¿£¦µå·Ð ¿ëµµ, ÇコÄɾÀÇ·á±â±â ¿ëµµ, ½º¸¶Æ®È¨ µð¹ÙÀ̽º£¦IoT ¿ëµµ, Ŭ¶ó¿ìµå£¦µ¥ÀÌÅͼ¾ÅÍ AI ¿ëµµ, »ê¾÷ ÀÚµ¿È­ ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Neural Processors Market to Reach US$894.3 Million by 2030

The global market for Neural Processors estimated at US$306.1 Million in the year 2024, is expected to reach US$894.3 Million by 2030, growing at a CAGR of 19.6% over the analysis period 2024-2030. Inference Operation, one of the segments analyzed in the report, is expected to record a 17.1% CAGR and reach US$487.1 Million by the end of the analysis period. Growth in the Training Operation segment is estimated at 23.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$80.5 Million While China is Forecast to Grow at 18.6% CAGR

The Neural Processors market in the U.S. is estimated at US$80.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$138.1 Million by the year 2030 trailing a CAGR of 18.6% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 17.7% and 17.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.6% CAGR.

Global Neural Processor Market - Key Trends & Drivers Summarized

How Are Neural Processors Revolutionizing Artificial Intelligence?

Neural processors, also known as neural processing units (NPUs), are specialized chips designed to accelerate machine learning and artificial intelligence (AI) computations. Unlike traditional central processing units (CPUs) and graphics processing units (GPUs), NPUs are optimized for parallel processing, allowing them to efficiently handle AI workloads such as image recognition, natural language processing, and real-time decision-making. These processors are becoming critical in various applications, from edge computing and autonomous vehicles to smart devices and high-performance computing. The rise of AI-driven applications in industries such as healthcare, finance, and robotics has significantly increased the demand for neural processors, enabling faster, more efficient AI model training and inference. As deep learning algorithms grow in complexity, traditional computing architectures struggle to keep up with the required computational power. NPUs, with their ability to process vast amounts of data in real time while consuming less power, are now at the forefront of AI hardware evolution. With the expansion of cloud-based AI services and on-device AI processing, neural processors are shaping the next generation of intelligent computing.

What Challenges Are Hindering the Growth of the Neural Processor Market?

Despite their rapid adoption, neural processors face several challenges that could limit their widespread deployment. One of the primary concerns is the high cost of designing and manufacturing NPUs, as the development of AI-specific hardware requires significant research and investment. Unlike general-purpose processors, NPUs must be tailored to specific AI workloads, leading to compatibility issues across different AI models and frameworks. Another major challenge is power consumption, particularly for high-performance NPUs used in data centers and AI-driven applications. While NPUs are more efficient than traditional processors, the increasing demand for real-time AI processing is driving up power requirements, leading to cooling and sustainability concerns. Additionally, the fragmented nature of the AI hardware market means that developers must optimize their machine learning models for specific NPUs, reducing flexibility and increasing integration complexity. Security risks are also a growing concern, as AI-powered systems are vulnerable to adversarial attacks, data breaches, and unauthorized manipulations. Furthermore, supply chain disruptions and global semiconductor shortages have impacted the availability of NPUs, delaying deployment in key industries. Addressing these challenges requires continued advancements in chip design, standardization efforts, and enhanced security protocols to ensure seamless AI integration across various applications.

How Are Innovations in Neural Processing Units Enhancing AI Capabilities?

The neural processor industry is undergoing rapid innovation, with new technologies emerging to enhance AI performance, efficiency, and scalability. One of the most significant advancements is the development of neuromorphic computing, which mimics the architecture of the human brain to process information more efficiently. These bio-inspired processors use spiking neural networks (SNNs) to enable low-power, real-time AI computations, making them ideal for edge computing and autonomous systems. Another breakthrough is the integration of NPUs into consumer devices, such as smartphones, smart home systems, and wearable technology, enabling on-device AI capabilities that reduce latency and enhance user experiences. Quantum AI is also gaining traction, with researchers exploring the potential of quantum computing combined with neural processors to solve complex problems at unprecedented speeds. Additionally, AI accelerators such as tensor processing units (TPUs) and field-programmable gate arrays (FPGAs) are being optimized for deep learning applications, providing greater flexibility in AI model deployment. Edge AI is another key trend, with NPUs being embedded in IoT devices to enable real-time AI processing without relying on cloud connectivity. These innovations are not only expanding the capabilities of AI systems but also paving the way for next-generation computing architectures that prioritize speed, energy efficiency, and scalability.

What Is Driving the Growth of the Neural Processor Market?

The growth in the neural processor market is driven by several factors, including the increasing adoption of AI applications, advancements in deep learning models, and the expansion of edge computing. The widespread use of AI in industries such as healthcare, finance, and automotive is fueling demand for high-performance NPUs capable of handling complex machine learning tasks. The rise of autonomous vehicles and AI-powered robotics is another major driver, as these technologies require real-time data processing and decision-making capabilities that traditional processors cannot provide. The proliferation of smart devices and IoT applications is also contributing to market growth, with NPUs enabling on-device AI features such as voice recognition, predictive analytics, and biometric authentication. Additionally, the expansion of AI-driven cloud services is pushing data centers to adopt NPUs to enhance computational efficiency and reduce latency. The growing emphasis on energy-efficient AI processing is further accelerating NPU adoption, as businesses seek sustainable solutions for large-scale AI deployments. With continuous advancements in chip design, AI model optimization, and semiconductor manufacturing, the neural processor market is poised for exponential growth, shaping the future of intelligent computing and next-generation AI technologies.

SCOPE OF STUDY:

The report analyzes the Neural Processors market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Operation Type (Inference Operation, Training Operation); Application (Smartphones & Tablets Application, Autonomous Vehicles Application, Robotics & Drones Application, Healthcare & Medical Devices Application, Smart Home Devices & IoT Application, Cloud & Data Center AI Application, Industrial Automation Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 47 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â