¼¼°èÀÇ Ã¼¿Ü¼öÁ¤ ŸÀÓ·¦½º À̹Ì¡ ÀåÄ¡ ½ÃÀå
IVF Time-lapse Imaging Devices
»óǰÄÚµå : 1791700
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 269 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Ã¼¿Ü¼öÁ¤ ŸÀÓ·¦½º À̹Ì¡ ÀåÄ¡ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 15¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 4¾ï 9,240¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ü¿Ü¼öÁ¤ ŸÀÓ·¦½º À̹Ì¡ ÀåÄ¡ ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 20.6%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 15¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ºÒÀÓÄ¡·á Ŭ¸®´ÐÀº CAGR 17.8%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 8¾ï 460¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º´¿ø ¹× ±âŸ ½Ã¼³ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 24.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 3,420¸¸ ´Þ·¯·Î ÃßÁ¤¡¤¿¹Ãø, Áß±¹Àº CAGR 27.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Ã¼¿Ü¼öÁ¤ ŸÀÓ·¦½º À̹Ì¡ ÀåÄ¡ ½ÃÀåÀº 2024³â¿¡ 1¾ï 3,420¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGR 27.2%·Î 2030³â±îÁö 3¾ï 5,070¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 16.7%¿Í 18.2%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 17.1%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

ü¿Ü¼öÁ¤ ŸÀÓ·¦½º À̹Ì¡ ÀåÄ¡¿Í ½ÃÀå-ÁÖ¿ä µ¿Çâ ÃËÁø¿äÀÎ Á¤¸®

ü¿Ü¼öÁ¤ ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå À̹Ì¡ Àåºñ´Â º¸Á¶»ý½Ä¼ú(ART)¿¡ Çõ¸íÀ» °¡Á®¿ÔÀ¸¸ç, ¹è¾Æ ¼±Åðú ¸ð´ÏÅ͸µ¿¡ ÀÖ¾î º¸´Ù Á¤±³Çϰí Á¤È®ÇÑ Á¢±Ù ¹æ½ÄÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÀåºñµéÀº ¹è¾ç Á¶°ÇÀ» ¹æÇØÇÏÁö ¾Ê°í ¹è¾ÆÀÇ ¹ß´ÞÀ» ½Ç½Ã°£À¸·Î Áö¼ÓÀûÀ¸·Î °üÂûÇÒ ¼ö ÀÖ¾î ¹è¾ÆÀÇ »ýÁ¸À² Æò°¡¸¦ °³¼±Çϰí ü¿Ü¼öÁ¤(IVF)ÀÇ ¼º°ø·üÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå ½Ã½ºÅÛÀº ÀÏÁ¤ÇÑ °£°ÝÀ¸·Î À̹ÌÁö¸¦ ÃÔ¿µÇÏ¿© ¹è¾ÆÀÇ ¼ºÀå, ºÐ¿­ ÆÐÅÏ, ÇüÅÂÇÐÀû º¯È­¸¦ ¹è¾Æ¹è¾ç»ç¿¡°Ô Á¾ÇÕÀûÀ¸·Î Á¦°øÇÏ¿© º¸´Ù ³ªÀº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÓ»óÀû ÆÇ´ÜÀ» ÃËÁøÇÕ´Ï´Ù.

ºÒÀÓ Ä¡·á¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä Áõ°¡, ÀΰøÁö´É(AI)À» Ȱ¿ëÇÑ ¹è¾Æ ¼±º° ¹ßÀü, °³ÀÎ ¸ÂÃãÇü »ý½Ä ÀÇ·áÀÇ ºÎ»óÀ¸·Î ü¿Ü¼öÁ¤ ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå À̹Ì¡ ÀåÄ¡´Â Çö´ë ºÒÀÓ Ä¡·á Ŭ¸®´ÐÀÇ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. AI, ¸Ó½Å·¯´× ¾Ë°í¸®Áò, ÀÚµ¿ ¹è¾Æ ½ºÄھÀÇ ÅëÇÕÀº ¿¹Ãø Á¤È®µµ¸¦ ´õ¿í ³ôÀ̰í, ÃÖÀûÈ­µÈ Âø»ó Àü·«°ú ȯÀÚ °á°ú¸¦ °³¼±ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº ü¿Ü¼öÁ¤(IVF)ÀÇ ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå À̹Ì¡À» ¾î¶»°Ô °³¼±Çϰí Àִ°¡?

ü¿Ü¼öÁ¤ ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå ¿µ»ó ºÐ¾ß´Â º¸´Ù Á¤±³ÇÏ°í ºñħ½ÀÀûÀÎ ¹è¾Æ Æò°¡ ±â¼ú·Î À̾îÁö¸é¼­ °ý¸ñÇÒ¸¸ÇÑ ±â¼úÀû Áøº¸¸¦ º¸À̰í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¹ßÀü Áß Çϳª´Â ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå À̹Ì¡ Ç÷§Æû¿¡ AI¿Í µö·¯´× ¾Ë°í¸®ÁòÀ» ÅëÇÕÇÑ °ÍÀÔ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¼¼Æ÷ºÐ¿­ ŸÀ̹Ö, ´ëμº, ´ÜÆíÈ­, ¹è¹ÝÆ÷ Çü¼º µî ¼öõ °³ÀÇ ¹è¾Æ ¹ß´Þ ÆÄ¶ó¹ÌÅ͸¦ ºÐ¼®ÇÏ¿© ÀÚµ¿È­µÈ ¹è¾Æ µî±Þ ¹× »ýÁ¸À² Á¡¼ö¸¦ »ý¼ºÇÕ´Ï´Ù. ÀÌ´Â ¹è¾Æ¹è¾ç»ç°¡ À̽ÄÀ» À§ÇØ °¡Àå À¯¸ÁÇÑ ¹è¾Æ¸¦ ½Äº°ÇÏ´Â µ¥ µµ¿òÀÌ µÇ¸ç, ħ½ÀÀûÀÎ À¯ÀüÀÚ °Ë»çÀÇ Çʿ伺À» ÁÙÀ̸鼭 Âø»ó ¼º°ø °¡´É¼ºÀ» ³ôÀÔ´Ï´Ù.

¶Ç ´Ù¸¥ ȹ±âÀûÀÎ ¹ßÀüÀº ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå À̹Ì¡À» ÅëÇÕÇÑ Æó¼âÇü ¹è¾ç ½Ã½ºÅÛ °³¹ßÀÔ´Ï´Ù. ±âÁ¸ÀÇ Ã¼¿Ü¼öÁ¤¹ý¿¡¼­´Â ¹è¾Æ¸¦ ÁÖ±âÀûÀ¸·Î ¹è¾ç±â¿¡¼­ ²¨³» Çö¹Ì°æÀ¸·Î ¼öµ¿À¸·Î Æò°¡ÇØ¾ß Çϸç, ¿Âµµ º¯È­, pH º¯È­, »ê¼Ò ³óµµ º¯È­ µî ȯ°æÀû ½ºÆ®·¹½º ¿äÀο¡ ³ëÃâµÇ¾î ÀÖ¾ú½À´Ï´Ù. ÃֽŠŬ·ÎÁîµå ½Ã½ºÅÛ ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå ÀÎÅ¥º£ÀÌÅÍ´Â ÀÌ·¯ÇÑ È¥¶õÀ» ¾ø¾Ö°í ¾ÈÁ¤ÀûÀÎ ¹è¾ç ȯ°æÀ» À¯ÁöÇϸ鼭 °íÇØ»óµµ ¹è¾Æ À̹ÌÁö¸¦ ¿¬¼ÓÀûÀ¸·Î ÃÔ¿µÇÕ´Ï´Ù. À̸¦ ÅëÇØ ¿ÜºÎ·ÎºÎÅÍÀÇ ½ºÆ®·¹½º ¿äÀÎÀ» ÃÖ¼ÒÈ­ÇÏ¿© ¹è¾ÆÀÇ ÁúÀû Çâ»ó°ú ÀÓ½ÅÀ² Çâ»óÀ¸·Î À̾îÁý´Ï´Ù.

¶ÇÇÑ, ÇüÅ¿ªÇÐ, ´ë»ç ÇÁ·ÎÆÄÀϸµ, À¯ÀüÀÚ ½ºÅ©¸®´× µ¥ÀÌÅÍ¿Í °áÇÕµÈ ´ÙÁß ¸Å°³º¯¼ö ¹è¾Æ Æò°¡ ¸ðµ¨ÀÌ ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå ½Ã½ºÅÛ¿¡ ÅëÇյǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´Ù¿ä¼Ò Á¢±Ù¹ýÀº ¹è¾Æ »ýÁ¸À² ¿¹ÃøÀ» °­È­ÇÏ¿© ±âÁ¸ÀÇ ÇüÅÂÇп¡ ±â¹ÝÇÑ Æò°¡¸¦ ³Ñ¾î º¸´Ù Á¾ÇÕÀûÀÎ Æò°¡¸¦ Á¦°øÇÕ´Ï´Ù. ÀϺΠºñ±Ý¼Ó Àü¼±°ü ½ÃÀå ÀåÄ¡´Â ÇöÀç Çü±¤ À̹Ì¡°ú ´ë»çü ºÐ¼®À» ÅëÇÕÇÏ¿© ¹è¾ÆÀÇ °Ç°­°ú Âø»ó °¡´É¼º¿¡ ´ëÇÑ ´õ ±íÀº ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù.

¶ÇÇÑ Ã¼¿Ü¼öÁ¤¿ë ¿µ»óÁø´ÜÀåÄ¡ÀÇ ¼ÒÇüÈ­ ¹× È޴뼺À¸·Î ÀÎÇØ ±× Ȱ¿ë ¹üÀ§°¡ °í±Þ ºÒÀÓÄ¡·á¼¾ÅÍ ¿Ü¿¡µµ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¼ÒÇüÀÇ ºñ¿ë È¿À²ÀûÀÎ ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå À̹Ì¡ ½Ã½ºÅÛÀº ¼Ò±Ô¸ð Ŭ¸®´Ð ¹× ºÐ»êÇü ºÒÀÓ Ä¡·á ¿¬±¸¼Ò¸¦ À§ÇØ °³¹ßµÇ¾î º¸´Ù ¸¹Àº ȯÀÚ Áý´ÜÀÌ °í±Þ ¹è¾Æ ¸ð´ÏÅ͸µ ±â¼úÀ» ÀÌ¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

ü¿Ü¼öÁ¤ ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå À̹Ì¡ ÀåÄ¡ÀÇ ¼ºÀåÀ» °ßÀÎÇÏ´Â ½ÃÀå µ¿ÇâÀº ¹«¾ùÀΰ¡?

¸î °¡Áö Áß¿äÇÑ Æ®·»µå°¡ ü¿Ü¼öÁ¤ ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå À̹Ì¡ ÀåÄ¡ÀÇ Ã¤Åðú È®´ë¿¡ ¿µÇâÀ» ¹ÌÄ¡¸ç »ý½Ä ÀÇ·áÀÇ ¹Ì·¡¸¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â Àü ¼¼°è ºÒÀÓ·ü Áõ°¡¿Í ü¿Ü¼öÁ¤ Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. Ãâ»ê Áö¿¬, »ýȰ½À°üÀÇ º¯È­, ȯ°æÀû ½ºÆ®·¹½º ¿äÀÎ, Áúº´ µîÀÌ ºÒÀÓÀÇ ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ¾î Á¤È®ÇÑ ¹è¾Æ ¼±º°¹ýÀÇ Çʿ伺ÀÌ ±× ¾î´À ¶§º¸´Ù ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå À̹Ì¡Àº ü¿Ü¼öÁ¤ ¼º°ø·üÀ» ÃÖÀûÈ­Çϰí, ¿©·¯ ¹øÀÇ ¹è¾Æ ÀÌ½Ä È½¼ö¸¦ ÁÙÀ̸ç, ȯÀÚ °á°ú¸¦ °³¼±ÇÏ´Â ±ÍÁßÇÑ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Å« È帧Àº ºÒÀÓ Ä¡·á Ŭ¸®´Ð¿¡ ÀΰøÁö´É(AI)°ú ÀÚµ¿È­ÀÇ ÅëÇÕÀÔ´Ï´Ù. AI ±â¹Ý ¹è¾Æ ¼±Åà µµ±¸ÀÇ »ç¿ëÀº ¹è¾Æ Æò°¡ÀÇ Ç¥ÁØÈ­, Àΰ£ÀÇ ÁÖ°ü¼º °¨¼Ò, ¿¹Ãø Á¤È®µµ Çâ»ó¿¡ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. AI ¸ðµ¨ÀÌ ´õ¿í Á¤±³ÇØÁü¿¡ µû¶ó ÀÚµ¿È­µÈ ¹è¾Æ äÁ¡ ¹× Âø»ó ¿¹ÃøÀº ¼öµ¿ Æò°¡¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̰í ü¿Ü¼öÁ¤ ¿öÅ©Ç÷οìÀÇ Ç¥ÁØ ±¸¼º¿ä¼Ò°¡ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

´ÜÀÏ ¹è¾Æ À̽Ä(SET) ÇÁ·ÎÅäÄÝ¿¡ ´ëÇÑ ¼±È£µµ°¡ ³ô¾ÆÁö¸é¼­ ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå À̹Ì¡°ú °°Àº °í±Þ ¹è¾Æ Æò°¡ µµ±¸¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ´ÙÅÂ¾Æ ÀӽŰú °ü·ÃµÈ À§Çè(¿¹: Á¶»ê, ÀúüÁß¾Æ Ãâ»ê)À» ÃÖ¼ÒÈ­Çϱâ À§ÇØ ¸¹Àº Ŭ¸®´Ð¿¡¼­ ¸Å Áֱ⸶´Ù ÃÖ°í ǰÁúÀÇ ¹è¾Æ¸¸ À̽ÄÇÏ´Â ¹æÇâÀ¸·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå À̹Ì¡ ½Ã½ºÅÛÀº »ó¼¼ÇÑ ÇüÅ ¿îµ¿ÇÐÀû ÅëÂû·ÂÀ» Á¦°øÇÏ¿© ¹è¾Æ¹è¾ç»ç°¡ ¼º°ø·üÀ» ¶³¾î¶ß¸®Áö ¾Ê°í ÃÖ»óÀÇ ¹è¾Æ¸¦ ¼±ÅÃÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© ¿©·¯ ¹øÀÇ ¹è¾Æ À̽ÄÀÇ Çʿ伺À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ºñħ½ÀÀû ¹è¾Æ Æò°¡ ±â¼úÀº Âø»ó Àü À¯ÀüÇÐÀû °Ë»ç(PGT)ÀÇ ´ë¾ÈÀ¸·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. PGT´Â ±ÍÁßÇÑ À¯ÀüÀû ÅëÂû·ÂÀ» Á¦°øÇÏÁö¸¸, ÀáÀçÀûÀÎ À§ÇèÀ» ¼ö¹ÝÇÏ´Â ¹è¾Æ »ý°ËÀÌ ÇÊ¿äÇÕ´Ï´Ù. ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå À̹Ì¡Àº AI ¹× ´ë»ç ÇÁ·ÎÆÄÀϸµ°ú °áÇÕÇÏ¿© ¹è¾Æ ¼±Åÿ¡ ´ëÇÑ ºñħ½ÀÀû ´ë¾ÈÀ» Á¦°øÇÏ¿© ¹è¾Æ¸¦ ¹°¸®ÀûÀ¸·Î ¹æÇØÇÏÁö ¾Ê°íµµ Á¤È®µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ºÒÀÓ Ä¡·á¿Í ³­ÀÚ µ¿°á ¼­ºñ½ºÀÇ È®´ë´Â ÷´Ü ¹è¾Æ ¸ð´ÏÅ͸µ ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀ» ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ´õ ¸¹Àº »ç¶÷µéÀÌ »çȸÀû ¶Ç´Â ÀÇ·áÀû ³­ÀÚ µ¿°áÀ» ¼±ÅÃÇÔ¿¡ µû¶ó, Ŭ¸®´ÐÀº ³Ãµ¿¹è¾Æ À̽Ä(FET) Áֱ⿡ ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå À̹Ì¡À» ÅëÇÕÇÏ¿© ÇØµ¿ ÈÄ ÃÖÀûÀÇ ¹è¾Æ »ýÁ¸À²°ú Âø»ó °á°ú¸¦ º¸ÀåÇϰí ÀÖ½À´Ï´Ù.

ü¿Ü¼öÁ¤ ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå ¿µ»óÀåÄ¡ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

ü¿Ü¼öÁ¤ ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå ¿µ»óÀåÄ¡ ½ÃÀåÀº ±â¼ú Çõ½Å, ºÒÀÓ Ä¡·á µµÀÔ Áõ°¡, Á¤¹Ð »ý½Ä ÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ¿©·¯ °¡Áö Áß¿äÇÑ ¿äÀÎÀ¸·Î ÀÎÇØ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¼ºÀå ¿äÀÎ Áß Çϳª´Â ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå ¹è¾Æ ¼±Åðú °ü·ÃµÈ ¼º°ø·ü »ó½ÂÀÔ´Ï´Ù. ¼ö¸¹Àº Àӻ󿬱¸¸¦ ÅëÇØ ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå ¿µ»óÀ¸·Î ¼±º°µÈ ¹è¾Æ´Â ±âÁ¸ÀÇ ÇüÅÂÇÐÀû Æò°¡¹æ¹ý¿¡ ºñÇØ Âø»ó °¡´É¼ºÀÌ ³ô´Ù´Â °ÍÀÌ ÀÔÁõµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ °úÇÐÀû °ËÁõÀ» ÅëÇØ ºÒÀÓŬ¸®´ÐÀº ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå ½Ã½ºÅÛ¿¡ ÅõÀÚÇÏ°Ô µÇ¾ú°í, ȯÀÚµéÀÇ ½Å·Ú¿Í Ä¡·á ¼º°ú°¡ Çâ»óµÇ¾ú½À´Ï´Ù.

¶Ç ´Ù¸¥ Å« ¿øµ¿·ÂÀº ºÒÀÓ Ä¡·á °ü±¤ÀÇ ºÎ»ó°ú Àü ¼¼°è ü¿Ü¼öÁ¤ ¼­ºñ½ºÀÇ È®´ëÀÔ´Ï´Ù. ½ºÆäÀÎ, Àεµ, ű¹ µî Àú·ÅÇÑ °¡°Ý¿¡ ¾çÁúÀÇ ºÒÀÓ Ä¡·á¸¦ ¹ÞÀ» ¼ö ÀÖ´Â ±¹°¡µéÀº ÃÖ÷´Ü »ý½Ä ±â¼úÀ» ¿øÇÏ´Â ¿Ü±¹ÀΠȯÀÚµéÀ» ²ø¾îµéÀ̰í ÀÖ½À´Ï´Ù. ±× °á°ú, Àü ¼¼°è ºÒÀÓŬ¸®´ÐÀº °æÀï ¿ìÀ§¸¦ À¯ÁöÇÏ°í ¼¼°è ÃÖ°í ¼öÁØÀÇ Ã¼¿Ü¼öÁ¤ ¼­ºñ½º¸¦ Á¦°øÇϱâ À§ÇØ ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå ¿µ»óÁø´Ü Àåºñ¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù.

»ý½Ä ÀÇ·á ºÐ¾ß¿¡¼­ ¹Î°£ ÅõÀÚ¿Í ÆÄÆ®³Ê½ÊÀÇ ¿ªÇÒÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå ¿µ»ó ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. º¥Ã³Ä³ÇÇÅаú »ý¸í°øÇÐ ±â¾÷µéÀÌ ºÒÀÓÄ¡·á ½ºÅ¸Æ®¾÷¿¡ ÀÚ±ÝÀ» Áö¿øÇϸ鼭 »õ·Î¿î ¿µ»ó±â¼úÀÌ µîÀåÇϰí, ÀåºñÀÇ Àú°¡È­, AI¸¦ Ȱ¿ëÇÑ Áø´Ü, ü¿Ü¼öÁ¤ ¿öÅ©Ç÷οìÀÇ ÀÚµ¿È­°¡ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ü¿Ü¼öÁ¤ Ŭ¸®´ÐÀÇ ³×Æ®¿öÅ© È®´ë¿Í ÀÇ·á ±â¼ú ±â¾÷°úÀÇ Á¦ÈÞ°¡ ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀΰú Ç¥ÁØÈ­ ³ë·ÂÀº ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå À̹Ì¡À» È¿°úÀûÀÎ ÀÓ»ó µµ±¸·Î ÅëÇÕÇÏ´Â µ¥ ÈûÀ» ½Ç¾îÁÖ°í ÀÖ½À´Ï´Ù. European Society of Human Reproduction and Embryology(ESHRE), American Society for Reproductive Medicine(ASRM) µîÀÇ ´Üü´Â ÷´Ü ¹è¾Æ ¼±Åà ±â¼úÀÇ »ç¿ëÀ» ±ÇÀåÇϰí ÀÖÀ¸¸ç, ü¿Ü¼öÁ¤ÀÇ Ã¼¿Ü¼öÁ¤ÀÇ ÁÖ·ù Áø·á¿¡¼­ ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå À̹ÌÁöÀÇ Ã¤ÅÃÀ» °­È­ÇØ ³ª°¡°í ÀÖ½À´Ï´Ù.

°³ÀÎ ¸ÂÃãÇü »ý½Ä ÀÇ·á¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ º¯È­µµ Áß¿äÇÑ ¼ºÀå ¿äÀÎÀÔ´Ï´Ù. ȯÀÚµéÀÌ ºÒÀÓ Ä¡·á ¿É¼Ç¿¡ ´ëÇØ ´õ ¸¹Àº Á¤º¸¸¦ ¾ò°Ô µÇ¸é¼­, ÷´Ü ¹è¾Æ ¸ð´ÏÅ͸µÀÌ Æ÷ÇÔµÈ ¸ÂÃãÇü ü¿Ü¼öÁ¤ Ä¡·á °èȹ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ȯÀÚ Á᫐ Á¢±Ù ¹æ½ÄÀÇ ÀÏȯÀ¸·Î AI ºñ±Ý¼Ó Àü¼±°ü ½ÃÀå ÃÔ¿µÀ» Á¦°øÇϴ Ŭ¸®´ÐÀº ±â¼ú¿¡ Á¤ÅëÇÏ°í °á°ú¸¦ Áß½ÃÇÏ´Â IVF ȯÀÚµéÀ» ²ø¾îµéÀ̰í ÀÖ½À´Ï´Ù.

ºÎ¹®

ÃÖÁ¾»ç¿ëÀÚ(ºÒÀÓ Ä¡·á Ŭ¸®´Ð, º´¿ø, ±âŸ ½Ã¼³)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global IVF Time-lapse Imaging Devices Market to Reach US$1.5 Billion by 2030

The global market for IVF Time-lapse Imaging Devices estimated at US$492.4 Million in the year 2024, is expected to reach US$1.5 Billion by 2030, growing at a CAGR of 20.6% over the analysis period 2024-2030. Fertility Clinics, one of the segments analyzed in the report, is expected to record a 17.8% CAGR and reach US$804.6 Million by the end of the analysis period. Growth in the Hospitals & Other Settings segment is estimated at 24.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$134.2 Million While China is Forecast to Grow at 27.2% CAGR

The IVF Time-lapse Imaging Devices market in the U.S. is estimated at US$134.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$350.7 Million by the year 2030 trailing a CAGR of 27.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 16.7% and 18.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 17.1% CAGR.

IVF Time-Lapse Imaging Devices & Market - Key Trends Drivers Summarized

IVF time-lapse imaging devices have revolutionized assisted reproductive technology (ART), offering a more advanced and precise approach to embryo selection and monitoring. These devices enable continuous, real-time observation of embryo development without disturbing culture conditions, improving embryo viability assessments and enhancing in vitro fertilization (IVF) success rates. By capturing images at regular intervals, time-lapse systems provide embryologists with a comprehensive view of embryo growth, division patterns, and morphological changes, facilitating better-informed clinical decisions.

With increasing global demand for fertility treatments, advancements in artificial intelligence (AI)-driven embryo selection, and the rise of personalized reproductive medicine, IVF time-lapse imaging devices are becoming an integral component of modern fertility clinics. The integration of AI, machine learning algorithms, and automated embryo scoring is further enhancing predictive accuracy, allowing for optimized implantation strategies and improved patient outcomes.

How Are Technological Advancements Improving IVF Time-Lapse Imaging?

The field of IVF time-lapse imaging has witnessed remarkable technological progress, leading to more sophisticated, non-invasive embryo assessment techniques. One of the most significant advancements is the integration of AI and deep learning algorithms into time-lapse imaging platforms. These systems analyze thousands of embryo development parameters, including cell division timing, symmetry, fragmentation, and blastocyst formation, to generate automated embryo grading and viability scores. This helps embryologists identify the most promising embryos for transfer, increasing the likelihood of successful implantation while reducing the need for invasive genetic testing.

Another breakthrough is the development of closed incubation systems with built-in time-lapse imaging. Traditional IVF methods require embryos to be periodically removed from incubators for manual assessment under a microscope, exposing them to environmental stressors such as temperature fluctuations, pH shifts, and oxygen level changes. Modern closed-system time-lapse incubators eliminate this disruption, maintaining a stable culture environment while continuously capturing high-resolution embryo images. This minimizes external stressors, leading to higher-quality embryos and improved pregnancy rates.

Additionally, multi-parameter embryo assessment models are being integrated into time-lapse systems, combining morphokinetics, metabolic profiling, and genetic screening data. These multi-factor approaches enhance embryo viability prediction, offering a more comprehensive evaluation beyond traditional morphology-based assessments. Some time-lapse devices now incorporate fluorescence imaging and metabolomic analysis to provide deeper insights into embryo health and implantation potential.

Furthermore, the miniaturization and portability of IVF imaging devices are expanding their accessibility beyond high-end fertility centers. Compact, cost-effective time-lapse imaging systems are being developed for smaller clinics and decentralized fertility labs, making advanced embryo monitoring technology available to a broader patient population.

What Market Trends Are Driving the Growth of IVF Time-Lapse Imaging Devices?

Several key trends are influencing the adoption and expansion of IVF time-lapse imaging devices, shaping the future of reproductive medicine. One of the most significant trends is the rising global infertility rates and increasing demand for IVF treatments. With factors such as delayed parenthood, lifestyle changes, environmental stressors, and medical conditions contributing to infertility, the need for high-precision embryo selection methods is greater than ever. Time-lapse imaging has become a valuable tool for optimizing IVF success rates, reducing multiple embryo transfers, and improving patient outcomes.

Another major trend is the integration of artificial intelligence (AI) and automation in fertility clinics. The use of AI-driven embryo selection tools is helping standardize embryo assessment, reduce human subjectivity, and enhance predictive accuracy. As AI models become more sophisticated, automated embryo grading and implantation predictions are expected to become a standard component of IVF workflows, reducing reliance on manual evaluation.

The growing preference for single embryo transfer (SET) protocols is also driving demand for advanced embryo assessment tools like time-lapse imaging. To minimize the risks associated with multiple pregnancies (e.g., preterm birth, low birth weight), many clinics are shifting toward implanting only the highest-quality embryo per cycle. Time-lapse imaging systems provide detailed morphokinetic insights, allowing embryologists to select the best embryo without compromising success rates, thereby reducing the need for multiple embryo transfers.

Additionally, non-invasive embryo assessment techniques are gaining traction as an alternative to preimplantation genetic testing (PGT). While PGT offers valuable genetic insights, it requires embryo biopsy, which carries potential risks. Time-lapse imaging, combined with AI and metabolic profiling, provides a non-invasive alternative for embryo selection, allowing for improved accuracy without physically disturbing the embryo.

Furthermore, the expansion of fertility preservation and egg freezing services is fueling interest in advanced embryo monitoring technologies. As more individuals choose social or medical egg freezing, clinics are incorporating time-lapse imaging into frozen embryo transfer (FET) cycles to ensure optimal embryo viability and implantation outcomes post-thawing.

What Is Driving the Growth of the IVF Time-Lapse Imaging Devices Market?

The IVF time-lapse imaging devices market is experiencing rapid growth due to multiple key factors, including technological innovations, increasing fertility treatment adoption, and growing demand for precision reproductive medicine. One of the most critical growth drivers is the increasing success rates associated with time-lapse embryo selection. Numerous clinical studies have demonstrated that embryos selected using time-lapse imaging show higher implantation potential compared to traditional morphological evaluation methods. This scientific validation is encouraging fertility clinics to invest in time-lapse systems, improving patient trust and treatment outcomes.

Another major driver is the rise of fertility tourism and expanding IVF services worldwide. Countries with affordable, high-quality fertility treatments (such as Spain, India, and Thailand) are attracting international patients seeking cutting-edge reproductive technologies. As a result, global fertility clinics are integrating time-lapse imaging devices to maintain competitive advantages and offer world-class IVF services.

The increasing role of private investment and partnerships in reproductive healthcare is also accelerating the adoption of time-lapse imaging solutions. With venture capital firms and biotech companies funding fertility startups, new imaging technologies are emerging, improving device affordability, AI-driven diagnostics, and automation in IVF workflows. The expansion of IVF clinic networks and partnerships with medical technology firms is further driving market growth.

Additionally, regulatory approvals and standardization efforts are supporting the integration of time-lapse imaging as a validated clinical tool. Organizations such as the European Society of Human Reproduction and Embryology (ESHRE) and the American Society for Reproductive Medicine (ASRM) are endorsing the use of advanced embryo selection techniques, reinforcing the adoption of time-lapse imaging in mainstream IVF practice.

The consumer shift toward personalized reproductive medicine is another key growth factor. With patients becoming more informed about fertility options, there is a rising demand for customized IVF treatment plans that incorporate high-tech embryo monitoring. Clinics offering AI-enhanced time-lapse imaging as part of their patient-centric approach are attracting tech-savvy, outcome-driven IVF patients.

SCOPE OF STUDY:

The report analyzes the IVF Time-lapse Imaging Devices market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

End-User (Fertility Clinics, Hospitals & Other Settings)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â