¼¼°èÀÇ ÀüÇØ ĸƼºê ¼ö¼Ò »ý¼º ½ÃÀå
Electrolysis Captive Hydrogen Generation
»óǰÄÚµå : 1791658
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 279 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,274,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,824,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÀüÇØ ĸƼºê ¼ö¼Ò »ý¼º ½ÃÀåÀº 2030³â±îÁö 154¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 115¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀüÇØ ĸƼºê ¼ö¼Ò »ý¼º ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 4.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 154¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Á¤À¯´Â CAGR4.3%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 61¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. È­ÇÐ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 3.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 31¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀüÇØ ĸƼºê ¼ö¼Ò »ý¼º ½ÃÀåÀº 2024³â¿¡ 31¾ï ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 7.7%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿©, 2030³â±îÁö 30¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 2.4%¿Í 4.9%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.2%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ÀüÇØ ĸƼºê ¼ö¼Ò »ý¼º ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ Á¤¸®

Àü±âºÐÇØ¿¡ ÀÇÇÑ Æ÷·Î¼ö¼Ò ¹ßÀüÀÌ Àα⸦ ²ø°í ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

Àü±âºÐÇØ¿¡ ÀÇÇÑ Æ÷·Î¼ö¼Ò »ý¼ºÀº ¼ö¼ÒÀÇ ¾ÈÁ¤ÀûÀÎ ¿Âµð¸Çµå °ø±ÞÀ» ÇÊ¿ä·Î ÇÏ´Â »ê¾÷¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. »ó¾÷¿ë ¼ö¼Ò »ý»ê°ú ´Þ¸®, ĸƼºê ¼ö¼Ò´Â »ê¾÷¿ë »ç¿ëÀÚ°¡ ÇöÀå¿¡¼­ ¼ö¼Ò¸¦ »ý»êÇÒ ¼ö ÀÖ¾î ¿ÜºÎ °ø±Þ¾÷ü¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í, ¿¡³ÊÁö ¾Èº¸¸¦ °­È­Çϸç, ¿î¼Û ºñ¿ëÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦Ã¶, Á¤À¯, È­ÇÐó¸®, ¾Ï¸ð´Ï¾Æ Á¦Á¶ µîÀÇ »ê¾÷¿¡¼­´Â Żź¼ÒÈ­ ¸ñÇ¥¸¦ ´Þ¼ºÇÏ°í ¿î¿µ È¿À²À» Çâ»ó½Ã۱â À§ÇØ Ä¸Æ¼ºê ¼ö¼Ò ½Ã½ºÅÛÀÇ µµÀÔÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.

±×¸° ¼ö¼Ò ÀÌ´Ï¼ÅÆ¼ºê Áõ°¡¿Í ÇÔ²², Àü±âºÐÇØ¿¡ ÀÇÇÑ Ä¸Æ¼ºê ¼ö¼Ò »ý»êÀº ±âÁ¸ ÁÖ·ù¿´´ø ¼öÁõ±â ¸Þź °³Áú(SMR)À» ´ëüÇÒ ¼ö ÀÖ´Â Áö¼Ó °¡´ÉÇÑ ¼ö¼Ò »ý»ê ¹æ¹ýÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. Àü±âºÐÇØ¸¦ Àç»ý¿¡³ÊÁö¿Í ÅëÇÕÇÒ ¼ö ÀÖ´Â ´É·ÂÀº Áö¼Ó°¡´É¼ºÀ» ´õ¿í Çâ»ó½Ã۰í, »ê¾÷ ½Ã¼³Àº ´Ù¾çÇÑ ¿ëµµÀÇ ¹«°øÇØ ¼ö¼Ò¸¦ »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù.

Æ÷·Î¼ö¼ÒÀüÇØÀÇ Ãֽбâ¼ú Çõ½ÅÀº ¹«¾ùÀΰ¡?

¾ç¼ºÀÚ±³È¯¸·(PEM)°ú °íü»êÈ­¹° ÀüÇØÁ¶(SOEC)¸¦ Æ÷ÇÔÇÑ °íÈ¿À² ÀüÇØÁ¶ÀÇ ±Þ¼ÓÇÑ °³¹ß·Î ¼ö¼Ò »ý»ê È¿À²ÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. PEM ÀüÇØÁ¶´Â ´Ù¾çÇÑ ºÎÇÏ¿¡¼­ ÀÛµ¿ÇÒ ¼ö Àֱ⠶§¹®¿¡ °£ÇæÀûÀÎ Àç»ý ¿¡³ÊÁö ¹ßÀü°ú ÅëÇÕÇϱ⿡ ÀûÇÕÇϸç, ƯÈ÷ Æ÷·Î ¼ö¼Ò »ý»ê¿¡ À¯¸®ÇÕ´Ï´Ù.

¶Ç ´Ù¸¥ Å« ¹ßÀüÀº ¼ö¼Ò »ý»ê¿¡ AI ±â¹Ý ¿¡³ÊÁö ÃÖÀûÈ­¸¦ µµÀÔÇÑ °ÍÀÔ´Ï´Ù. ½º¸¶Æ® Àü±â ºÐÇØ ½Ã½ºÅÛÀº Àü·Â °¡°Ý º¯µ¿, ¼ö¿ä ÆÐÅÏ, ½Ã½ºÅÛ ¼º´É¿¡ µû¶ó ÀÛµ¿ ¸Å°³ º¯¼ö¸¦ µ¿ÀûÀ¸·Î Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾ËÄ®¸® ÀüÇØ¿Í PEM ÀüÇØ ±â¼úÀ» °áÇÕÇÑ ÇÏÀ̺긮µå ÀüÇØ ½Ã½ºÅÛÀÌ µîÀåÇÏ¿© ĸƼºê ¼ö¼Ò ¿ëµµÀÇ ºñ¿ë È¿À²¼º°ú ½Å·Ú¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

½ÃÀå µ¿Çâ°ú ±ÔÁ¦ Á¤Ã¥Àº Æ÷·Î¼ö¼ÒÀüÇØ¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡°í Àִ°¡?

¼¼°èÀûÀ¸·Î ±×¸°¼ö¼Ò µµÀÔÀÌ ÃßÁøµÇ¸é¼­ ÀüÇØÁú ±â¹Ý ¼ö¼Ò »ý»ê¿¡ ´ëÇÑ Á¤ºÎ Àμ¾Æ¼ºê°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À¯·´ ±×¸° ¼ö¼Ò Àü·«À̳ª ¹Ì±¹ ¿¡³ÊÁöºÎÀÇ Hydrogen Shot ÀÌ´Ï¼ÅÆ¼ºê¿Í °°Àº Á¤Ã¥Àº »ê¾÷ ±Ô¸ðÀÇ ÀüÇØÁú µµÀÔ¿¡ ÀçÁ¤Àû Áö¿øÀ» Á¦°øÇÕ´Ï´Ù.

½ÃÀå µ¿ÇâÀº ºÐ»êÇü ¼ö¼Ò »ý»ê¿¡ ´ëÇÑ °ü½ÉÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÚ°¡¿ë ÀüÇØ ½Ã½ºÅÛÀ» ÅëÇØ »ê¾÷¿ë »ç¿ëÀÚ°¡ ¿¡³ÊÁö ÀÚ±ÞÀÚÁ·À» ´Þ¼ºÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ê¾÷°è´Â ÀáÀçÀûÀΠź¼Ò¼¼ ¹× ¹è±â°¡½º ±ÔÁ¦¿¡ ´ëºñÇÏ¿© ÇâÈÄ »ç¾÷À» °­È­Çϱâ À§ÇØ Àü±â ºÐÇØ ÀÎÇÁ¶ó¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀüÇØÁ¶ ºñ¿ëÀÌ °è¼Ó Ç϶ôÇϰí Àç»ý °¡´ÉÇÑ Àü·ÂÀÌ ´õ¿í dzºÎÇØÁü¿¡ µû¶ó, ĸƼºê ¼ö¼Ò »ý»êÀº »ê¾÷¿ë ¼ö¼Ò ¼ÒºñÀÚ¿¡°Ô À¯¸®ÇÑ ¼±ÅÃÀÌ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Æ÷·Î¼ö¼ÒÀü±â ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº?

ĸƼºê ¼ö¼ÒÀü±âÂ÷ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº Áö¼Ó °¡´ÉÇÑ ¼ö¼Ò¿¡ ´ëÇÑ »ê¾÷°è ¼ö¿ä Áõ°¡, ÀüÇØÁ¶ È¿À² Çâ»ó, Żź¼ÒÈ­¸¦ ÃßÁøÇÏ´Â Á¤ºÎ Á¤Ã¥ÀÔ´Ï´Ù. »ê¾÷°è´Â ¿¡³ÊÁö ¾Èº¸ °­È­, ¹èÃâ·® °¨¼Ò, ¿î¿µ ºñ¿ë ÃÖÀûÈ­¸¦ À§ÇØ Ä¸Æ¼ºê ¼ö¼Ò ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

ÃÖÁ¾ ¿ëµµÀÇ È®´ëµµ ÁÖ¿ä ÃËÁø¿äÀÎ Áß ÇϳªÀ̸ç, ĸƼºê ¼ö¼Ò ½Ã½ºÅÛÀº Á¤Á¦, ö°­ »ý»ê, ¾Ï¸ð´Ï¾Æ ÇÕ¼º, ¿¬·áÀüÁö ÀÀ¿ë ºÐ¾ß¿¡¼­ ³Î¸® äÅõǰí ÀÖ½À´Ï´Ù. AI ±â¹Ý ½Ã½ºÅÛ °ü¸®, ÇÏÀ̺긮µå ÀüÇØÁ¶ ±â¼ú, Àç»ý¿¡³ÊÁö ÅëÇÕÀÇ ÅëÇÕÀº ½ÃÀå µµÀÔÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀüÇØÁ¶ Á¦Á¶¾÷ü, »ê¾÷ »ç¿ëÀÚ ¹× Á¤ºÎ ±â°üÀÇ ÆÄÆ®³Ê½ÊÀº ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ°í Æ÷·Î¼ö¼Ò »ý»êÀÇ Áö¼ÓÀûÀÎ È®ÀåÀ» º¸ÀåÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

ÃÖÁ¾ ¿ëµµ(Á¤À¯, È­ÇÐ, ±Ý¼Ó, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ Å¥·¹ÀÌÆ®µÈ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Electrolysis Captive Hydrogen Generation Market to Reach US$15.4 Billion by 2030

The global market for Electrolysis Captive Hydrogen Generation estimated at US$11.5 Billion in the year 2024, is expected to reach US$15.4 Billion by 2030, growing at a CAGR of 4.9% over the analysis period 2024-2030. Petroleum Refinery, one of the segments analyzed in the report, is expected to record a 4.3% CAGR and reach US$6.1 Billion by the end of the analysis period. Growth in the Chemical segment is estimated at 3.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$3.1 Billion While China is Forecast to Grow at 7.7% CAGR

The Electrolysis Captive Hydrogen Generation market in the U.S. is estimated at US$3.1 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$3.0 Billion by the year 2030 trailing a CAGR of 7.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.4% and 4.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.2% CAGR.

Global Electrolysis Captive Hydrogen Generation Market - Key Trends & Growth Drivers Summarized

Why Is Captive Hydrogen Generation via Electrolysis Gaining Popularity?

Captive hydrogen generation through electrolysis is revolutionizing industries that require a steady and on-demand supply of hydrogen. Unlike merchant hydrogen production, captive hydrogen allows industrial users to generate hydrogen on-site, reducing dependency on external suppliers, enhancing energy security, and minimizing transportation costs. Industries such as steel manufacturing, refineries, chemical processing, and ammonia production are increasingly adopting captive hydrogen systems to meet decarbonization targets and improve operational efficiency.

With the rise of green hydrogen initiatives, electrolysis-powered captive hydrogen generation is being positioned as a sustainable alternative to steam methane reforming (SMR), which has historically been the dominant hydrogen production method. The ability to integrate electrolysis with renewable energy sources further enhances sustainability, allowing industrial facilities to produce zero-emission hydrogen for various applications.

What Are the Latest Innovations in Captive Hydrogen Electrolysis?

The rapid development of high-efficiency electrolyzers, including proton exchange membrane (PEM) and solid oxide electrolyzer cells (SOECs), has significantly improved hydrogen production efficiency. PEM electrolyzers are particularly beneficial for captive hydrogen generation due to their ability to operate at varying loads, making them well-suited for integration with intermittent renewable energy sources.

Another major advancement is the implementation of AI-driven energy optimization in hydrogen production. Smart electrolysis systems can dynamically adjust operational parameters based on electricity price fluctuations, demand patterns, and system performance. Additionally, hybrid electrolysis systems combining alkaline and PEM technologies are emerging to improve cost efficiency and reliability in captive hydrogen applications.

How Are Market Trends and Regulatory Policies Influencing Captive Hydrogen Electrolysis?

The growing global push for green hydrogen adoption has led to substantial government incentives for electrolysis-based hydrogen production. Policies such as the European Green Hydrogen Strategy and the U.S. Department of Energy’s Hydrogen Shot initiative are providing financial support for industrial-scale electrolysis deployment.

Market trends indicate an increasing focus on decentralized hydrogen production, where captive electrolysis systems enable industrial users to achieve energy independence. Additionally, industries are investing in electrolysis infrastructure to future-proof operations against potential carbon taxes and emissions regulations. As electrolyzer costs continue to decline and renewable electricity becomes more abundant, captive hydrogen generation is expected to become the preferred choice for industrial hydrogen consumers.

What Is Driving the Growth of the Captive Hydrogen Electrolysis Market?

The growth in the captive hydrogen electrolysis market is driven by increasing industrial demand for sustainable hydrogen, advancements in electrolyzer efficiency, and government policies promoting decarbonization. Industries are investing in captive hydrogen solutions to enhance energy security, reduce emissions, and optimize operational costs.

End-use expansion is another key driver, with captive hydrogen systems being widely adopted in refining, steel production, ammonia synthesis, and fuel cell applications. The integration of AI-driven system management, hybrid electrolyzer technologies, and renewable energy integration is further accelerating market adoption. Additionally, partnerships between electrolyzer manufacturers, industrial users, and government agencies are fostering innovation, ensuring the continued expansion of captive hydrogen generation.

SCOPE OF STUDY:

The report analyzes the Electrolysis Captive Hydrogen Generation market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

End-Use (Petroleum Refinery, Chemical, Metal, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â