세계의 빌딩 자동화 에너지 수확 시장
Building Automation Energy Harvesting
상품코드 : 1791549
리서치사 : Market Glass, Inc. (Formerly Global Industry Analysts, Inc.)
발행일 : 2025년 08월
페이지 정보 : 영문 139 Pages
 라이선스 & 가격 (부가세 별도)
US $ 5,850 ₩ 8,490,000
PDF & Excel (Single User License) help
PDF & Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 파일 내 텍스트의 복사 및 붙여넣기는 가능하지만, 표/그래프 등은 복사할 수 없습니다. 인쇄는 1회 가능하며, 인쇄물의 이용범위는 파일 이용범위와 동일합니다.
US $ 17,550 ₩ 25,472,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel 보고서를 동일 기업 및 100% 자회사의 모든 분이 이용하실 수 있는 라이선스입니다. 인쇄는 1인당 1회 가능하며, 인쇄물의 이용범위는 파일 이용범위와 동일합니다.


한글목차

세계의 빌딩 자동화 에너지 수확 시장은 2030년까지 4억 8,030만 달러에 이를 전망

2024년에 2억 9,060만 달러로 추정되는 빌딩 자동화 에너지 수확 세계 시장은 분석 기간인 2024-2030년 CAGR 8.7%로 성장하여 2030년에는 4억 8,030만 달러에 이를 것으로 예측됩니다. 본 보고서에서 분석한 부문 중 하나인 태양에너지원은 CAGR 9.4%를 나타내고, 분석 기간 종료시에는 3억 760만 달러에 이를 것으로 예측됩니다. 열에너지원 부문의 성장률은 분석 기간에 CAGR 8.3%로 추정됩니다.

미국 시장은 7,640만 달러로 추정, 중국은 CAGR 8.4%로 성장 예측

미국의 빌딩 자동화 에너지 수확 시장은 2024년에는 7,640만 달러로 평가되었습니다. 세계 2위 경제대국인 중국은 2030년까지 7,650만 달러 규모에 이를 것으로 예측되며, 분석 기간인 2024-2030년 CAGR은 8.4%로 추정됩니다. 기타 주목해야 할 지역별 시장으로는 일본과 캐나다가 있으며, 분석 기간중 CAGR은 각각 8.1%와 7.3%를 보일 것으로 예측됩니다. 유럽에서는 독일이 CAGR 약 6.9%를 보일 전망입니다.

당신의 빌딩은 보다 스마트하고 환경을 생각해지고 있는가? 빌딩 자동화 에너지 수확 역할 찾기

세계 빌딩 자동화 에너지 수확 시장 - 주요 동향 및 촉진요인 정리

빌딩 자동화 에너지 수확 시장은 건설 및 시설 관리 부문이 운영 비용 절감, 에너지 효율 개선, 지속가능성 도입에 힘쓰고 있는 가운데 큰 견인차 역할을 하고 있습니다. 빌딩 자동화에서 에너지 수확은 빛, 열, 진동, 무선 주파수 등의 소스에서 주변 에너지를 포착하고 저장하여 센서, 스위치, 제어 장치 등의 저에너지 장치에 전력을 공급하는 과정을 말합니다. 이러한 시스템은 빌딩 자동화 솔루션(공조 제어, 조명 시스템, 보안, 환경 모니터링 등)에 점점 더 많이 통합되고 있으며, 독립형 배터리 없는 구성요소를 만들어내고 있습니다. 스마트 빌딩, 친환경 인증(LEED, BREEAM 등), 순 제로 에너지 목표의 추진으로 특히 상업용 부동산, 교육기관, 산업시설, 정부 건물에서 이러한 기술의 채택이 가속화되고 있습니다.

기존의 배터리식 센서는 특히 대규모 시설이나 접근이 어려운 장소에 설치할 경우, 배터리 교체가 필요하기 때문에 유지보수 및 라이프사이클 비용 측면에서 문제가 발생하는 경우가 많습니다. 에너지 수확을 기반으로 한 시스템은 이러한 부담을 없애고 더 긴 작동 수명으로 유지 보수가 필요 없는 대안을 제공합니다. 이는 특히 노후화된 인프라나 리노베이션 중인 건물에서 시설 관리자에게 중요한 의미를 가집니다. 이러한 추세는 지속 가능한 건설과 에너지 효율을 촉진하는 정부의 규제와 장려책 증가로 인해 더욱 강화되고 있습니다. 유럽과 북미 등의 지역에서는 건물 에너지 성능에 대한 규제 프레임워크가 강화되고 있으며, 독립형 인텔리전스를 통해 에너지 소비를 최소화하는 자동화 시스템으로의 전환을 촉진하고 있습니다.

빌딩의 에너지 수확을 향상시키는 신기술은?

기술의 발전은 스마트 빌딩의 에너지 수확 시스템의 효율성과 채택을 촉진하고 있습니다. 태양광 발전(PV)을 통한 에너지 수확, 특히 실내 조명으로부터의 에너지 수확은 더욱 효과적이고 저렴해지면서 더 광범위한 센서와 액추에이터에 통합될 수 있게 되었습니다. 마찬가지로 열전 발전기(TEG)와 압전 시스템도 건물 내 온도차나 구조적 진동(주로 공조 작동이나 사람의 왕래로 인한 제품별)으로부터 에너지를 추출하기 위해 개선되고 있습니다. 초저전력 전자기기와 전력 관리 IC(집적회로)의 비약적인 발전으로 마이크로와트의 에너지로 디바이스를 작동시킬 수 있게 되었습니다.

Zigbee, EnOcean, BLE(Bluetooth Low Energy), LoRaWAN 등의 무선 통신 프로토콜은 빌딩 자동화에서 에너지 수확 장치의 성공의 중심이 되고 있습니다. 이러한 표준 규격은 유선 인프라나 외부 전원으로부터 독립적으로 작동하는 광범위한 무선 센서 네트워크를 구축할 수 있게 해줍니다. 특히 EnOcean 프로토콜은 초저전력 소비 및 에너지 수확 용도를 위해 특별히 설계되었으며, 조명, 공조, 거주자 감지 등에 널리 사용되고 있습니다. 머신러닝과 AI도 사용 패턴과 환경 조건에 따라 에너지 소비를 최적화하여 시스템 전체를 자립시킬 뿐만 아니라 지능적으로 적응시키는 역할을 하기 시작했습니다.

어떤 건축 용도 및 이용 사례가 시장 도입을 촉진하고 있는가?

에너지 수확은 특히 확장성, 유지보수, 운영 효율성이 가장 중요시되는 분야에서 최신 빌딩 자동화 전략의 핵심 요소로 자리 잡고 있습니다. 상업용 오피스 빌딩, 쇼핑몰, 교육기관 등에서는 조명 제어, 온도 조절, 거주자 감지, 실내 공기질 모니터링을 위해 에너지 수확 센서를 통합하고 있습니다. 이러한 용도는 센서가 광범위하게 배치되어야 하고, 배터리 유지보수에 방해가 되거나 비용이 많이 드는 개방형 환경이나 유동인구가 많은 장소에서 특히 유용합니다.

산업 환경에서 에너지 수확 장치는 유선 전원 연결 없이도 장비 상태를 모니터링하고, 가스 누출을 감지하고, 시설 상태를 추적하는 데 사용됩니다. 현대화가 진행되고 있는 역사적 건축물이나 유산적 건축물도 주요 채용 대상입니다. 또한, 대규모 캠퍼스나 멀티테넌트 건물에서는 에너지 비용을 절감하고 예지보전을 가능하게 하기 위해 이러한 시스템을 도입하고 있습니다. 배선을 변경하지 않고도 센서를 유연하게 배치하고 재배치할 수 있기 때문에 이러한 솔루션은 방의 레이아웃과 사용 패턴이 자주 바뀌는 역동적인 공간에서 특히 매력적입니다.

빌딩 자동화 에너지 수확 시장의 성장 원동력은?

빌딩 자동화 에너지 수확 시장의 성장은 기술 발전, 규제 압력, 사용자별 운영 요구 사항과 직접적으로 관련된 몇 가지 요인에 의해 주도되고 있습니다. 주요 원동력 중 하나는 스마트 빌딩에 대한 노력이 급증하고 있다는 점입니다. 에너지 수확은 이러한 시스템에 전력을 공급할 수 있는 확장 가능하고 유지보수가 필요 없는 접근 방식을 제공하여 배터리로 구동되는 장치의 제약을 없앨 수 있습니다. 또 다른 중요한 요인은 에너지 수확 효율의 대폭적인 개선과 초저전력 전자제품의 보급으로 실내 환경에서의 환경 에너지 이용 가능성이 확대되었습니다는 점입니다.

미국, 유럽, 아시아 일부 지역에서 에너지 절약 건물에 대한 규제가 강화되고 있는 것도 시장 성장에 힘을 보태고 있습니다. 여기에는 이산화탄소 배출량 감소, 건물 성능 평가 개선, 순 제로 목표 추진에 초점을 맞춘 지침이 포함됩니다. 따라서 시설 관리자는 구조적 점검 없이도 에너지 관리를 강화할 수 있는 리노베이션에 적합한 솔루션에 투자하고 있습니다. 또한, EnOcean 및 Zigbee와 같은 에너지 수확에 최적화된 무선 통신 표준의 채택은 상호 운용 가능한 자가발전형 빌딩 자동화 시스템의 신속한 배포를 촉진하고 있습니다. 마지막으로, 스마트 시티와 지능형 캠퍼스에서 유연하고 적응력 있는 인프라에 대한 수요는 미래 대응 가능한 건물의 기본 구성 요소로서 에너지 수확 센서의 통합을 촉진하고 있습니다.

부문

소스(태양에너지 소스, 열에너지 소스, 진동 및 운동 에너지 소스, 무선 주파수(RF) 소스, 기타 소스), 컴포넌트(에너지 수확 변환기, 전력 관리 집적회로(PMIC), 기타 컴포넌트)

조사 대상 기업 예

AI 통합

당사는 유효한 전문가 컨텐츠와 AI툴에 의해 시장 정보와 경쟁 정보를 변혁하고 있습니다.

Global Industry Analysts는 LLM나 업계 고유 SLM를 조회하는 일반적인 규범에 따르는 대신에, 비디오 기록, 블로그, 검색 엔진 조사, 방대한 양의 기업, 제품/서비스, 시장 데이터 등, 전 세계 전문가로부터 수집한 컨텐츠 리포지토리를 구축했습니다.

관세 영향 계수

Global Industry Analysts는 본사 소재지, 제조거점, 수출입(완제품 및 OEM)을 기준으로 기업의 경쟁력 변화를 예측했습니다. 이러한 복잡하고 다면적인 시장 역학은 수익원가(COGS) 증가, 수익성 하락, 공급망 재편 등 미시적, 거시적 시장 역학 중에서도 특히 경쟁사들에게 영향을 미칠 것으로 예측됩니다.

목차

제1장 조사 방법

제2장 주요 요약

제3장 시장 분석

제4장 경쟁

LSH
영문 목차

영문목차

Global Building Automation Energy Harvesting Market to Reach US$480.3 Million by 2030

The global market for Building Automation Energy Harvesting estimated at US$290.6 Million in the year 2024, is expected to reach US$480.3 Million by 2030, growing at a CAGR of 8.7% over the analysis period 2024-2030. Solar Energy Source, one of the segments analyzed in the report, is expected to record a 9.4% CAGR and reach US$307.6 Million by the end of the analysis period. Growth in the Thermal Energy Source segment is estimated at 8.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$76.4 Million While China is Forecast to Grow at 8.4% CAGR

The Building Automation Energy Harvesting market in the U.S. is estimated at US$76.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$76.5 Million by the year 2030 trailing a CAGR of 8.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.1% and 7.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.9% CAGR.

Is Your Building Getting Smarter and Greener? Exploring the Role of Energy Harvesting in Building Automation

Global Building Automation Energy Harvesting Market - Key Trends & Drivers Summarized

The building automation energy harvesting market is gaining significant traction as the construction and facilities management sectors strive to reduce operational costs, improve energy efficiency, and embrace sustainability. Energy harvesting in building automation refers to the process of capturing and storing ambient energy from sources like light, heat, vibration, or radio frequency to power low-energy devices such as sensors, switches, and control units. These systems are increasingly embedded into building automation solutions-HVAC controls, lighting systems, security, and environmental monitoring-to create self-sustaining, battery-free components. The push towards smart buildings, green certifications (such as LEED and BREEAM), and net-zero energy goals is accelerating the adoption of such technology, especially in commercial real estate, educational institutions, industrial facilities, and government buildings.

Traditional battery-powered sensors often present challenges in terms of maintenance and lifecycle costs due to battery replacement needs, especially in large-scale or inaccessible installations. Energy harvesting-based systems eliminate this burden, offering maintenance-free alternatives with longer operational lifespans. This has significant implications for facility managers, especially in aging infrastructures or buildings undergoing retrofits. The trend is also being reinforced by increasing government regulations and incentives that promote sustainable construction and energy efficiency. In regions like Europe and North America, regulatory frameworks are becoming more stringent regarding building energy performance, prompting a shift towards automation systems that minimize energy consumption through self-sustaining intelligence.

How Are Emerging Technologies Elevating Energy Harvesting in Buildings?

Technological advancements are driving the efficiency and adoption of energy harvesting systems in smart buildings. Photovoltaic (PV) energy harvesting, particularly from indoor light, is becoming more effective and affordable, enabling integration into a wider range of sensors and actuators. Similarly, thermoelectric generators (TEGs) and piezoelectric systems are being refined to draw energy from temperature differentials or structural vibrations within buildings-often byproducts of HVAC operations or foot traffic. These energy sources, once considered too weak or inconsistent, are now increasingly viable thanks to breakthroughs in ultra-low power electronics and power management ICs (integrated circuits), which allow devices to function on microwatts of energy.

Wireless communication protocols such as Zigbee, EnOcean, Bluetooth Low Energy (BLE), and LoRaWAN are central to the success of energy harvesting devices in building automation. These standards enable the creation of extensive wireless sensor networks that can operate independently of wired infrastructure or external power supplies. The EnOcean protocol, in particular, is designed specifically for ultra-low power and energy harvesting applications and is widely used in lighting, HVAC, and occupancy sensing. Machine learning and AI are also starting to play a role by optimizing energy consumption based on usage patterns and environmental conditions, making the whole system not just self-sustaining but also intelligently adaptive.

Which Building Applications and Use Cases Are Pushing Market Adoption?

Energy harvesting is becoming a core component of modern building automation strategies, particularly in sectors where scalability, maintenance, and operational efficiency are paramount. Commercial office buildings, shopping malls, and educational institutions are incorporating energy-harvesting sensors for lighting control, temperature regulation, occupancy sensing, and indoor air quality monitoring. These applications are especially beneficial in open-plan environments or high-traffic areas where sensors must be deployed extensively, and battery maintenance would be disruptive or cost-prohibitive.

In industrial settings, energy-harvesting devices are being used to monitor equipment status, detect gas leaks, or track facility conditions without the need for wired power connections. Historic or heritage buildings undergoing modernization are also key adopters, as retrofitting wired systems in such structures is often impractical. Moreover, large campuses and multi-tenant properties are installing these systems to reduce energy costs and enable predictive maintenance. The ability to deploy and redeploy sensors flexibly without rewiring makes these solutions particularly attractive for dynamic spaces where room layouts or occupancy patterns frequently change.

What’s Driving the Growth in the Building Automation Energy Harvesting Market?

The growth in the building automation energy harvesting market is driven by several factors directly tied to technology evolution, regulatory pressure, and user-specific operational demands. One of the primary drivers is the surge in smart building initiatives, which require large-scale deployment of interconnected sensors and control systems. Energy harvesting offers a scalable and maintenance-free approach to power these systems, eliminating the limitations posed by battery-powered devices. Another key factor is the significant improvement in energy harvesting efficiency and the proliferation of ultra-low power electronics, which has expanded the viability of using ambient energy in indoor environments.

Increasing regulatory mandates for energy-efficient buildings across the U.S., Europe, and parts of Asia are also propelling the market. These include directives focused on lowering carbon emissions, improving building performance ratings, and promoting net-zero targets. Facility managers are thus investing in retrofit-friendly solutions that enhance energy management without the need for structural overhauls. Additionally, the adoption of wireless communication standards optimized for energy harvesting-such as EnOcean and Zigbee-has facilitated the rapid deployment of interoperable and self-powered building automation systems. Lastly, the demand for flexible, adaptive infrastructure in smart cities and intelligent campuses is driving the integration of energy harvesting sensors as a foundational component of future-ready buildings.

SCOPE OF STUDY:

The report analyzes the Building Automation Energy Harvesting market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Source (Solar Energy Source, Thermal Energy Source, Vibration and Kinetic Energy Source, Radio Frequency (RF) Source, Other Sources); Component (Energy Harvesting Transducer, Power Management Integrated Circuits (PMIC), Other Components)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 39 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기