¼¼°èÀÇ Çü»ó ±â¾ï Æú¸®¸Ó ½ÃÀå
Shape Memory Polymers
»óǰÄÚµå : 1788340
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 145 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,274,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,824,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Çü»ó ±â¾ï Æú¸®¸Ó ¼¼°è ½ÃÀåÀº 2030³â±îÁö 54¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 15¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Çü»ó ±â¾ï Æú¸®¸Ó ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 23.6%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 54¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Æú¸®¿ì·¹ÅºÀº CAGR 25.2%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 24¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¡Æø½Ã ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 25.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4¾ï 60¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 22.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ Çü»ó ±â¾ï Æú¸®¸Ó ½ÃÀåÀº 2024³â¿¡ 4¾ï 60¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 8¾ï 2,680¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 22.3%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 21.8%¿Í 20.2%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 16.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Çü»ó ±â¾ï Æú¸®¸Ó ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀûÀÀÇü Àç·á°¡ ½º¸¶Æ® µðÀÚÀΰú ¿£Áö´Ï¾î¸µÀÇ »õ·Î¿î ½Ã´ë¸¦ ¿­ °ÍÀΰ¡?

Çü»ó ±â¾ï Æú¸®¸Ó ¼¼°è ½ÃÀåÀº ¿ªµ¿ÀûÀÎ ¹ÝÀÀ¼º, °æ·®È­ ¼º´É, µðÀÚÀÎ À¯¿¬¼ºÀ» Á¦°øÇÏ´Â Çõ½ÅÀûÀÎ ¼ÒÀ縦 ã´Â »ê¾÷°è¿¡ ÀÇÇØ ºü¸£°Ô ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. Çü»ó ±â¾ï Æú¸®¸Ó(SMP)´Â ¿­, ºû, ÀÚ±âÀå, Àü·ù µîÀÇ ¿ÜºÎ ÀÚ±ØÀ» ¹ÞÀ¸¸é º¯ÇüµÈ »óÅ¿¡¼­ ¿ø·¡ÀÇ ¸ð¾çÀ¸·Î µÇµ¹¾Æ°¥ ¼ö ÀÖ´Â '½º¸¶Æ® ¼ÒÀç'ÀÇ ÀÏÁ¾ÀÔ´Ï´Ù. ÀÌ µ¶Æ¯ÇÑ Æ¯¼ºÀº ±¸Á¶Àû ÀûÀÀ¼º, °ø°£ È¿À²¼º ¹× ÀÚü ÀÛµ¿ÀÌ ÇÙ½ÉÀÎ ºÐ¾ß¿¡¼­ äÅÃÀ» °­·ÂÇÏ°Ô ÃßÁøÇϰí ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ¿¡¼­ ÀÚµ¿Â÷, ÀÇ·á±â±â, ·Îº¿ °øÇп¡ À̸£±â±îÁö SMP´Â ¿£Áö´Ï¾î¿Í Á¦Ç° ¼³°èÀÚµéÀÌ ´õ ¹«°Ì°í º¹ÀâÇÑ ±â°è ½Ã½ºÅÛÀ» ´õ °¡º±°í ´Ù±â´ÉÀûÀÎ ºÎǰÀ¸·Î ´ëüÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Ç×°ø¿ìÁÖ Á¦Á¶¾÷ü¿¡¼­´Â Àü°³ °¡´ÉÇÑ ±¸Á¶¹°À̳ª ¸ðÇΠǥ¸éÀ» À§ÇØ SMP¸¦ ¿¬±¸Çϰí ÀÖÀ¸¸ç, ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­´Â Ãæ°Ý Èí¼ö ºÎǰÀ̳ª ÀÚ°¡ ¼ö¸® ºÎǰ¿¡ SMP¸¦ °í·ÁÇϰí ÀÖ½À´Ï´Ù. ÀÇ·á »ê¾÷¿¡¼­ SMP´Â ½ºÅÙÆ®, ºÀÇÕ»ç, ºñ°è µî º¹ÀâÇÑ ½Ã¼ú ¾øÀÌ Ã¼³»¿¡¼­ È®ÀåÇÏ´Â ÃÖ¼Òħ½ÀÀû ÀåÄ¡¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ½º¸¶Æ®Çϰí ÀûÀÀ·ÂÀÌ ¶Ù¾î³­ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Çü»ó±â¾ï Æú¸®¸Ó´Â ½ÇÇè½ÇÀÇ °³³ä¿¡¼­ ´Ù¾çÇÑ °í¼º´É ÀÀ¿ë ºÐ¾ß¿¡¼­ ½Ç¿ëÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î ÀüȯµÇ°í ÀÖ½À´Ï´Ù.

ºÐ¾ß °£ Çõ½ÅÀÌ SMP °³¹ßÀÇ ´ÙÀ½ ´Ü°è¸¦ ÃËÁøÇÒ ¼ö ÀÖÀ»±î?

Çü»ó ±â¾ï Æú¸®¸Ó ½ÃÀåÀº Àç·á°úÇÐ, È­ÇÐ, »ýÀÇÇÐ °øÇÐ, ³ª³ë±â¼ú¿¡ °ÉÄ£ ÁýÁßÀûÀÎ ¿¬±¸°³¹ß Çù·Â¿¡ ÀÇÇØ Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â ¿­°ú ºû, ¶Ç´Â pH¿Í ÀÚ±âÀå µî ¿©·¯ °¡Áö Æ®¸®°Å¿¡ ¹ÝÀÀÇÏ´Â Æú¸®¸ÓÀÇ °³¹ßÀÔ´Ï´Ù. À̸¦ ÅëÇØ º¹ÀâÇÑ È¯°æÀ̳ª ´Ù±â´É ½Ã½ºÅÛ¿¡¼­ »ç¿ë ÆíÀǼºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ¿¬±¸ÆÀÀº ¶ÇÇÑ Æú¸®¸Ó ³×Æ®¿öÅ©¸¦ °³¼±Çϰí ź¼Ò³ª³ëÆ©ºê, ±×·¡ÇÉ, ¾×Á¤ ¿¤¶ó½ºÅä¸Ó¿Í °°Àº ´Ù¸¥ Àç·á¿Í È¥ÇÕÇÏ¿© SMPÀÇ ¿­Àû ¹× ±â°èÀû ¼º´ÉÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ³»±¸¼º, ÀÛµ¿ ¼Óµµ, º¹±¸ Á¤È®µµ¸¦ Çâ»ó½ÃÄÑ SMP¸¦ ½ÇÁ¦ ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¿ëµµ¿¡ ´õ¿í ÀûÇÕÇÏ°Ô ¸¸µé¾ú½À´Ï´Ù. ¹ÙÀÌ¿À¸ÞµðÄà ºÐ¾ß¿¡¼­´Â »ýüÀûÇÕ¼º°ú »ýºÐÇØ¼ºÀ» °®Ãá SMP°¡ Àӽà ÀÓÇöõÆ® ¹× ¾à¹°Àü´Þ ½Ã½ºÅÛ¿ëÀ¸·Î °³¹ßµÇ¾î ºñħ½ÀÀû ÇコÄɾ »õ·Î¿î °¡´É¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÇÑÆí, ¼ÒÇÁÆ® ·Îº¸Æ½½º ºÐ¾ß¿¡¼­´Â SMP¸¦ ÅëÇØ ¸ðÅͳª ÀüÀÚÀåÄ¡ ¾øÀ̵µ »ý¹°ÇÐÀû ¿òÁ÷ÀÓÀ» ¸ð¹æÇÒ ¼ö ÀÖ´Â ¾×Ãß¿¡ÀÌÅÍ¿Í ±×¸®ÆÛ¸¦ ¸¸µé ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ´ÙºÐ¾ßÀÇ Çõ½ÅÀº ¼ÒÀçÀÇ °¡´É¼ºÀ» ³ÐÈ÷°í, »ó¾÷È­¿¡ ´ëÇÑ ±â¼úÀû À庮À» ³·Ã߸ç, »ê¾÷ ±Ô¸ðÀÇ Á¦Á¶ °øÁ¤¿¡ ºü¸£°Ô ÅëÇÕÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù.

Áö¼Ó°¡´É¼º°ú È®À强ÀÌ SMP µµÀÔÀÇ ¹Ì·¡ ±Ëµµ¸¦ °áÁ¤ÇÑ´Ù?

»ê¾÷°è°¡ Áö¼Ó°¡´É¼º°ú ȯ°æ È¿À²¼ºÀ» Á¡Á¡ ´õ Áß¿ä½ÃÇÏ´Â °¡¿îµ¥, ÀçȰ¿ë °¡´ÉÇÏ°í ¿¡³ÊÁö È¿À²ÀûÀÌ¸ç °¡º­¿î ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Çü»ó±â¾ï Æú¸®¸Ó´Â ±Ý¼Ó ±â¹Ý ¸Þ¸ð¸® Çձݰú ±âÁ¸ ±â°è½Ä ¾×Ãß¿¡ÀÌÅÍ¿¡ ´ëÇÑ ¸Å·ÂÀûÀÎ ´ë¾ÈÀ¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ¸¹Àº SMP´Â ³·Àº ¿Âµµ¿Í ¿¡³ÊÁö ÅõÀÔÀ¸·Î °¡°øÇÒ ¼ö ÀÖ¾î Á¦Á¶ ½Ã ź¼Ò¹ßÀÚ±¹À» ÁÙÀ̰í, Àúºñ¿ëÀ¸·Î È®Àå °¡´ÉÇÑ »ý»êÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ ÀüºÐ, ¸®±×´Ñ, ¼¿·ê·Î¿À½º µî Àç»ý °¡´ÉÇÑ ÀÚ¿ø¿¡¼­ ÃßÃâÇÑ ¹ÙÀÌ¿À SMPÀÇ °³¹ß¿¡µµ °ü½ÉÀÌ ÁýÁߵǰí ÀÖÀ¸¸ç, À̴ ģȯ°æ ¼ÒÀç ¹× ¼øÈ¯ °æÁ¦ ¿øÄ¢ÀÇ ±¤¹üÀ§ÇÑ Ãß¼¼¿Í ÀÏÄ¡ÇÕ´Ï´Ù. Æ÷Àå ¹× ¹°·ù ºÐ¾ß¿¡¼­ SMP´Â ȯ°æ Æ®¸®°Å¿¡ µû¶ó ¸ð¾ç°ú ÇüŸ¦ º¯È­½ÃÄÑ Á¦Ç° º¸È£¿Í »ç¿ëÀÚ »óÈ£ÀÛ¿ëÀ» °­È­ÇÏ´Â ½º¸¶Æ® Æ÷Àå ¼Ö·ç¼ÇÀ¸·Î Å×½ºÆ®µÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª È®À强Àº ¿©ÀüÈ÷ Áß¿äÇÑ °ü½É»çÀ̸ç, Á¦Á¶¾÷üµéÀº ¼Ò·® »ý»êÀÇ ½ÇÇè½Ç »ý»ê¿¡¼­ ´ë·® ½ÃÀå »ç¿ë¿¡ ÀûÇÕÇÑ ´ë±Ô¸ðÀÇ Àϰü¼º ÀÖ´Â Á¦Á¶·Î ÀüȯÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. 3D ÇÁ¸°ÆÃ°ú ÀûÃþ °¡°øÀÇ ¹ßÀüÀº º¹ÀâÇÑ SMP ±¸Á¶¸¦ ³ôÀº Á¤¹Ðµµ¿Í ¼³°èÀÇ ÀÚÀ¯µµ·Î Á¦Á¶ÇÒ ¼ö ÀÖ°ÔÇÔÀ¸·Î½á ÀÌ ¹®Á¦¸¦ ÇØ°áÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ¸·Î SMP´Â Áß°ß Á¦Á¶¾÷üµé¿¡°Ô ´õ¿í Ä£¼÷ÇØÁ³À¸¸ç, ¼ÒºñÀÚ Á¦Ç°, ¿þ¾î·¯ºí, ÀÎÇÁ¶ó ¸ð´ÏÅ͸µ µî »õ·Î¿î ÀÌ¿ë »ç·Ê¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.

Çü»ó ±â¾ï Æú¸®¸Ó ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

Çü»ó ±â¾ï Æú¸®¸Ó ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ÀÀ¿ë ºÐ¾ß È®´ë, »ê¾÷ µðÀÚÀÎ ¿ä±¸ÀÇ º¯È­¿Í Á÷Á¢ÀûÀ¸·Î °ü·ÃµÈ ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ù°, Ç×°ø¿ìÁÖ, ¹æÀ§, ÀÚµ¿Â÷ »ê¾÷¿¡¼­ °¡º±°í ½º¸¶Æ®ÇÑ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¹«°Å¿î ±â°è ºÎǰÀÇ ´ëüǰÀ¸·Î SMP¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. µÑ°, ÃÖ¼Òħ½À ¼ö¼ú°ú À̽ÄÇü ÀÇ·á±â±âÀÇ º¸±ÞÀÌ ÇコÄÉ¾î ºÐ¾ß¿¡¼­ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, SMP´Â À¯¿¬¼º, »ýüÀûÇÕ¼º, Ç¥ÀûÈ­ ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù. ¼Â°, ´ÙÀڱؼº SMP, ¹ÙÀÌ¿À SMP °³¹ß µî ÇöÀç ÁøÇà ÁßÀÎ ¼ÒÀç ±â¼ú Çõ½ÅÀ¸·Î ±ØÇÑ È¯°æ°ú Áö¼Ó°¡´É¼ºÀ» Áß½ÃÇÏ´Â ºÐ¾ß¿¡¼­ SMPÀÇ Àû¿ë ¹üÀ§°¡ ³Ð¾îÁö°í ÀÖ½À´Ï´Ù. ³Ý°, ½º¸¶Æ® ¼¶À¯, ¹ÝÀÀÇü Æ÷Àå, ÀûÀÀÇü °¡ÀüÁ¦Ç°ÀÇ µîÀåÀ¸·Î Çü»ó±â¾ï¼ÒÀçÀÇ »õ·Î¿î ¼ÒºñÀÚ »ç¿ë»ç·Ê°¡ »ý°Ü³ª°í ÀÖ½À´Ï´Ù. ´Ù¼¸Â°, ÀûÃþ °¡°ø°ú 4D ÇÁ¸°ÆÃÀÇ ±Þ¼ÓÇÑ ¼ºÀåÀ¸·Î ÀÎÇØ ÇÁ·ÎÅäŸÀÌÇΰú »ý»ê ¸ðµÎ¿¡¼­ º¹ÀâÇÑ SMP ±¸Á¶ÀÇ ¼³°è¿Í ¹èÄ¡°¡ °¡´ÉÇØÁ³½À´Ï´Ù. ¿©¼¸Â°, ÀÌÁ¾ »ê¾÷ °£ÀÇ Çù¾÷Àº »ó¾÷È­ ³ë·ÂÀ» °¡¼ÓÈ­ÇÏ°í ½ÇÇè½Ç ±Ô¸ðÀÇ Çõ½Å°ú »ê¾÷Àû È®À强 °£ÀÇ °ÝÂ÷¸¦ ÇØ¼ÒÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ½º¸¶Æ® ÀÎÇÁ¶ó ¹× ¼¾¼­ ³»ÀåÇü ¼ÒÀç¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±¸Á¶¹° °ÇÀü¼º ¸ð´ÏÅ͸µ, Àç³­ º¹¿ø·Â, ÀûÀÀÇü °ÇÃà ºÎǰ¿¡¼­ SMPÀÇ »õ·Î¿î ±æÀÌ ¿­¸®°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÃËÁø¿äÀÎÀÌ °áÇյǾî Çü»ó±â¾ï Æú¸®¸Ó´Â Ư¼ö ¿ëµµ¿¡¼­ °í¼º´É ¼ÒÀç ½ÃÀåÀÇ ÁÖ·ù·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

Àç·á(Æú¸®¿ì·¹Åº, ¿¡Æø½Ã, Æú¸®Á¥»ê, ±âŸ), ÃÖÁ¾ ¿ëµµ(ÀÇ·á, ÀÚµ¿Â÷, ÅØ½ºÅ¸ÀÏ, Ç×°ø¿ìÁÖ, °Ç¼³, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Shape Memory Polymers Market to Reach US$5.4 Billion by 2030

The global market for Shape Memory Polymers estimated at US$1.5 Billion in the year 2024, is expected to reach US$5.4 Billion by 2030, growing at a CAGR of 23.6% over the analysis period 2024-2030. Polyurethane, one of the segments analyzed in the report, is expected to record a 25.2% CAGR and reach US$2.4 Billion by the end of the analysis period. Growth in the Epoxy segment is estimated at 25.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$400.6 Million While China is Forecast to Grow at 22.3% CAGR

The Shape Memory Polymers market in the U.S. is estimated at US$400.6 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$826.8 Million by the year 2030 trailing a CAGR of 22.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 21.8% and 20.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 16.1% CAGR.

Global Shape Memory Polymers Market - Key Trends & Drivers Summarized

Are Adaptive Materials Creating a New Era of Smart Design and Engineering?

The global market for shape memory polymers is rapidly advancing as industries seek innovative materials that offer dynamic responsiveness, lightweight performance, and design flexibility. Shape memory polymers (SMPs) are a class of "smart materials" that can return from a deformed state to their original shape when exposed to an external stimulus such as heat, light, magnetic field, or electric current. This unique property is driving strong adoption in sectors where structural adaptability, space efficiency, and self-actuation are key. From aerospace to automotive, medical devices to robotics, SMPs are enabling engineers and product designers to replace heavier, more complex mechanical systems with lighter, multifunctional components. Aerospace manufacturers, for instance, are exploring SMPs for deployable structures and morphing surfaces, while in the automotive space, SMPs are being considered for impact-absorbing components and self-healing parts. In the medical industry, SMPs are finding use in minimally invasive devices such as stents, sutures, and scaffolds that expand inside the body without the need for complex procedures. As demand for smart, adaptable materials increases, shape memory polymers are transitioning from a laboratory concept into commercially viable solutions across a wide range of high-performance applications.

Can Cross-Disciplinary Innovation Drive the Next Phase of SMP Development?

The shape memory polymer market is being shaped by intensive R&D collaboration across material science, chemistry, biomedical engineering, and nanotechnology. One of the most significant trends is the development of multi-stimuli responsive SMPs-polymers that respond to more than one trigger, such as heat and light, or pH and magnetic fields. This expands their usability in complex environments and multifunctional systems. Researchers are also improving the thermal and mechanical performance of SMPs by modifying their polymer networks or blending them with other materials like carbon nanotubes, graphene, or liquid crystal elastomers. These advancements are enhancing durability, actuation speed, and recovery precision, making SMPs more suitable for real-world, mission-critical applications. In the biomedical field, SMPs with bio-compatibility and biodegradable properties are being developed for temporary implants and drug delivery systems, offering new possibilities in non-invasive healthcare. Meanwhile, in the field of soft robotics, SMPs are enabling the creation of actuators and grippers that can mimic biological movements without motors or electronics. These multidisciplinary innovations are expanding the material’s potential and lowering technical barriers to commercialization, allowing for faster integration into industrial-scale manufacturing processes.

Is Sustainability and Scalability Defining the Future Trajectory of SMP Adoption?

As industries increasingly prioritize sustainability and eco-efficiency, the demand for recyclable, energy-efficient, and low-weight materials is positioning shape memory polymers as an attractive alternative to metal-based memory alloys and traditional mechanical actuators. Many SMPs can be processed at lower temperatures and with lower energy input, reducing carbon footprints in manufacturing and enabling scalable production at lower costs. There is also a growing focus on developing bio-based SMPs derived from renewable resources like starch, lignin, or cellulose, aligning with broader trends in green materials and circular economy principles. In packaging and logistics, SMPs are being tested for smart packaging solutions that change shape or form based on environmental triggers, enhancing product protection and user interaction. Scalability, however, remains a critical concern, with manufacturers seeking to move beyond small-batch laboratory production to large-scale, consistent fabrication suitable for mass-market use. Advancements in 3D printing and additive manufacturing are addressing this challenge by enabling complex SMP structures to be produced with high precision and design freedom. These innovations are making SMPs more accessible for mid-tier manufacturers and opening up new use cases in consumer products, wearables, and infrastructure monitoring.

What’s Driving the Growth in the Shape Memory Polymers Market?

The growth in the shape memory polymers market is driven by several factors directly tied to technology evolution, application expansion, and changing industrial design needs. First, the increasing demand for lightweight, smart materials in aerospace, defense, and automotive industries is driving interest in SMPs as replacements for heavier mechanical parts. Second, the proliferation of minimally invasive procedures and implantable medical devices is fueling adoption in the healthcare sector, where SMPs offer flexibility, biocompatibility, and targeted functionality. Third, ongoing material innovations-including the development of multi-stimuli and bio-based SMPs-are expanding the applicability of these polymers across extreme environments and sustainability-focused sectors. Fourth, the rise of smart textiles, responsive packaging, and adaptive consumer electronics is creating new consumer-facing use cases for shape memory materials. Fifth, rapid growth in additive manufacturing and 4D printing is enabling the design and deployment of complex SMP structures at both the prototyping and production levels. Sixth, cross-industry collaboration is accelerating commercialization efforts, helping bridge the gap between lab-scale innovation and industrial scalability. Lastly, increasing investment in smart infrastructure and sensor-embedded materials is opening new pathways for SMPs in structural health monitoring, disaster resilience, and adaptive building components. Together, these drivers are propelling shape memory polymers from specialized applications into the mainstream of high-performance material markets.

SCOPE OF STUDY:

The report analyzes the Shape Memory Polymers market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Material (Polyurethane, Epoxy, Polylactide, Others); End-Use (Medical, Automotive, Textile, Aerospace, Construction, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 37 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â