¼¼°èÀÇ Â÷¼¼´ë ÄÄÇ»ÆÃ ½ÃÀå
Next Generation Computing
»óǰÄÚµå : 1787232
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 246 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,257,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,771,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Â÷¼¼´ë ÄÄÇ»ÆÃ ½ÃÀåÀº 2030³â±îÁö 4,548¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 1,643¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Â÷¼¼´ë ÄÄÇ»ÆÃ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 18.5%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 4,548¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ÄÄÇ»ÆÃ Çϵå¿þ¾î´Â CAGR 19.4%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 2,932¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÄÄÇ»ÆÃ ¼ÒÇÁÆ®¿þ¾î ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 17.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 432¾ï ´Þ·¯, Áß±¹Àº CAGR 17.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Â÷¼¼´ë ÄÄÇ»ÆÃ ½ÃÀåÀº 2024³â¿¡ 432¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 698¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 17.4%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 17.1%¿Í 15.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 13.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è Â÷¼¼´ë ÄÄÇ»ÆÃ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

Â÷¼¼´ë ÄÄÇ»ÆÃÀº ¾î¶»°Ô ±â¼úÀÇ ¹Ì·¡¸¦ Çü¼ºÇϰí Àִ°¡?

Â÷¼¼´ë ÄÄÇ»ÆÃÀº Àü·Ê ¾ø´Â ¼öÁØÀÇ ÄÄÇ»ÆÃ ¼º´É, È¿À²¼º, Áö´ÉÀ» µµÀÔÇÏ¿© »ê¾÷¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÌ ÄÄÇ»ÆÃÀÇ º¯Çõ±â´Â ¾çÀÚ ÄÄÇ»ÆÃ, ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ, ¿§Áö ÄÄÇ»ÆÃ, °í¼º´É AI ±â¹Ý ¾ÆÅ°ÅØÃ³ µîÀÇ ¹ßÀüÀ» Æ÷°ýÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ ÄÄÇ»ÆÃ ¸ðµ¨°ú ´Þ¸® Â÷¼¼´ë ÄÄÇ»ÆÃÀº ¾çÀÚ ¿ªÇÐ, »ý¹°Çп¡¼­ ¿µ°¨À» ¾òÀº ½Å°æ¸Á, ºÐ»ê ó¸®, ºÐ»ê 󸮸¦ Ȱ¿ëÇÏ¿© º¹ÀâÇÑ ¹®Á¦¸¦ ±âÇϱ޼öÀûÀÎ ¼Óµµ·Î ÇØ°áÇÕ´Ï´Ù. Á¦¾à, ±ÝÀ¶, »çÀ̹ö º¸¾È, ±âÈÄ ¸ðµ¨¸µ µîÀÇ »ê¾÷¿¡¼­ ¿¹Ãø ºÐ¼® ¹× ÃÖÀûÈ­ ÀÛ¾÷À» °­È­Çϱâ À§ÇØ ¾çÀÚ ¾Ë°í¸®ÁòÀÌ ÀÌ¹Ì ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃÀº Ä¿³ØÆ¼µå µð¹ÙÀ̽ºÀÇ Áö¿¬ ½Ã°£À» ÁÙÀ̰í ÀÚÀ²ÁÖÇàÂ÷, ½º¸¶Æ® ½ÃƼ, »ê¾÷ ÀÚµ¿È­¿¡¼­ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÇÑÆí, ±×·¡ÇÈó¸®ÀåÄ¡(GPU)¿Í ÅÙ¼­ÇÁ·Î¼¼½ÌÀ¯´Ö(TPU)À» Æ÷ÇÔÇÑ AI žÀç ÇÁ·Î¼¼¼­´Â µö·¯´×°ú ÀÚ¿¬ ¾ð¾î ó¸® ¿ëµµ¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. º¸´Ù È¿À²ÀûÀ̰í È®Àå °¡´ÉÇÑ ÄÄÇ»ÆÃ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±â¾÷Àº Çõ½ÅÀ» ÁÖµµÇϱâ À§ÇØ Â÷¼¼´ë ¾ÆÅ°ÅØÃ³¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ÄÄÇ»ÆÃ ÆÄ¿ö¸¦ º¸´Ù Ä£¼÷Çϰí È¿À²ÀûÀ¸·Î »ç¿ëÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù.

Â÷¼¼´ë ÄÄÇ»ÆÃÀÇ º¸±ÞÀ» °¡·Î¸·´Â °úÁ¦´Â ¹«¾ùÀΰ¡?

Â÷¼¼´ë ÄÄÇ»ÆÃÀº ±× ÀáÀç·Â¿¡µµ ºÒ±¸Çϰí ÁÖ·ù·ÎÀÇ Ã¤ÅÃÀ» Á¦ÇÑÇÏ´Â ¸î °¡Áö °úÁ¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÁÖ¿ä À庮 Áß Çϳª´Â ¾çÀÚ ÄÄÇ»ÆÃ°ú ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ ½Ã½ºÅÛ °³¹ß ¹× ±¸Çö¿¡ µå´Â ³ôÀº ºñ¿ëÀ¸·Î ÀÎÇØ ´ëºÎºÐÀÇ ±â¾÷ÀÌ °¨´çÇÒ ¼ö ¾ø´Â ¼öÁØÀ̶ó´Â Á¡ÀÔ´Ï´Ù. ƯÈ÷ ¾çÀÚÄÄÇ»ÆÃÀº ±ØÀú¿Â ³Ã°¢°ú Ư¼öÇÑ Çϵå¿þ¾î¸¦ ÇÊ¿ä·Î ÇϹǷΠµµÀÔ¿¡ º¹À⼺ÀÌ µû¸¨´Ï´Ù. ¸¹Àº Â÷¼¼´ë ÄÄÇ»ÆÃ ¸ðµ¨Àº ±âÁ¸ ÄÄÇ»ÆÃ°ú ±Ùº»ÀûÀ¸·Î ´Ù¸¥ ¿ø¸®·Î ÀÛµ¿ÇϹǷΠ¼ÒÇÁÆ®¿þ¾î¿Í ¾Ë°í¸®ÁòÀÇ Ç¥ÁØÈ­°¡ ÁøÇàµÇÁö ¾ÊÀº °Íµµ ¹®Á¦ÀÔ´Ï´Ù. ¾çÀÚÄÄÇ»ÆÃÀº ±âÁ¸ÀÇ ¾Ïȣȭ ¹æ½ÄÀ» ±ú¶ß¸± ¼ö ÀÖÀ¸¹Ç·Î ¾çÀÚ ¾ÈÀü ¾ÏÈ£ÀÇ °³¹ßÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃ°ú Ŭ¶ó¿ìµå ¾ÆÅ°ÅØÃ³ÀÇ ÅëÇÕ¿¡´Â »óÈ£¿î¿ë¼º ¹®Á¦°¡ ÀÖÀ¸¸ç, ÇÏÀ̺긮µå ÄÄÇ»ÆÃ ȯ°æÀ» È¿°úÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖ´Â È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ ¾çÀÚ ¿ªÇÐ, AI ±â¹Ý ÄÄÇ»ÆÃ, ´º·Î¸ðÇÈ ¾ÆÅ°ÅØÃ³¿¡ Á¤ÅëÇÑ ¼÷·ÃµÈ Àü¹®°¡¿¡ ´ëÇÑ ¼ö¿ä´Â Àη Ȯº¸º¸´Ù ´õ Å« »óȲÀÔ´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦¸¦ ÇØ°áÇϱâ À§Çؼ­´Â Çõ½ÅÀ» °¡¼ÓÈ­Çϰí, ºñ¿ëÀ» Àý°¨Çϰí, ¿øÈ°ÇÑ µµÀÔÀÇ Æ²À» ±¸ÃàÇϱâ À§ÇØ Çаè, ¾÷°è ¸®´õ, Á¤ºÎ °£ÀÇ Çù·Â °ü°è¸¦ °­È­ÇØ¾ß ÇÕ´Ï´Ù.

Çõ½ÅÀº ¾î¶»°Ô Â÷¼¼´ë ÄÄÇ»ÆÃÀÇ ÁøÈ­¸¦ ÃËÁøÇϰí Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº ¾çÀÚ ¿ªÇÐÀÇ ¿ìÀ§, AIÀÇ °í¼ÓÈ­, ¿¡³ÊÁö È¿À²ÀûÀΠó¸® µî Â÷¼¼´ë ÄÄÇ»ÆÃÀÇ »óȲÀ» Å©°Ô Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ¾çÀÚÄÄÇ»ÆÃÀº ÃÊÀüµµ ¾çÀÚºñÆ®, Æ®·¦µå À̿ ±â¼ú, ÅäÆú·ÎÁö ¾çÀÚºñÆ®ÀÇ °³¹ß·Î ºñ¾àÀûÀ¸·Î ¹ßÀüÇϰí ÀÖÀ¸¸ç, °è»êÀÇ ¾ÈÁ¤¼º°ú ¿À·ù Á¤Á¤À» °­È­Çϰí ÀÖ½À´Ï´Ù. IBM, ±¸±Û°ú °°Àº ±â¾÷°ú ¸®°ÔƼ ÄÄÇ»ÆÃ(Rigetti Computing)°ú °°Àº ½Å»ý ±â¾÷Àº Ŭ¶ó¿ìµå ±â¹Ý ¾çÀÚ ÄÄÇ»ÆÃ ¼­ºñ½º¸¦ °³¹ßÇÏ¿© °í±Þ ÄÄÇ»ÆÃ ¸®¼Ò½º¿¡ ´ëÇÑ Á¢±ÙÀ» ¹ÎÁÖÈ­Çϰí ÀÖ½À´Ï´Ù. ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ ºÐ¾ß¿¡¼­´Â ÃÊÀúÀü·Â AI ½Ã½ºÅÛÀ» ±¸ÇöÇϱâ À§ÇØ Àΰ£ÀÇ ´º·±ÀÌ ÀÛµ¿ÇÏ´Â ¹æ½ÄÀ» ¸ð¹æÇÏ¿© º´·Ä 󸮰¡ °¡´ÉÇÑ ³ú¿¡¼­ ¿µ°¨À» ¾òÀº ĨÀ» ¿¬±¸°³¹ßÇϰí ÀÖ½À´Ï´Ù. ¿§Áö AI ¿ª½Ã Áß¿äÇÑ Çõ½ÅÀ¸·Î, Ŭ¶ó¿ìµå µ¥ÀÌÅͼ¾ÅÍ¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í ¿¬°áµÈ ±â±â¿¡¼­ ½Ç½Ã°£ 󸮸¦ °¡´ÉÇÏ°Ô ÇÏ´Â Áß¿äÇÑ Çõ½ÅÀÔ´Ï´Ù. ¶ÇÇÑ ±¤ÇÐ ÀúÀå ÀåÄ¡¿Í DNA ÄÄÇ»ÆÃÀÇ ºÎ»óÀº µ¥ÀÌÅÍ ÀúÀå ¹× Ã³¸®ÀÇ »õ·Î¿î ÆÐ·¯´ÙÀÓÀ» Á¦°øÇÏ°í ¹ÝµµÃ¼ ±â¹Ý ¾ÆÅ°ÅØÃ³ÀÇ ÇѰ踦 ±Øº¹ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀ¸·Î Â÷¼¼´ë ÄÄÇ»ÆÃÀº ´õ ºü¸£°í, ´õ Áö´ÉÀûÀ̸ç, ´õ ¿¡³ÊÁö È¿À²ÀûÀÎ ÄÄÇ»ÆÃ ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á »ê¾÷À» ÀçÁ¤ÀÇÇÒ Å¼¼¸¦ °®Ãß°í ÀÖ½À´Ï´Ù.

Â÷¼¼´ë ÄÄÇ»ÆÃ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

Â÷¼¼´ë ÄÄÇ»ÆÃ ½ÃÀåÀÇ ¼ºÀåÀº AI ¿öÅ©·ÎµåÀÇ º¹À⼺ Áõ°¡, °úÇÐ ¿¬±¸¿¡¼­ÀÇ °í¼º´É ÄÄÇ»ÆÃ ¼ö¿ä, IoT ¿ëµµ¸¦ À§ÇÑ ¿§Áö ÄÄÇ»ÆÃÀÇ È®´ë µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ ºÎ»óÀ¸·Î ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ ½Ç½Ã°£À¸·Î ó¸®Çϰí, À̸¦ ÅëÇØ ÀλçÀÌÆ®¸¦ µµÃâÇϱâ À§ÇØ º¸´Ù °­·ÂÇÑ ÄÄÇ»ÆÃ ÇÁ·¹ÀÓ¿öÅ©°¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õµéÀº µ¥ÀÌÅÍ Ã³¸® ´É·ÂÀ» °­È­Çϱâ À§ÇØ AI ±â¹Ý ÄÄÇ»ÆÃ ¾ÆÅ°ÅØÃ³¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ±â¾÷Àº °í±Þ ½Ã¹Ä·¹ÀÌ¼Ç ¹× ÃÖÀûÈ­ ¹®Á¦¿¡ ¾çÀÚ ÄÄÇ»ÆÃÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ ¹× ±¹¹æ ±â°üµµ »çÀ̹ö º¸¾È ¹× º¸¾È Åë½ÅÀ» À§ÇÑ ¾çÀÚ ¿¬±¸¿¡ ÀÚ±ÝÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. 5G ³×Æ®¿öÅ©¿Í IoT µð¹ÙÀ̽ºÀÇ È®Àå¿¡ ÈûÀÔ¾î ºÐ»ê ÄÄÇ»ÆÃÀ¸·ÎÀÇ ÀüȯÀº ½Ç½Ã°£ ºÐ¼®°ú ÀÚµ¿È­¸¦ À§ÇÑ »õ·Î¿î ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀº ÀúÀü·Â ÄÄÇ»ÆÃ ¾ÆÅ°ÅØÃ³ÀÇ °³¹ßÀ» ÃËÁøÇÏ¿© Â÷¼¼´ë ÄÄÇ»ÆÃ ¼Ö·ç¼ÇÀÌ ¿¡³ÊÁö È¿À²À» À¯ÁöÇϸ鼭 Ź¿ùÇÑ ¼º´ÉÀ» ¹ßÈÖÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ¹ßÀüÀÌ ÁøÇàµÊ¿¡ µû¶ó ½ÃÀåÀº Å©°Ô ¼ºÀåÇÏ¿© ÄÄÇ»ÆÃ ÀÎÅÚ¸®Àü½º ¹× µðÁöÅÐ Çõ½ÅÀÇ ¹Ì·¡¸¦ Çü¼ºÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ® À¯Çü(ÄÄÇ»ÆÃ Çϵå¿þ¾î, ÄÄÇ»ÆÃ ¼ÒÇÁÆ®¿þ¾î, ÄÄÇ»ÆÃ ¼­ºñ½º), Á¦Ç° À¯Çü(°í¼º´É ÄÄÇ»ÆÃ, ¾çÀÚ ÄÄÇ»ÆÃ, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, ¿§Áö ÄÄÇ»ÆÃ, ±âŸ ÄÄÇ»ÆÃ À¯Çü), ¹èÆ÷(Ŭ¶ó¿ìµå ¹èÆ÷, ¿ÂÇÁ·¹¹Ì½º ¹èÆ÷), Á¶Á÷ À¯Çü(Áß¼Ò±â¾÷, ´ë±â¾÷); ÃÖÁ¾»ç¿ëÀÚ(ÀÚµ¿Â÷¡¤¿î¼Û ÃÖÁ¾»ç¿ëÀÚ, ¿¡³ÊÁö¡¤°øÀÍ ÃÖÁ¾»ç¿ëÀÚ, ÇコÄɾî ÃÖÁ¾»ç¿ëÀÚ, BFSI ÃÖÁ¾»ç¿ëÀÚ, Ç×°ø¿ìÁÖ¡¤¹æÀ§ ÃÖÁ¾»ç¿ëÀÚ, ¹Ìµð¾î¡¤¿£ÅÍÅ×ÀÎ¸ÕÆ® ÃÖÁ¾»ç¿ëÀÚ, IT¡¤Åë½Å ÃÖÁ¾»ç¿ëÀÚ, ¼Ò¸Å ÃÖÁ¾»ç¿ëÀÚ, Á¦Á¶ ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾ »ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Next Generation Computing Market to Reach US$454.8 Billion by 2030

The global market for Next Generation Computing estimated at US$164.3 Billion in the year 2024, is expected to reach US$454.8 Billion by 2030, growing at a CAGR of 18.5% over the analysis period 2024-2030. Computing Hardware, one of the segments analyzed in the report, is expected to record a 19.4% CAGR and reach US$293.2 Billion by the end of the analysis period. Growth in the Computing Software segment is estimated at 17.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$43.2 Billion While China is Forecast to Grow at 17.4% CAGR

The Next Generation Computing market in the U.S. is estimated at US$43.2 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$69.8 Billion by the year 2030 trailing a CAGR of 17.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 17.1% and 15.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 13.5% CAGR.

Global Next Generation Computing Market - Key Trends & Drivers Summarized

How Is Next Generation Computing Reshaping the Future of Technology?

Next generation computing is revolutionizing industries by introducing unprecedented levels of computational power, efficiency, and intelligence. This transformative era in computing encompasses advancements such as quantum computing, neuromorphic computing, edge computing, and high-performance AI-driven architectures. Unlike traditional computing models, next generation computing leverages quantum mechanics, biologically inspired neural networks, and decentralized processing to solve complex problems at exponential speeds. Industries such as pharmaceuticals, finance, cybersecurity, and climate modeling are already exploring quantum algorithms to enhance predictive analytics and optimization tasks. Edge computing is reducing latency in connected devices, enabling real-time data processing in autonomous vehicles, smart cities, and industrial automation. Meanwhile, AI-powered processors, including graphics processing units (GPUs) and tensor processing units (TPUs), are accelerating deep learning and natural language processing applications. As demand for more efficient and scalable computing solutions grows, companies are investing in next-generation architectures to drive innovation, making computational power more accessible and efficient across various industries.

What Challenges Are Hindering the Widespread Adoption of Next Generation Computing?

Despite its potential, next generation computing faces several challenges that limit its mainstream adoption. One of the primary barriers is the high cost associated with developing and implementing quantum and neuromorphic computing systems, making them inaccessible to most enterprises. Quantum computing, in particular, requires cryogenic cooling and specialized hardware, adding complexity to its deployment. Another challenge is the lack of standardization in software and algorithms, as many next-generation computing models operate on principles that differ fundamentally from classical computing. Security concerns also arise with advanced computing systems, as quantum computing has the potential to break traditional encryption methods, necessitating the development of quantum-safe cryptography. The integration of edge computing with cloud architectures poses interoperability issues, requiring scalable solutions that can manage hybrid computing environments effectively. Moreover, the need for skilled professionals proficient in quantum mechanics, AI-driven computing, and neuromorphic architectures is outpacing workforce availability. Addressing these challenges will require increased collaboration between academia, industry leaders, and governments to accelerate innovation, lower costs, and establish frameworks for seamless adoption.

How Are Innovations Driving the Evolution of Next Generation Computing?

Technological advancements are significantly shaping the landscape of next generation computing, with breakthroughs in quantum supremacy, AI acceleration, and energy-efficient processing. Quantum computing is making strides with developments in superconducting qubits, trapped ion technology, and topological qubits, enhancing computational stability and error correction. Companies like IBM, Google, and startups such as Rigetti Computing are pioneering cloud-based quantum computing services, democratizing access to advanced computational resources. In the field of neuromorphic computing, researchers are developing brain-inspired chips capable of parallel processing, mimicking the way human neurons function to enable ultra-low-power AI systems. Edge AI is another significant innovation, reducing reliance on cloud data centers and allowing real-time processing on connected devices. Additionally, the rise of optical computing and DNA computing is offering new paradigms for data storage and processing, potentially overcoming the limitations of semiconductor-based architectures. With these technological advances, next generation computing is poised to redefine industries by offering faster, more intelligent, and energy-efficient computing solutions.

What Is Driving the Growth of the Next Generation Computing Market?

The growth in the next generation computing market is driven by several factors, including the increasing complexity of AI workloads, the demand for high-performance computing in scientific research, and the expansion of edge computing for IoT applications. The rise of big data analytics is necessitating more powerful computational frameworks to process and extract insights from massive datasets in real time. Cloud service providers are investing in AI-driven computing architectures to enhance data processing capabilities, while enterprises are adopting quantum computing for advanced simulations and optimization problems. Governments and defense agencies are also funding quantum research for cybersecurity applications and secure communications. The shift toward decentralized computing, fueled by the expansion of 5G networks and IoT devices, is creating new opportunities for real-time analytics and automation. Additionally, sustainability concerns are driving the development of low-power computing architectures, ensuring that next generation computing solutions remain energy-efficient while delivering unmatched performance. As advancements continue, the market is expected to experience significant growth, shaping the future of computational intelligence and digital transformation.

SCOPE OF STUDY:

The report analyzes the Next Generation Computing market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component Type (Computing Hardware, Computing Software, Computing Services); Product Type (High-Performance Computing, Quantum Computing, Cloud Computing, Edge Computing, Other Computing Types); Deployment (Cloud Deployment, On-Premise Deployment); Organization Type (Small & Medium Sized Enterprises, Large Size Enterprises); End-Use (Automotive & Transportation End-Use, Energy & Utilities End-Use, Healthcare End-Use, BFSI End-Use, Aerospace & Defense End-Use, Media & Entertainment End-Use, IT & Telecom End-Use, Retail End-Use, Manufacturing End-Use, Other End=-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â