¼¼°èÀÇ ±º¿ë Â÷·® À¯Áöº¸¼ö ½ÃÀå
Military Vehicle Sustainment
»óǰÄÚµå : 1787164
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 280 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,274,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,824,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ±º¿ë Â÷·® À¯Áöº¸¼ö ½ÃÀåÀº 2030³â±îÁö 219¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 173¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ±º¿ë Â÷·® À¯Áöº¸¼ö ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 4.0%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 219¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÇÊµå ·¹º§ À¯Áö°ü¸®´Â CAGR 4.7%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 157¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. â°í ·¹º§ À¯Áö°ü¸® ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 2.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 47¾ï ´Þ·¯, Áß±¹Àº CAGR 7.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ±º¿ë Â÷·® À¯Áöº¸¼ö ½ÃÀåÀº 2024³â¿¡ 47¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 45¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 7.5%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 1.6%¿Í 3.2%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.3%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ±º¿ë Â÷·® À¯Áöº¸¼ö ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

±º¿ë Â÷·®ÀÇ À¯Áöº¸¼ö´Â ¹«¾ùÀ̸ç, ¿Ö ±¹¹æ Ȱµ¿¿¡ ÇʼöÀûÀΰ¡?

±º¿ë Â÷·® À¯Áöº¸¼ö´Â Àå°©Â÷(APC), ÁÖÀüÂ÷(MBT), º¸º´ÀüÅõÂ÷·®(IFV), Áö·ÚÁ¦°ÅÂ÷·®(MRAP), Àü¼ú¼ö¼ÛÆ®·° µî ±º¿ë À°»ó Â÷·®ÀÇ Á¾ÇÕÀûÀÎ À¯Áöº¸¼ö, ¼ö¸®, ¹°·ùÁö¿ø, ¼ö¸íÁֱ⠰ü¸® µîÀ» ÀǹÌÇÕ´Ï´Ù. Áö¼Ó°¡´É¼ºÀº ±º¿ë Â÷·®ÀÌ ¼ö¸í ±â°£ µ¿¾È ÀÛµ¿ °¡´ÉÇϰí, ÀüÅõ¿¡ ´ëÀÀÇÒ ¼ö ÀÖ°í, È¿À²ÀûÀ̸ç, ´Ù¿îŸÀÓÀ» ÁÙÀ̰í, ½ºÆ®·¹½º°¡ ¸¹Àº ȯ°æ¿¡¼­ ÀÚ»êÀÇ ¼ö¸íÀ» ¿¬ÀåÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù.

Çö´ë ÀüÀï¿¡¼­ ±âµ¿¼º, »ýÁ¸¼º, ½Å¼ÓÇÑ Àü°³ ´É·Â¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁü¿¡ µû¶ó ±º¿ë Â÷·®ÀÇ À¯Áöº¸¼ö Çʿ伺ÀÌ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. »ó¿ëÂ÷¿Í ´Þ¸® ±º¿ë Â÷·®Àº »ç¸·, ºÏ±Ø, Á¤±Û, µµ½ÉÀü µî °¡È¤ÇÏ°í ¿¹ÃøÇÒ ¼ö ¾ø´Â Á¶°Ç¿¡¼­ ¿î¿ëµË´Ï´Ù. ÀÌ Â÷·®µéÀº ÃÖ°íÀÇ ¼º´ÉÀ» À¯ÁöÇϸ鼭 ±ØÇÑÀÇ ¿Âµµ, °ÅÄ£ ÁöÇü, ÀûÀÇ ÃѰÝÀ» °ßµ®³»¾ß ÇÕ´Ï´Ù. ¿¹Áöº¸Àü, ½Å¼ÓÇÑ ºÎǰ ±³Ã¼, ½Ç½Ã°£ Â÷·® Áø´Ü µîÀÇ À¯Áö°ü¸® Àü·«Àº ÀÓ¹«¸¦ ¼º°øÀûÀ¸·Î ¼öÇàÇϰí Â÷·®ÀÇ ¸¶¸ðÀ²À» ³·Ãß±â À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.

¶ÇÇÑ, Àü ¼¼°è ±º´Â Â÷·® Çö´ëÈ­¿Í ·¹°Å½Ã Ç÷§Æû À¯ÁöÀÇ ±ÕÇüÀ» ¸ÂÃß¾î¾ß ÇÏ´Â °úÁ¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¸¹Àº ±¹¹æ ±â°üÀº ³ëÈÄÈ­µÈ Â÷·®±ºÀ» ¿î¿ëÇϰí ÀÖÀ¸¸ç, ±× Áß ÀϺδ ¼ö½Ê³âµ¿¾È »ç¿ëµÇ¾î ¿Â Â÷·®µµ ÀÖ½À´Ï´Ù. À¯Áöº¸¼ö ÇÁ·Î±×·¥À» ÅëÇØ ±ºÀº ±âÁ¸ Â÷·®À» ¿ÏÀüÈ÷ ±³Ã¼ÇÏ´Â ´ë½Å ÷´Ü Àå°©, µðÁöÅÐ Åë½Å ½Ã½ºÅÛ, ÇÏÀ̺긮µå ÃßÁø µî Ãֽбâ¼ú·Î ¾÷±×·¹À̵åÇϰųª °³Á¶ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù ¹æ½ÄÀº ÀÛÀü È¿À²¼ºÀ» À¯ÁöÇϸ鼭 ±¹¹æ ¿¹»êÀ» ÃÖÀûÈ­Çϰí, Àü ¼¼°è ±ºÀÇ Â÷·® Áö¼Ó¼ºÀ» Àü·«Àû ¿ì¼±¼øÀ§·Î »ï°í ÀÖ½À´Ï´Ù.

»õ·Î¿î ±â¼úÀº ±º¿ë Â÷·®ÀÇ À¯Áöº¸¼ö¸¦ ¾î¶»°Ô º¯È­½Ãų °ÍÀΰ¡?

±º¿ë Â÷·® À¯Áöº¸¼öÀÇ ÁøÈ­´Â ¿¹Áöº¸Àü, ÀÚµ¿È­, µðÁöÅÐ Æ®À©, ÀûÃþÁ¶¸³ÀÇ ¹ßÀüÀ¸·Î ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº Â÷·® °¡µ¿ ½Ã°£À» °³¼±Çϰí, ºñ¿ëÀ» Àý°¨Çϸç, Àü ¼¼°è ¹æ»ê Á¶Á÷ÀÇ ¹°·ù È¿À²¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.

°¡Àå Áß¿äÇÑ ±â¼ú ¹ßÀü Áß Çϳª´Â ÀΰøÁö´É(AI)°ú »ç¹°ÀÎÅͳÝ(IoT)À» Ȱ¿ëÇÑ ¿¹Áöº¸ÀüÀÔ´Ï´Ù. Çö´ëÀÇ ±º¿ë Â÷·®¿¡´Â ¿£Áø, º¯¼Ó±â, ºê·¹ÀÌÅ© ½Ã½ºÅÛ µî ÁÖ¿ä ºÎǰÀ» Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µÇÏ´Â ¼¾¼­°¡ Á¡Á¡ ´õ ¸¹ÀÌ ÀåÂøµÇ°í ÀÖ½À´Ï´Ù. AI ±â¹Ý ºÐ¼®Àº ±â°èÀû ¸¶¸ðÀÇ Ãʱâ ¡Èĸ¦ °¨ÁöÇÏ¿© °íÀåÀÌ ¹ß»ýÇϱâ Àü¿¡ ¿¹¹æÀû À¯Áöº¸¼ö¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. À̸¦ ÅëÇØ ¿¹±âÄ¡ ¸øÇÑ °íÀåÀ» ÁÙÀ̰í, À¯Áöº¸¼ö ÀÏÁ¤À» ÃÖÀûÈ­ÇÏ¿© ±º¿ë Â÷·®ÀÌ ÃÖ¼ÒÇÑÀÇ ´Ù¿îŸÀÓÀ¸·Î ÀÓ¹« ¼öÇàÀÌ °¡´ÉÇÑ »óŸ¦ À¯ÁöÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

µðÁöÅÐ Æ®À© ±â¼úÀÇ È°¿ë ¶ÇÇÑ ±º¿ë Â÷·®ÀÇ À¯Áö º¸¼ö¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. µðÁöÅÐ Æ®À©Àº ±º»ç ¿£Áö´Ï¾î°¡ ½Ç½Ã°£À¸·Î ¹®Á¦¸¦ ½Ã¹Ä·¹À̼Ç, Å×½ºÆ®, Áø´ÜÇÒ ¼ö ÀÖ´Â ¹°¸®Àû ÀÚ»êÀÇ °¡»ó º¹Á¦º»ÀÔ´Ï´Ù. µðÁöÅÐ Æ®À©Àº IoT ¼¾¼­ÀÇ ½ÇÁ¦ µ¥ÀÌÅ͸¦ ÅëÇÕÇÔÀ¸·Î½á ¹æÀ§ ±â°üÀÌ ºÎǰÀÇ °íÀåÀ» ¿¹ÃøÇϰí, ¿¬·á È¿À²À» ÃÖÀûÈ­Çϸç, À¯Áöº¸¼ö Áֱ⸦ º¸´Ù È¿°úÀûÀ¸·Î °èȹÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº ÀÇ»ç°áÁ¤À» °­È­ÇÏ°í ºñ¿ë°ú ½Ã°£ÀÌ ¸¹ÀÌ µå´Â ±âÁ¸ À¯Áöº¸¼ö ¹æ½Ä¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙ¿©ÁÝ´Ï´Ù.

¶Ç ´Ù¸¥ Çõ½ÅÀû Æ®·»µå´Â ¿¹ºñ ºÎǰ »ý»ê¿¡ ÀûÃþ °¡°ø(3D ÇÁ¸°ÆÃ)À» äÅÃÇÏ´Â °ÍÀÔ´Ï´Ù. ±º¿ë Â÷·®ÀÇ À¯Áöº¸¼ö´Â Á¾Á¾ °ø±Þ¸ÁÀÇ È¥¶õ, ƯÈ÷ Á¶´ÞÀÌ ¾î·Á¿î ±³Ã¼ ºÎǰ¿¡ ÀÇÁ¸ÇÏ´Â ¿À·¡µÈ Â÷·®¿¡ ´ëÇÑ °ø±Þ¸ÁÀÇ È¥¶õÀ¸·Î ÀÎÇØ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ÀûÃþ °¡°ø´Â Àü¹æ ÀÛÀü ±âÁö¿¡¼­ ÁÖ¹®Çü ¿¹ºñ ºÎǰÀÇ ÁÖ¹®Çü »ý»êÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ¹°·ù º´¸ñ Çö»óÀ» ÁÙÀÌ°í ¼ö¸® ÀÏÁ¤À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â´ÉÀº ±âÁ¸°ø±Þ¸ÁÀ» ½Å·ÚÇÒ ¼ö ¾ø°Å³ª ÀÌ¿ëÇÒ ¼ö ¾ø´Â ¿ø°ÝÁö ¹èÄ¡¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù.

·Îº¿°ú ÀÚµ¿È­µÈ À¯Áöº¸¼ö ½Ã½ºÅÛÀÇ ÅëÇÕ ¶ÇÇÑ Áö¼ÓÀûÀÎ ³ë·ÂÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. ºñħ½ÀÀû Áø´Ü, ±¸Á¶Àû ¹«°á¼º Æò°¡, Á¤±âÀûÀÎ À¯Áöº¸¼ö ÀÛ¾÷À» Á¤È®ÇÏ°Ô ¼öÇàÇϱâ À§ÇØ ÀÚÀ² ·Îº¿ÆÈ°ú µå·Ð ±â¹Ý °Ë»ç ½Ã½ºÅÛÀÌ µµÀԵǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚµ¿È­ ¼Ö·ç¼ÇÀº ¼öÀÛ¾÷ÀÇ Çʿ伺À» ÁÙÀ̰í, À¯Áöº¸¼ö ºñ¿ëÀ» ³·Ã߸ç, »ç¶÷ÀÌ À§ÇèÇÑ »óȲ¿¡ ³ëÃâµÇ´Â °ÍÀ» ÃÖ¼ÒÈ­ÇÏ¿© ¾ÈÀü¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù.

±º¿ë Â÷·® À¯Áöº¸¼öÀÇ ÁÖ¿ä °úÁ¦´Â?

À¯Áöº¸¼ö ±â¼úÀÇ ¹ßÀü¿¡µµ ºÒ±¸ÇÏ°í ±º¿ë Â÷·®ÀÇ À¯Áöº¸¼ö ¹× ¼ö¸íÁֱ⠰ü¸®´Â ¹°·ù, ºñ¿ë, ÀÚ¿ø ¹èºÐ°ú °ü·ÃµÈ ¸î °¡Áö °úÁ¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÁÖ¿ä °úÁ¦ Áß Çϳª´Â Â÷·® Â÷·®ÀÇ ³ëÈÄÈ­¿Í ¾÷±×·¹À̵å ȣȯ¼º Á¦ÇÑÀÔ´Ï´Ù. ¸¹Àº ±¹¹æ ±â°üÀº ¼ö½Ê³âµ¿¾È »ç¿ëµÇ¾î ¿Â Â÷·®À» ¿î¿ëÇϰí ÀÖÀ¸¸ç, ÃֽŠÀ¯Áöº¸¼ö ±â¼úÀ» ÅëÇÕÇϱâ À§ÇØ ´ë´ëÀûÀÎ °³Á¶°¡ ÇÊ¿äÇÕ´Ï´Ù. ±×·¯³ª ¸ðµç ·¹°Å½Ã Ç÷§ÆûÀÌ Ã·´Ü ¼¾¼­ ½Ã½ºÅÛ, µðÁöÅÐ Áø´Ü, AI ±â¹Ý À¯Áöº¸¼ö ÅøÀ» Áö¿øÇÏ´Â °ÍÀº ¾Æ´Ï±â ¶§¹®¿¡ Çö´ëÈ­ ÀÛ¾÷Àº º¹ÀâÇÏ°í ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù.

¶Ç ´Ù¸¥ °úÁ¦´Â °ø±Þ¸ÁÀÇ Ãë¾à¼º°ú ¿¹ºñ ºÎǰÀÇ ºÎÁ·ÀÔ´Ï´Ù. ±º¿ë Â÷·®ÀÇ À¯Áö º¸¼ö´Â ±³Ã¼ ºÎǰ, ¼Ò¸ðǰ, Ư¼ö Àç·áÀÇ ¾ÈÁ¤ÀûÀÎ °ø±Þ¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÁöÁ¤ÇÐÀû ±äÀå, ¹«¿ª Á¦ÇÑ, ÆÒµ¥¹ÍÀ¸·Î ÀÎÇÑ ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õÀ¸·Î ÀÎÇØ Áß¿äÇÑ Â÷·® ºÎǰÀÇ Á¶´ÞÀÌ Á¡Á¡ ´õ ¾î·Á¿öÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö¿¬Àº Áï°¢ÀûÀÎ ´ëÀÀ·ÂÀ» ¶³¾î¶ß¸®°í, ¹æÀ§ ±â°üÀº ºÎǰ ºñÃàÀ» ÇØ¾ß Çϸç, º¸°ü ºñ¿ë°ú ¹°·ùÀÇ º¹À⼺À» Áõ°¡½Ãŵ´Ï´Ù.

¿¹»êÀÇ Á¦¾à°ú ¿î¿µ ºñ¿ëµµ Å« °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. À¯Áöº¸¼ö ÇÁ·Î±×·¥Àº Àå±âÀûÀ¸·Î ºñ¿ë Àý°¨ÀÇ ÀÌÁ¡ÀÌ ÀÖÁö¸¸, AI ±â¹Ý ¿¹Áöº¸Àü, IoT ±â¹Ý Áø´Ü, 3D ÇÁ¸°ÆÃ ÀÎÇÁ¶ó¿¡ ÇÊ¿äÇÑ Ãʱâ ÅõÀÚºñ¿ëÀÌ ³ôÀ» ¼ö ÀÖ½À´Ï´Ù. ±¹¹æ ±â°üÀº Â÷¼¼´ë ±º¿ë Â÷·®, ¹«±â ½Ã½ºÅÛ, »çÀ̹ö º¸¾È ÀÌ´Ï¼ÅÆ¼ºêÀÇ Á¶´Þ°ú °°Àº °æÀïÀûÀÎ ¿ì¼±¼øÀ§¿Í Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ÅõÀÚÀÇ ±ÕÇüÀ» ¸ÂÃß¾î¾ß ÇÕ´Ï´Ù.

¼÷·ÃµÈ À¯Áöº¸¼ö Àη°ú ±â¼ú ±³À°ÀÇ Çʿ伺µµ °úÁ¦ÀÔ´Ï´Ù. ±º¿ë Â÷·® À¯Áöº¸¼ö°¡ µðÁöÅÐÈ­ ¹× ÀÚµ¿È­ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó, ±¹¹æºÎ´Â Á¤ºñ ¿ä¿øµéÀÌ ÇÊ¿äÇÑ ±â¼ú Àü¹® Áö½ÄÀ» ½ÀµæÇÒ ¼ö ÀÖµµ·Ï ÈÆ·Ã ÇÁ·Î±×·¥¿¡ ÅõÀÚÇØ¾ß ÇÕ´Ï´Ù. ±âÁ¸ Á¤ºñ ¹æ½Ä¿¡¼­ AI¸¦ Ȱ¿ëÇÑ Áø´Ü ¹× ·Îº¿ ¼ö¸®·Î ÀüȯÇϱâ À§Çؼ­´Â °íµµÀÇ À¯Áö°ü¸® ½Ã½ºÅÛÀ» Á¶ÀÛÇϰí ÇØ¼®ÇÒ ¼ö ÀÖ´Â ¼÷·ÃµÈ ÀηÂÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀûÀýÇÑ ÈÆ·Ã ¾øÀÌ´Â ÀÌ·¯ÇÑ ±â¼úÀÇ ÀáÀç·ÂÀ» ÃæºÐÈ÷ ¹ßÈÖÇÒ ¼ö ¾ø½À´Ï´Ù.

±º¿ë Â÷·® À¯Áöº¸¼ö ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

±º¿ë Â÷·® À¯Áöº¸¼ö ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº ±¹¹æºñ Áõ°¡, ÇÔ´ë Çö´ëÈ­ ÇÁ·Î±×·¥, ¿¹Ãø À¯Áöº¸¼ö¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ÀüÀå¿¡¼­ÀÇ ±âµ¿¼º ¿ä±¸ °­È­ µîÀÔ´Ï´Ù. Àü ¼¼°è ±º°¡ ¸ÖƼ µµ¸ÞÀÎ ÀÛÀü¿¡ °è¼Ó Âü¿©Çϰí ÀÖ´Â °¡¿îµ¥, Áö»ó ÀÚ»êÀÇ ½Å·Ú¼º°ú ¼ö¸í º¸ÀåÀº ÃÖ¿ì¼± ¼øÀ§·Î ³²¾Æ ÀÖ½À´Ï´Ù.

¼ºÀåÀÇ ÁÖ¿ä ¿øµ¿·Â Áß Çϳª´Â ÀÛÀü ´ëÀÀ·Â°ú ÀÓ¹«ÀÇ È¿°ú¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ±º»ç ÀÛÀü¿¡¼­´Â ¿­¾ÇÇÑ È¯°æ¿¡¼­ Â÷·®À» Áö¼ÓÀûÀ¸·Î ¹èÄ¡ÇØ¾ß ÇÏ´Â °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ Áö¼ÓÀûÀÎ À¯Áöº¸¼ö ¹× ¼ö¸® ´É·ÂÀÌ ÇʼöÀûÀÔ´Ï´Ù. ¹æÀ§ ±â°üÀº Â÷·®À» Àå±â°£ È¿À²ÀûÀ¸·Î ¿î¿ëÇϰí, ´Ù¿îŸÀÓÀ» ÁÙ¿© ÀüÀå »ýÁ¸¼ºÀ» Çâ»ó½ÃŰ´Â Áö¼Ó¼º ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

Â÷·® À¯Áöº¸¼ö ºÐ¾ß¿¡¼­ AI¿Í µ¥ÀÌÅÍ ºÐ¼®ÀÇ ÅëÇÕµµ Å« ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎ ¹× ¹æÀ§ ±â°üÀº Â÷·® ¼º´ÉÀ» °­È­Çϰí, °èȹµÇÁö ¾ÊÀº ´Ù¿îŸÀÓÀ» ÁÙÀ̸ç, ¹°·ù¸¦ ÃÖÀûÈ­Çϱâ À§ÇØ AI¸¦ Ȱ¿ëÇÑ ¿¹Áöº¸Àü ½Ã½ºÅÛ µµÀÔÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº Â÷·® »óÅ¿¡ ´ëÇÑ ½Ç½Ã°£ ÅëÂû·ÂÀ» Á¦°øÇϰí, ±¹¹æ ±â°üÀÌ »çÈÄ À¯Áöº¸¼ö Àü·«¿¡¼­ »çÀü ¿¹¹æÀû À¯Áöº¸¼ö Àü·«À¸·Î ÀüȯÇÏ¿© ±Ã±ØÀûÀ¸·Î ¶óÀÌÇÁ»çÀÌŬ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù.

±º¿ë Â÷·®ÀÇ È®Àå ¹× Çö´ëÈ­ ³ë·Âµµ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ¸¹Àº ±¹°¡µéÀÌ Àå°©Â÷ ºÎ´ë¸¦ Â÷¼¼´ë Ç÷§ÆûÀ¸·Î ¾÷±×·¹À̵åÇϰí ÀÖÀ¸¸ç, µ¿½Ã¿¡ ±¸Çü ¸ðµ¨À» À¯ÁöÇϰí ÀÖ½À´Ï´Ù. ±¸Çü Â÷·® À¯Áöº¸¼ö ÇÁ·Î±×·¥Àº ½ÅÇü Â÷·®ÀÌ µµÀԵǴõ¶óµµ ±âÁ¸ ÀÚ»êÀÌ ÀüÅõ °¡´ÉÇÑ »óŸ¦ À¯ÁöÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, ÇÏÀ̺긮µå ÃßÁø ½Ã½ºÅÛ ¹× Àü±â ±º¿ë Â÷·®Àº »õ·Î¿î Æ®·»µåÀ̸ç, ÷´Ü ÆÄ¿öÆ®·¹ÀÎ ±â¼ú¿¡ ¸Â´Â »õ·Î¿î À¯Áöº¸¼ö Á¢±Ù¹æ½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù.

¸ðµâ½Ä, ¾÷±×·¹À̵尡 ¿ëÀÌÇÑ Â÷·® ¼³°è°¡ °­Á¶µÇ°í ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀåÀÇ ÇÑ ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. Ãֽбº¿ë Â÷·®Àº ¸ðµâ½Ä ±¸Á¶·Î ¼³°èµÇ¾î ºÎǰ ±³Ã¼, ¼ÒÇÁÆ®¿þ¾î ¾÷µ¥ÀÌÆ®, ½Ã½ºÅÛ º¸°­À» ½Å¼ÓÇÏ°Ô ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµâÈ­´Â À¯Áöº¸¼ö¸¦ °£¼ÒÈ­Çϰí, ¼ö¸® ºñ¿ëÀ» Àý°¨Çϸç, ±º¿ë ÀÚ»êÀÇ ¿î¿ë ¼ö¸íÀ» ¿¬ÀåÇÕ´Ï´Ù.

¸¶Áö¸·À¸·Î, ¿ø°ÝÁö ¹× ¿øÁ¤Áö¿¡¼­ÀÇ ±º»ç Ȱµ¿ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó µ¶¸³Çü À¯Áöº¸¼ö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿­¾ÇÇÑ È¯°æ¿¡ ¹èÄ¡µÈ Â÷·®Àº ±âÁ¸ °ø±Þ¸Á¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°íµµ ±â´ÉÀ» À¯ÁöÇÒ ¼ö ÀÖµµ·Ï °ß°íÇÑ À̵¿½Ä ¼ö¸® ½ºÅ×À̼Ç, ÀÚÀ² Áø´Ü µµ±¸, ÇöÀå 3D ÇÁ¸°ÆÃ ±â´ÉÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ±¹¹æ ±â°üÀº ºÐÀï Áö¿ªÀ̳ª Á¢±ÙÀÌ ¾î·Á¿î Áö¿ª¿¡¼­ ±º»ç·ÂÀÇ È¸º¹·ÂÀ» ³ôÀ̱â À§ÇØ ÈÞ´ë¿ë À¯Áöº¸¼ö ±â¼ú¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

°á·ÐÀûÀ¸·Î, ±º¿ë Â÷·® À¯Áöº¸¼ö ½ÃÀåÀº ±¹¹æ±ºÀÌ ÀÛÀü ´ëÀÀ¼º, ¿¹Áöº¸Àü, Â÷·® ¼ö¸í ¿¬ÀåÀ» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥ Å« ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. °ø±Þ¸Á Á¦¾à, ¿¹»ê Á¦ÇÑ, ±³À° °ÝÂ÷ µîÀÇ °úÁ¦´Â ¿©ÀüÈ÷ ³²¾Æ ÀÖÁö¸¸, AI¸¦ Ȱ¿ëÇÑ Áø´Ü, ÀûÃþ °¡°ø, ÀÚµ¿È­µÈ À¯Áöº¸¼öÀÇ ¹ßÀüÀº ÀÌ ºÐ¾ßÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Çö´ë ÀüÀïÀÌ °è¼Ó ÁøÈ­ÇÏ´Â °¡¿îµ¥, ÷´Ü À¯Áöº¸¼ö ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ´Â ±¹¹æ ¹°·ù ¹× ±º¿ë±â °ü¸® Àü·«¿¡ ÀÖ¾î Áß¿äÇÑ ¿ä¼Ò·Î ³²¾ÆÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Áö ´Ü°è(ÇöÀå ·¹º§ À¯Áöº¸¼ö, â°í ·¹º§ À¯Áöº¸¼ö), ÃÖÁ¾ ¿ëµµ(°ø±º ÃÖÁ¾ ¿ëµµ, À°±º ÃÖÁ¾ ¿ëµµ, ÇØ±º ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Military Vehicle Sustainment Market to Reach US$21.9 Billion by 2030

The global market for Military Vehicle Sustainment estimated at US$17.3 Billion in the year 2024, is expected to reach US$21.9 Billion by 2030, growing at a CAGR of 4.0% over the analysis period 2024-2030. Field Level Maintenance, one of the segments analyzed in the report, is expected to record a 4.7% CAGR and reach US$15.7 Billion by the end of the analysis period. Growth in the Depot Level Maintenance segment is estimated at 2.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$4.7 Billion While China is Forecast to Grow at 7.5% CAGR

The Military Vehicle Sustainment market in the U.S. is estimated at US$4.7 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$4.5 Billion by the year 2030 trailing a CAGR of 7.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.6% and 3.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.3% CAGR.

Global Military Vehicle Sustainment Market - Key Trends & Drivers Summarized

What Is Military Vehicle Sustainment and Why Is It Crucial for Defense Operations?

Military vehicle sustainment refers to the comprehensive maintenance, repair, logistics support, and lifecycle management of military land-based vehicles, including armored personnel carriers (APCs), main battle tanks (MBTs), infantry fighting vehicles (IFVs), mine-resistant ambush-protected (MRAP) vehicles, and tactical transport trucks. Sustainment ensures that military fleets remain operational, combat-ready, and efficient throughout their service life, reducing downtime and extending asset longevity in high-stress environments.

The need for military vehicle sustainment has grown significantly as modern warfare places increasing demands on mobility, survivability, and rapid deployment capabilities. Unlike commercial vehicles, military ground assets operate in harsh and unpredictable conditions, including desert, arctic, jungle, and urban warfare environments. These vehicles must withstand extreme temperatures, rough terrain, and enemy fire while maintaining peak performance. Sustainment strategies, including predictive maintenance, rapid parts replacement, and real-time fleet diagnostics, are essential to ensuring mission success and reducing vehicle attrition rates.

Additionally, military forces worldwide are facing challenges in balancing fleet modernization with sustainment of legacy platforms. Many defense agencies operate aging vehicle fleets, some of which have been in service for decades. Sustainment programs allow militaries to upgrade and retrofit existing vehicles with modern technologies-such as advanced armor, digital communication systems, and hybrid propulsion-rather than replacing them entirely. This approach optimizes defense budgets while maintaining operational effectiveness, making vehicle sustainment a strategic priority for global armed forces.

How Are Emerging Technologies Transforming Military Vehicle Sustainment?

The evolution of military vehicle sustainment is being driven by advancements in predictive maintenance, automation, digital twins, and additive manufacturing. These innovations are improving vehicle uptime, reducing costs, and enhancing logistical efficiency for defense organizations worldwide.

One of the most significant technological advancements is predictive maintenance powered by artificial intelligence (AI) and the Internet of Things (IoT). Modern military vehicles are equipped with an increasing number of sensors that continuously monitor critical components such as engines, transmissions, and braking systems. AI-driven analytics can detect early signs of mechanical wear, enabling proactive maintenance before failures occur. This reduces unexpected breakdowns, optimizes maintenance scheduling, and ensures that military vehicles remain mission-ready with minimal downtime.

The use of digital twin technology is also revolutionizing military vehicle sustainment. A digital twin is a virtual replica of a physical asset that allows military engineers to simulate, test, and diagnose issues in real time. By integrating real-world data from IoT sensors, digital twins enable defense agencies to predict component failures, optimize fuel efficiency, and plan maintenance cycles more effectively. This approach enhances decision-making and reduces reliance on costly and time-consuming traditional maintenance methods.

Another transformative trend is the adoption of additive manufacturing (3D printing) for spare parts production. Military vehicle sustainment is often challenged by supply chain disruptions, particularly for older fleets that rely on hard-to-source replacement parts. Additive manufacturing enables on-demand production of spare parts in forward-operating bases, reducing logistical bottlenecks and shortening repair timelines. This capability is especially critical in remote deployments where traditional supply chains may be unreliable or unavailable.

The integration of robotic and automated maintenance systems is also enhancing sustainment efforts. Autonomous robotic arms and drone-based inspection systems are being deployed to perform non-invasive diagnostics, structural integrity assessments, and routine maintenance tasks with precision. These automated solutions reduce the need for manual labor, lower maintenance costs, and improve safety by minimizing human exposure to hazardous conditions.

What Are the Key Challenges in Military Vehicle Sustainment?

Despite advancements in sustainment technologies, military vehicle maintenance and lifecycle management face several challenges related to logistics, cost, and resource allocation. One of the primary challenges is aging vehicle fleets and limited upgrade compatibility. Many defense agencies operate vehicles that have been in service for decades, requiring extensive retrofitting to integrate modern sustainment technologies. However, not all legacy platforms are compatible with advanced sensor systems, digital diagnostics, or AI-driven maintenance tools, making modernization efforts complex and costly.

Another challenge is supply chain vulnerabilities and spare parts shortages. Military vehicle sustainment relies on a steady supply of replacement components, consumables, and specialized materials. Global supply chain disruptions caused by geopolitical tensions, trade restrictions, and pandemics have made it increasingly difficult to source critical vehicle components. These delays can compromise readiness and force defense agencies to stockpile parts, increasing storage costs and logistical complexity.

Budget constraints and operational costs also pose significant hurdles. While sustainment programs offer cost-saving benefits in the long run, the initial investment required for AI-driven predictive maintenance, IoT-enabled diagnostics, and 3D printing infrastructure can be high. Defense agencies must balance sustainment investments with competing priorities, such as procurement of new-generation military vehicles, weapons systems, and cybersecurity initiatives.

The need for skilled maintenance personnel and technical training is another challenge. As military vehicle sustainment becomes increasingly reliant on digital and automated solutions, defense forces must invest in training programs to equip maintenance crews with the necessary technical expertise. The transition from traditional maintenance practices to AI-driven diagnostics and robotic repairs requires a skilled workforce capable of operating and interpreting advanced sustainment systems. Without proper training, the full potential of these technologies cannot be realized.

What Are the Key Growth Drivers for the Military Vehicle Sustainment Market?

The growth in the military vehicle sustainment market is driven by increasing defense expenditures, fleet modernization programs, rising demand for predictive maintenance, and enhanced battlefield mobility requirements. As military forces worldwide continue to engage in multi-domain operations, ensuring the reliability and longevity of ground-based assets remains a top priority.

One of the primary growth drivers is the growing focus on operational readiness and mission effectiveness. Military engagements often require sustained deployment of vehicles in challenging environments, making continuous maintenance and repair capabilities essential. Defense agencies are investing in sustainment solutions that allow vehicles to operate efficiently over extended periods, reducing downtime and improving battlefield survivability.

The integration of AI and data analytics in vehicle sustainment is another major driver. Governments and defense organizations are increasingly adopting AI-powered predictive maintenance systems to enhance fleet performance, reduce unplanned downtime, and optimize logistics. These technologies provide real-time insights into vehicle health, allowing defense agencies to shift from reactive to proactive maintenance strategies, ultimately lowering lifecycle costs.

Military fleet expansion and modernization efforts are also fueling market growth. Many countries are upgrading their armored vehicle fleets with new-generation platforms while simultaneously sustaining older models. Sustainment programs for legacy vehicles ensure that existing assets remain combat-ready even as new vehicles are introduced into service. Additionally, hybrid propulsion systems and electric military vehicles are emerging trends, necessitating new sustainment approaches tailored to advanced powertrain technologies.

The rising emphasis on modular and easily upgradable vehicle designs is another factor contributing to market growth. Modern military vehicles are being designed with modular architectures that allow for faster component swaps, software updates, and system enhancements. This modularity simplifies maintenance, reduces repair costs, and extends the operational life of military assets.

Finally, increased military engagements in remote and expeditionary operations are driving demand for self-sustaining maintenance solutions. Deployments in austere environments require rugged, mobile repair stations, autonomous diagnostic tools, and on-site 3D printing capabilities to ensure that vehicles remain functional without reliance on traditional supply chains. Defense agencies are investing in portable sustainment technologies to enhance the resilience of military forces in contested or inaccessible regions.

In conclusion, the military vehicle sustainment market is experiencing significant growth as defense forces prioritize operational readiness, predictive maintenance, and fleet longevity. While challenges such as supply chain constraints, budget limitations, and training gaps persist, advancements in AI-driven diagnostics, additive manufacturing, and automated maintenance are driving innovation in the sector. As modern warfare continues to evolve, investment in advanced sustainment technologies will remain a critical component of defense logistics and military fleet management strategies.

SCOPE OF STUDY:

The report analyzes the Military Vehicle Sustainment market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Sustainment Phase (Field Level Maintenance, Depot Level Maintenance); End-Use (Air Force End-Use, Army End-Use, Navy End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 43 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â