¼¼°èÀÇ ¸®Æ¬À̿ °íÁ¤Çü ÃàÀüÁö ½ÃÀå
Lithium-Ion Stationary Battery Storage
»óǰÄÚµå : 1787082
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 274 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¸®Æ¬À̿ °íÁ¤Çü ÃàÀüÁö ½ÃÀåÀº 2030³â±îÁö 1,839¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 707¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¸®Æ¬À̿ °íÁ¤Çü ÃàÀüÁö ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 17.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1,839¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ LFP´Â CAGR 15.5%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1,043¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. NMC ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR20.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 192¾ï ´Þ·¯, Áß±¹Àº CAGR22.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¸®Æ¬À̿ °íÁ¤Çü ÃàÀüÁö ½ÃÀåÀº 2024³â¿¡ 192¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 22.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð°¡ 401¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 13.0%¿Í 15.4%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 13.7%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ¸®Æ¬À̿ °íÁ¤Çü ÃàÀüÁö ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¸®Æ¬À̿ ÃàÀüÁö°¡ °íÁ¤½Ä ¿¡³ÊÁö ½Ã½ºÅÛ¿¡ º¯È­¸¦ °¡Á®¿À´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ûÁ¤ ¿¡³ÊÁö ¹× Àü·Â¸Á Çö´ëÈ­¸¦ ÇâÇÑ Àü ¼¼°èÀûÀÎ º¯È­·Î ÀÎÇØ ¸®Æ¬ À̿ °íÁ¤Çü ÃàÀüÁö¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ¼¼°è ¿¡³ÊÁö Àüȯ Àü·«¿¡¼­ Áß¿äÇÑ ¿ä¼Ò·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¸®Æ¬ À̿ ¹èÅ͸®´Â ±âÁ¸ÀÇ ³³ÃàÀüÁö³ª ÇÃ·Î¿ì ¹èÅ͸®¿¡ ºñÇØ ¿¡³ÊÁö ¹Ðµµ°¡ ³ô°í, ¼ö¸íÀÌ ±æ°í, È¿À²ÀÌ ³ô±â ¶§¹®¿¡ °íÁ¤Çü ¿ëµµ¿¡ ÀûÇÕÇÑ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº Àç»ý ¿¡³ÊÁö ÅëÇÕ, »ó¾÷¿ë °Ç¹° ¹× ÁÖÅÃÀÇ ¹é¾÷ Àü¿ø, À¯Æ¿¸®Æ¼ ±Ô¸ðÀÇ Àü·Â¸Á ¾ÈÁ¤È­ µî¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ½ÃÀåÀÌ ºÐ»êÇü ¹ßÀü ¸ðµ¨·Î ÀüȯÇÏ´Â °¡¿îµ¥, ¸®Æ¬ À̿ ÃàÀüÁö´Â ž籤°ú dz·Â ¹ßÀüÀÇ ÀÚ°¡ ¼Òºñ¸¦ ÃÖÀûÈ­ÇÏ¿© °¡Á¤°ú ±â¾÷ÀÌ ¿¡³ÊÁö ÀÇÁ¸µµ¸¦ ³·Ãâ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àü·Â °¡°Ý »ó½Â°ú ¼ÛÀü¸ÁÀÇ ºÒ¾ÈÁ¤¼ºÀ¸·Î ÀÎÇØ ºñ¿ë Àý°¨°ú ¾ÈÁ¤ÀûÀÎ Àü·Â °ø±ÞÀ» À§ÇÑ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. »ê¾÷°è¿Í Á¤ºÎ°¡ ź¼ÒÁ߸³ ¸ñÇ¥¸¦ Ãß±¸ÇÏ´Â °¡¿îµ¥, ¸®Æ¬ À̿ °íÁ¤½Ä ÃàÀüÁö´Â Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö °ü¸®ÀÇ ÇÙ½ÉÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶ È¿À²¼º Çâ»ó°ú °ø±Þ¸Á È®´ë·Î ÀÎÇÑ ¹èÅ͸® ¼¿ÀÇ ºñ¿ë Àý°¨Àº ½ÃÀå äÅÃÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, EaaS(Energy-as-a-Service) ¸ðµ¨ÀÇ µîÀåÀ¸·Î ¸®Æ¬ À̿ ½ºÅ丮Áö°¡ ´Ù¾çÇÑ ¿ëµµ¿¡ È®´ë Àû¿ëµÇ¾î ±â¾÷°ú ¼ÒºñÀÚ¿¡°Ô ´õ¿í Ä£¼÷ÇÏ°Ô ´Ù°¡°¥ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¼º´É Çâ»óÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ±â¼ú Çõ½ÅÀº ¹«¾ùÀΰ¡?

¸®Æ¬ À̿ ¹èÅ͸®ÀÇ È­ÇÐ ¹× ½Ã½ºÅÛ ¼³°èÀÇ ²÷ÀÓ¾ø´Â ¹ßÀüÀº ¼º´É, ¾ÈÀü¼º, È®À强À» Çâ»ó½ÃÄÑ °íÁ¤½Ä ¿¡³ÊÁö ÀúÀå¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. °¡Àå Áß¿äÇÑ µ¹ÆÄ±¸ Áß Çϳª´Â ¸®Æ¬Àλêö(LFP) ¹èÅ͸®ÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ ¹èÅ͸®´Â ¿­ ¾ÈÁ¤¼º°ú ¼ö¸íÀÌ ¶Ù¾î³ª¸ç °íÁ¤Çü ¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ Çõ½ÅÀº °íü ¸®Æ¬ À̿ ¹èÅ͸®ÀÇ ÅëÇÕÀ¸·Î ´õ ³ôÀº ¿¡³ÊÁö ¹Ðµµ, ´õ ±ä »çÀÌŬ ¼ö¸í ¹× Çâ»óµÈ ¾ÈÀü ÇÁ·ÎÆÄÀÏÀ» ¾à¼ÓÇÕ´Ï´Ù. ¶ÇÇÑ, ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS)ÀÇ ¹ßÀüÀ¸·Î ¿¡³ÊÁö È¿À²À» ÃÖÀûÈ­ÇÏ°í ¼º´É ÀúÇϸ¦ ¹æÁöÇϸç, ¼³Ä¡Çü ÃàÀü ½Ã½ºÅÛÀÇ »ç¿ë ¼ö¸íÀ» ¿¬ÀåÇϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö °ü¸®¿¡ ÀΰøÁö´É(AI)°ú ¿¹Ãø ºÐ¼®À» µµÀÔÇÔÀ¸·Î½á ½Ã½ºÅÛÀÇ ÀÎÅÚ¸®Àü½º¸¦ ´õ¿í °­È­ÇÏ¿© ¿¡³ÊÁö È帧°ú ½ºÅ丮Áö Ȱ¿ëÀ» ½Ç½Ã°£À¸·Î ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. Åð¿ªÇÑ Àü±âÀÚµ¿Â÷(EV) ¹èÅ͸®¸¦ Àç»ç¿ëÇÏ¿© °íÁ¤½Ä ÃàÀüÁö·Î Àç»ç¿ëÇÏ´Â ¼¼ÄÁµå ¶óÀÌÇÁ ¹èÅ͸®¿ëµµµµ ºñ¿ë È¿À²ÀûÀ̰í Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÑ´Ù´Â Á¡¿¡¼­ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °íÃâ·Â ±Þ¼Ó ÃæÀü ±â´ÉÀÇ ¹ßÀüÀ¸·Î ±×¸®µå ¹ë·±½Ì ¹× ºñ»ó ¹é¾÷ Àü¿ø °ø±Þ ÀåÄ¡ÀÇ ÀÀ´ä ½Ã°£ÀÌ °³¼±µÇ¾î ¸®Æ¬ À̿ ÃàÀüÁöÀÇ ´Ù¿ëµµ¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ¸ðµâÇü ¹èÅ͸® ¼³°èµµ ¾÷°è¸¦ À籸¼ºÇÏ´Â Æ®·»µå Áß Çϳª·Î, ÁÖ°Å, »ó¾÷, »ê¾÷ µî °¢ »ç¿ëÀÚÀÇ ¿¡³ÊÁö ¼ö¿ä¿¡ µû¶ó ¸ÂÃãÇüÀ¸·Î È®Àå °¡´ÉÇÑ ¼³Ä¡°¡ °¡´ÉÇÕ´Ï´Ù. Áö¼ÓÀûÀÎ ¿¬±¸ °³¹ß ³ë·ÂÀ¸·Î ¸®Æ¬ À̿ °íÁ¤½Ä ÃàÀüÁö ½Ã½ºÅÛÀº ´õ¿í È¿À²ÀûÀÌ°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç ÁøÈ­ÇÏ´Â ¿¡³ÊÁö ȯ°æ¿¡ ÀûÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¼ÒºñÀÚ ÇൿÀº ¾î¶»°Ô °íÁ¤½Ä ÃàÀüÁöÀÇ Ã¤ÅÃÀ» Çü¼ºÇϰí Àִ°¡?

¼ÒºñÀÚÀÇ ¼±È£µµ¿Í ¿¡³ÊÁö ¼Òºñ ÆÐÅÏÀº ¸®Æ¬À̿ °íÁ¤Çü ÃàÀüÁö ½ÃÀå Çü¼º¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö º¹¿ø·Â, ºñ¿ë Àý°¨, Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó °¡Á¤, ±â¾÷, »ê¾÷üµéÀº °íÁ¤Çü ÃàÀü ¼Ö·ç¼ÇÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÁÖÅà »ç¿ëÀÚ´Â ¿Á»ó ž籤 ¹ßÀü ½Ã½ºÅÛÀ» º¸¿ÏÇϱâ À§ÇØ ¸®Æ¬ À̿ ÃàÀüÁö¿¡ ÅõÀÚÇÏ¿© ÀÚ°¡ ¹ßÀü ¿¡³ÊÁö¸¦ È¿°úÀûÀ¸·Î Ȱ¿ëÇÏ°í ±âÁ¸ Àü·Â¸Á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í ÀÖ½À´Ï´Ù. »ó¾÷ ¹× »ê¾÷ ºÎ¹®¿¡¼­´Â ÇÇÅ© ¼ö¿ä ¿ä±Ý °ü¸®, ¾÷¹« È¿À²¼º Çâ»ó, °èÅë Á¤Àü ½Ã Àü·Â ¿¬¼Ó¼º È®º¸¸¦ À§ÇØ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀÌ µµÀԵǰí ÀÖ½À´Ï´Ù. °³Àΰú ±â¾÷ÀÌ Àü±â¸¦ »ý»ê, ÀúÀå, °Å·¡ÇÏ´Â ÇÁ·Î½´¸Ó ¿¡³ÊÁö ¸ðµ¨ÀÇ ºÎ»óÀ¸·Î ¸®Æ¬À̿ ÀúÀå ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±âÈÄ º¯È­ ¹× ź¼Ò ¹èÃâ¿¡ ´ëÇÑ ¿ì·Á°¡ ³ô¾ÆÁö¸é¼­ ±â¾÷ÀÇ Áö¼Ó°¡´É¼º ÀÌ´Ï¼ÅÆ¼ºêÀÇ ÀÏȯÀ¸·Î ¼³Ä¡Çü ¹èÅ͸® ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸¶ÀÌÅ©·Î±×¸®µå ¹× Áö¿ª ¿¡³ÊÁö ³×Æ®¿öÅ©ÀÇ È®Àåµµ ¼ÒºñÀÚ ¼ö¿ä¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â Áß¿äÇÑ ¿äÀÎÀÔ´Ï´Ù. ¶ÇÇÑ, Á¤ºÎ¿Í Àü·Âȸ»ç´Â ¹èÅ͸® µµÀÔÀ» ÃËÁøÇϱâ À§ÇØ ÀçÁ¤Àû Àμ¾Æ¼ºê, ¸®º£ÀÌÆ®, º¸Á¶±ÝÀ» Á¦°øÇÏ¿© ÃÖÁ¾ »ç¿ëÀÚ¿¡°Ô ¸®Æ¬ À̿ ¹èÅ͸®¸¦ º¸´Ù ½ÇÇà °¡´ÉÇÏ°í ¸Å·ÂÀûÀÎ ÅõÀÚ·Î ¸¸µé°í ÀÖ½À´Ï´Ù. ¸®½º³ª ESaaS(Energy Storage-as-a-Service)¿Í °°Àº À¯¿¬ÇÑ ÀÚ±ÝÁ¶´Þ ¸ðµ¨µéÀÌ µîÀåÇϰí ÀÖ´Â °Íµµ ¼³Ä¡Çü Àü·ÂÀúÀå ¼Ö·ç¼Ç µµÀÔÀ» °í·ÁÇÏ´Â ±â¾÷À̳ª °¡Á¤ÀÇ ÁøÀÔÀ庮À» ³·ÃçÁÖ°í ÀÖ½À´Ï´Ù.

¸®Æ¬ À̿ °íÁ¤Çü ÃàÀüÁö ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¸®Æ¬ À̿ °íÁ¤½Ä ¹èÅ͸® ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ±ÔÁ¦ Áö¿ø, ¿¡³ÊÁö ¼ö¿äÀÇ ÁøÈ­ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â ž籤, dz·Â µî Àç»ý¿¡³ÊÁö¿øÀÇ µµÀÔÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿¡³ÊÁö¿øÀº °£Ç漺À» °ü¸®Çϰí Àü·Â¸ÁÀÇ ¾ÈÁ¤¼ºÀ» ³ôÀ̱â À§ÇØ È¿À²ÀûÀÎ ½ºÅ丮Áö ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ, ¿¡³ÊÁö ½Ã½ºÅÛÀÇ Å»Åº¼ÒÈ­ ¹× Àü±âÈ­ Ãß¼¼´Â ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀ̰í ûÁ¤ ¿¡³ÊÁö¿øÀ¸·Î ÀüȯÇϰíÀÚ ÇÏ´Â ±¹°¡µéÀÇ ¸®Æ¬ À̿ ½ºÅ丮Áö¿¡ ´ëÇÑ ¼ö¿ä¸¦ ±ÞÁõ½Ã۰í ÀÖ½À´Ï´Ù. ¸®Æ¬ À̿ ¹èÅ͸®ÀÇ ºñ¿ë Àý°¨°ú Á¦Á¶ È®À强 Çâ»óÀ¸·Î ÀÎÇØ À¯Æ¿¸®Æ¼ ±Ô¸ð, »ó¾÷¿ë ¹× ÁÖ°Å¿ë ¿ëµµ¸¦ À§ÇÑ ½ºÅ丮Áö ¼Ö·ç¼ÇÀÇ ºñ¿ë È¿À²¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àü·Â¸Á ½Å·Ú¼º°ú Á¤Àü¿¡ ´ëÇÑ ¿ì·Á°¡ ³ô¾ÆÁö¸é¼­ ƯÈ÷ ÀÌ»ó±âÈÄ¿Í ¿¡³ÊÁö ºÎÁ·¿¡ Ãë¾àÇÑ Áö¿ª¿¡¼­ ¹é¾÷ Àü¿ø ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® ±×¸®µå¿Í ºÐ»êÇü ¿¡³ÊÁö ÀÚ¿ø(DER)ÀÇ ÃâÇöÀº Àü·Âȸ»ç°¡ ¿¡³ÊÁö ¹èºÐÀ» ÃÖÀûÈ­Çϰí Àüü ±×¸®µå È¿À²À» °³¼±Çϱâ À§ÇØ ¸®Æ¬ À̿ ÃàÀüÁö¸¦ ÅëÇÕÇϰí Àֱ⠶§¹®¿¡ ¶Ç ´Ù¸¥ Áß¿äÇÑ ¼ºÀå ÃËÁø¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±â¾÷ÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¾à¼Ó°ú ȯ°æ, »çȸ, Áö¹è±¸Á¶(ESG) ÁöħÀº ¿¡³ÊÁö º¹¿ø·Â°ú ź¼Ò ¹ßÀÚ±¹ °¨¼Ò¸¦ ¿ì¼±½ÃÇÏ´Â ±â¾÷µé¿¡ ÀÇÇØ ½ºÅ丮Áö äÅÃÀ» ´õ¿í °¡¼ÓÈ­½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ê¾÷ °øÁ¤ ¹× ¿î¼ÛÀÇ Àü±âÈ­°¡ ÁøÇàµÊ¿¡ µû¶ó ¾ÈÁ¤ÀûÀ̰í È¿À²ÀûÀÎ Àü·Â °ø±ÞÀ» º¸ÀåÇÏ´Â ´ë±Ô¸ð ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àç»ý¿¡³ÊÁö ¼³ºñ¿Í ÇÔ²² ¿¡³ÊÁö ÀúÀåÀåÄ¡ÀÇ µµÀÔÀ» Àǹ«È­ÇÏ´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©ÀÇ È®´ëµµ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹èÅ͸® ÀçȰ¿ë°ú ¼øÈ¯ °æÁ¦¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¿¬±¸·Î ȯ°æÀû ¿ì·Á¸¦ ºÒ½Ä½Ã۰í, ¸®Æ¬ À̿ °íÁ¤½Ä ÃàÀüÁöÀÇ Àå±âÀûÀÎ ½ÇÇà °¡´É¼ºÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °ãÄ¡¸é¼­ ¸®Æ¬À̿ ÃàÀüÁö´Â ¼¼°è ¿¡³ÊÁö ÀüȯÀÇ ±âº» ÃàÀÌ µÇ¾ú°í, ½ÃÀåÀº ºü¸£°Ô È®´ëµÉ ż¼¸¦ °®Ãß°í ÀÖ½À´Ï´Ù.

ºÎ¹®

È­ÇÐ(LFP, NMC); ¾ÖÇø®ÄÉÀ̼Ç(±×¸®µå ¼­ºñ½º, ºñÇÏÀÎµå ´õ ¹ÌÅÍ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Lithium-Ion Stationary Battery Storage Market to Reach US$183.9 Billion by 2030

The global market for Lithium-Ion Stationary Battery Storage estimated at US$70.7 Billion in the year 2024, is expected to reach US$183.9 Billion by 2030, growing at a CAGR of 17.3% over the analysis period 2024-2030. LFP, one of the segments analyzed in the report, is expected to record a 15.5% CAGR and reach US$104.3 Billion by the end of the analysis period. Growth in the NMC segment is estimated at 20.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$19.2 Billion While China is Forecast to Grow at 22.5% CAGR

The Lithium-Ion Stationary Battery Storage market in the U.S. is estimated at US$19.2 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$40.1 Billion by the year 2030 trailing a CAGR of 22.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 13.0% and 15.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 13.7% CAGR.

Global Lithium-Ion Stationary Battery Storage Market - Key Trends & Drivers Summarized

Why Is Lithium-Ion Battery Storage Transforming Stationary Energy Systems?

The global shift towards clean energy and grid modernization has fueled the demand for lithium-ion stationary battery storage, making it a crucial component in energy transition strategies worldwide. Lithium-ion batteries have become the preferred choice for stationary applications due to their high energy density, long lifespan, and efficiency compared to traditional lead-acid or flow batteries. These systems are widely used in renewable energy integration, backup power for commercial and residential buildings, and utility-scale grid stabilization. As energy markets shift towards decentralized generation models, lithium-ion storage is enabling homes and businesses to become more energy-independent by optimizing self-consumption of solar and wind power. Furthermore, rising electricity prices and grid instability have prompted investments in energy storage solutions that offer cost savings and reliable power supply. As industries and governments pursue carbon neutrality goals, lithium-ion stationary storage is emerging as a cornerstone of sustainable energy management. The declining cost of battery cells, driven by improvements in manufacturing efficiency and supply chain expansion, is further accelerating market adoption. Additionally, the rise of energy-as-a-service (EaaS) models is expanding the deployment of lithium-ion storage across diverse applications, making it more accessible for businesses and consumers.

What Technological Innovations Are Driving Performance Improvements?

Continuous advancements in lithium-ion battery chemistry and system design are revolutionizing stationary energy storage, enhancing performance, safety, and scalability. One of the most significant breakthroughs is the development of lithium iron phosphate (LFP) batteries, which offer superior thermal stability and longevity, making them ideal for stationary applications. Another key innovation is the integration of solid-state lithium-ion batteries, which promise higher energy densities, longer cycle life, and improved safety profiles. Additionally, advancements in battery management systems (BMS) are optimizing energy efficiency and preventing performance degradation, extending the usable life of stationary storage systems. The incorporation of artificial intelligence (AI) and predictive analytics in energy management is further enhancing system intelligence, allowing for real-time optimization of energy flow and storage utilization. The emergence of second-life battery applications, where retired electric vehicle (EV) batteries are repurposed for stationary storage, is also gaining traction, offering a cost-effective and sustainable solution. Furthermore, advancements in high-power fast-charging capabilities are improving response times for grid balancing and emergency backup power, making lithium-ion storage more versatile. Modular battery designs are another trend reshaping the industry, enabling scalable installations that can be customized to meet the energy demands of residential, commercial, and industrial users. With ongoing research and development efforts, lithium-ion stationary storage systems are becoming more efficient, durable, and adaptable to an evolving energy landscape.

How Is Consumer Behavior Shaping the Adoption of Stationary Battery Storage?

Consumer preferences and energy consumption patterns are playing a pivotal role in shaping the lithium-ion stationary battery storage market. The increasing emphasis on energy resilience, cost savings, and sustainability is driving homeowners, businesses, and industrial operators toward adopting on-site storage solutions. Residential users are investing in lithium-ion battery storage to complement rooftop solar systems, allowing for better utilization of self-generated energy and reducing reliance on the traditional grid. For commercial and industrial sectors, energy storage solutions are being deployed to manage peak demand charges, enhance operational efficiency, and ensure power continuity during grid outages. The rise of prosumer energy models, where individuals and businesses generate, store, and trade electricity, is further promoting the adoption of lithium-ion storage solutions. Additionally, growing concerns over climate change and carbon emissions are encouraging corporations to invest in stationary battery systems as part of their corporate sustainability initiatives. The expansion of microgrids and localized energy networks is another significant factor influencing consumer demand, as communities seek to achieve greater energy autonomy. Moreover, governments and utilities are offering financial incentives, rebates, and subsidies to accelerate storage adoption, making lithium-ion battery storage a more viable and attractive investment for end-users. The growing availability of flexible financing models, such as leasing and energy storage-as-a-service (ESaaS), is also lowering the barriers to entry for businesses and households looking to integrate stationary storage solutions.

Which Factors Are Fueling the Growth of the Lithium-Ion Stationary Battery Storage Market?

The growth in the lithium-ion stationary battery storage market is driven by several factors, including technological advancements, regulatory support, and evolving energy demands. One of the primary growth drivers is the increasing deployment of renewable energy sources, such as solar and wind power, which require efficient storage solutions to manage intermittency and enhance grid stability. The global push for decarbonization and electrification of energy systems is also creating a surge in demand for lithium-ion storage, as countries aim to reduce greenhouse gas emissions and transition to cleaner energy sources. The declining cost of lithium-ion batteries, coupled with improvements in manufacturing scalability, is making storage solutions more cost-effective for utility-scale, commercial, and residential applications. Additionally, rising concerns over grid reliability and power outages are prompting investments in backup power solutions, particularly in regions prone to extreme weather events and energy shortages. The emergence of smart grids and distributed energy resources (DERs) is another significant growth driver, as utilities integrate lithium-ion storage to optimize energy distribution and improve overall grid efficiency. Corporate sustainability commitments and environmental, social, and governance (ESG) mandates are further accelerating storage adoption, with businesses prioritizing energy resilience and carbon footprint reduction. Moreover, the increasing electrification of industrial processes and transportation is amplifying the need for large-scale energy storage solutions, ensuring stable and efficient power supply. The expansion of regulatory frameworks that mandate energy storage deployment alongside renewable energy installations is also bolstering market growth. Furthermore, ongoing research in battery recycling and circular economy initiatives is addressing environmental concerns and ensuring the long-term viability of lithium-ion stationary storage. As these factors converge, the market is poised for rapid expansion, making lithium-ion battery storage a fundamental pillar of the global energy transition.

SCOPE OF STUDY:

The report analyzes the Lithium-Ion Stationary Battery Storage market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Chemistry (LFP, NMC); Application (Grid Services, Behind the Meter)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 43 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â