Stratistics MRC¿¡ µû¸£¸é ¼¼°è °íÁ¤¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀåÀº 2024³â¿¡ 1,181¾ï 5,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2030³â¿¡´Â 5,444¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº 29.0%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.
°íÁ¤¿ë ¿¡³ÊÁö ÀúÀåÀº Àü±â ¿¡³ÊÁö¸¦ ÃàÀüÁö¿¡ ÃàÀûÇÏ°í ³ªÁß¿¡ »ç¿ëÇÏ´Â ±â¼úÀÔ´Ï´Ù. ÈÞ´ë¿ë ¹èÅ͸®¿Í ´Þ¸® °íÁ¤Çü ½Ã½ºÅÛÀº °¡Á¤, ±â¾÷, Àü·Â¸Á¿¡¼ ÀÚÁÖ »ç¿ëµÇ´Â °íÁ¤ ¼³ºñÀÔ´Ï´Ù. ž籤À̳ª dz·Â µîÀÇ Àç»ý °¡´É ¿¡³ÊÁö¿øÀ¸·ÎºÎÅÍ, ȤÀº ¿ÀÇÁ ÇÇÅ©½ÃÀÇ ¼ÛÀü¸ÁÀ¸·ÎºÎÅÍ ¿¡³ÊÁö¸¦ ÀúÀåÇØ, ÇÇÅ© ¼ö¿ä½Ã³ª Á¤Àü½Ã, ȤÀº ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤È¸¦ À§Çؼ Àü·ÂÀ» °ø±ÞÇÕ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¿¡³ÊÁö È¿À²À» ³ôÀ̰í ȼ® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ°í ´õ¿í °·ÂÇϰí Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ÀÎÇÁ¶ó¸¦ Áö¿øÇÕ´Ï´Ù. °íÁ¤¿ë ¿¡³ÊÁö ÀúÀå·Î¼ ÀϹÝÀûÀÎ ÀüÁöÀÇ À¯Çü¿¡´Â ¸®Æ¬ À̿ ÀüÁö, ³³ ÃàÀüÁö, ÇÃ·Î¿ì ¹èÅ͸® µîÀÌ ÀÖ½À´Ï´Ù.
±¹Á¦Àç»ý°¡´É¿¡³ÊÁö±â±¸(IREA)¿¡ µû¸£¸é ÇöÀç °³¹ß ÁßÀÎ ÇÃ·Î¿ì ¹èÅ͸®´Â 2030³â±îÁö ÃÑ ¼³ºñ ºñ¿ëÀ» 3ºÐÀÇ 2, °í¿Â ÀüÁö´Â 56 - 60%, ÇöóÀÌÈÙÀº 35%, ¾ÐÃà°ø±â ¿¡³ÊÁö ÀúÀåÀº 17% ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. IEAÀÇ µ¥ÀÌÅÍ¿¡ µû¸£¸é 2050³â±îÁö ¼ÒºñµÇ´Â ÃÑ ¿¡³ÊÁö Áß Àü·ÂÀÌ Â÷ÁöÇÏ´Â ºñÀ²Àº 2018³â 20%¿¡¼ 50%·Î »ó½ÂÇÕ´Ï´Ù.
¼ÛÀü¸ÁÀÇ Çö´ëÈ¿Í ½Å·Ú¼º
¼ÛÀü¸ÁÀÇ Çö´ëÈ¿Í ½Å·Ú¼ºÀº °íÁ¤¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. ¼ÛÀü¸ÁÀÇ Çö´ëÈ¿¡´Â ¾ÈÁ¤¼º, È¿À²¼º, Á¤Àü¿¡ ´ëÇÑ È¸º¹·ÂÀ» ³ôÀ̱â À§ÇØ ÃàÀüÁö¿Í °°Àº ÷´Ü ±â¼úÀ» ÅëÇÕÇÏ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ. °íÁ¤¿ë ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀº Á¤Àü ½Ã ½Å·ÚÇÒ ¼ö ÀÖ´Â ¹é¾÷ Àü·ÂÀ» °ø±ÞÇÔÀ¸·Î½á Áö¼ÓÀûÀÎ Àü·Â °ø±ÞÀ» È®º¸Çϰí Áß¿äÇÑ ÀÎÇÁ¶ó ¹× ¼ºñ½º ´Ù¿îŸÀÓÀ» ÁÙÀÌ´Â Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, À׿© Àü·ÂÀ» ÀúÀåÇϰí Àü·Â ¼ö¿äÀÇ ÇÇÅ©½Ã¿¡ ¹æÃâÇÔÀ¸·Î½á, Àç»ý °¡´É ¿¡³ÊÁöÀÇ ÅëÇÕÀ» Áö¿øÇϰí, ¼ÛÀü¸ÁÀÇ ¿î¿ëÀ» ÃÖÀûÈÇϰí, Áö¼Ó°¡´É¼ºÀ» ÃËÁøÇÕ´Ï´Ù.
Á¦ÇÑµÈ ¼ö¸íÁÖ±â ¹× ¿È
°íÁ¤¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå¿¡¼´Â ÇÑÁ¤µÈ ¶óÀÌÇÁ »çÀÌŬ°ú ¿È ¾ïÁ¦¿äÀÎÀÌ ±â¼ú°ú °æÁ¦¼º¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡´Â ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. Á¦ÇÑµÈ ¼ö¸íÁÖ±â´Â ¹èÅ͸®¿ë·®ÀÌ ÇöÀúÇÏ°Ô ¶³¾îÁö°í ±³Ã¼°¡ ÇÊ¿äÇÒ ¶§±îÁö °æÇèÇÒ ¼ö ÀÖ´Â Ãæ¹æÀü »çÀÌŬ ¼ö°¡ Á¦ÇѵÊÀ» ÀǹÌÇÕ´Ï´Ù. ÀÌ Á¦¾àÀº Àå±â ¿î¿µ ºñ¿ë°ú Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¿È ¾ïÁ¦¶õ, ½Ã°£ÀÇ °æ°ú¿¡ ¼ö¹ÝÇÏ´Â ÀüÁö ¼º´ÉÀÇ ÀúÇϸ¦ ÃÖ¼ÒÇÑÀ¸·Î ¾ïÁ¦ ¶Ç´Â Áö¿¬½ÃŰ´Â °ÍÀ» ¸ñÀûÀ¸·Î ÇÑ ´ëó¿¡ °üÇÑ °ÍÀÔ´Ï´Ù.
ÁÖ°Å¿ë ½ºÅ丮Áö ¼Ö·ç¼Ç
ÁÖ°Å¿ë ½ºÅ丮Áö ¼Ö·ç¼ÇÀº ž籤 ¹ßÀü°ú °°Àº ½ÅÀç»ý¿¡³ÊÁö¿øÀ» ÅëÇÕÇÏ°í °èÅë Á¤Àü ½Ã ¹é¾÷À» Á¦°øÇÏ´Â ´É·ÂÀ¸·Î °íÁ¤¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå¿¡¼ Áß¿äÇÑ ±âȸ¸¦ º¸¿©ÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÁÖÅà ¼ÒÀ¯ÀÚ¿¡°Ô ¿¡³ÊÁö ÀÚ¸³, ÇÇÅ© ÄÆÀ¸·Î ÀÎÇÑ Àü±â ¿ä±Ý Àý°¨, °úÀ× ¿¡³ÊÁö¸¦ ¼ÛÀü¸ÁÀ¸·Î µÇµ¹¸± ¼ö ÀÖ´Â ÆÇ¸Å °¡´É¼ºÀ» Á¦°øÇÕ´Ï´Ù. ±â¼ú ¹ßÀü, ÃàÀüÁö ºñ¿ë Àý°¨, Áö¿ø Á¤Ã¥ÀÌ ÀÌ ½ÃÀåÀÇ ¸Å·ÂÀ» ´õ¿í ³ô¿© ¼ÒºñÀÚÀÇ ´Ù¾çÇÑ ¿ä±¸¿¡ ºÎÀÀÇϱâ À§ÇÑ ±â¼ú Çõ½Å°ú °ø±ÞÀÚ °£ÀÇ °æÀïÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
±â¼ú ºñ¿ë
Á¤Ä¡¿ë ¹èÅ͸® ½ÃÀå¿¡¼´Â ±â¼ú ºñ¿ëÀÌ ÇÁ·ÎÁ§Æ®ÀÇ °æÁ¦¼º°ú ¼öÀͼº¿¡ ¿µÇâÀ» ¹ÌÄ¡±â ¶§¹®¿¡ Å« À§ÇùÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¸®Æ¬ À̿ ¹× ½ÅÈï ´ëü ¹èÅ͸®¸¦ Æ÷ÇÔÇÑ ¹èÅ͸® ±â¼úÀÇ Ãʱ⠺ñ¿ëÀÌ ³ôÀ¸¸é ÀáÀçÀûÀÎ ÅõÀÚÀÚ¸¦ ¸Ö¸®Çϰí À繫 À§ÇèÀ» Áõ°¡½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹èÅ͸® ±â¼úÀÇ ±Þ¼ÓÇÑ Áøº¸¿Í °¡°Ý º¯µ¿Àº ¹Ì·¡ÀÇ ºñ¿ë°ú ÅõÀÚ ¼öÀÍ·üÀ» ¿¹ÃøÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ½À´Ï´Ù. ¿ø·á °¡°Ý(¸®Æ¬, ÄÚ¹ßÆ® µî)ÀÇ º¯µ¿Àº ºñ¿ë ¿¹ÃøÀ» ´õ¿í º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù.
°ø±Þ¸ÁÀÇ È¥¶õÀ¸·Î ÀÎÇØ ¹èÅ͸® Á¦Á¶ ¹× ¹è¼Û¿¡ Áö¿¬ÀÌ ¹ß»ýÇß½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹Í µ¿¾È ¿¡³ÊÁöÀÇ È¸º¹·Â°ú ½Å·Ú¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁüÀ¸·Î½á ¹é¾÷ Àü¿ø¿ë ÃàÀüÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁ³½À´Ï´Ù. Ãʱâ ÁÂÀý¿¡µµ ºÒ±¸ÇÏ°í ½ÅÀç»ý¿¡³ÊÁö ÀúÀå, ¼ÛÀü¸Á ¾ÈÁ¤È, ÁÖÅÃ¿ë ¹é¾÷ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ°¡ ±ÞÁõÇß°í, À¯Åë ÀÌÈÄ ½ÃÀåÀº µµÀÔÀÌ °¡¼ÓȵǾú½À´Ï´Ù. °Ô´Ù°¡ Á¤ºÎÀÇ °æ±â ÀÚ±ØÃ¥°ú ±×¸° ºÎÈïÀ» À§ÇÑ Á¤Ã¥ÀÌ Ãß°¡ Áö¿øÀÌ µÇ¾î, ÀÌ ºÐ¾ßÀÇ ¼ºÀå°ú ±â¼ú Áøº¸°¡ °ÈµÇ¾ú½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¸®Æ¬ À̿ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸ÁÀÔ´Ï´Ù.
¸®Æ¬ ÀÌ¿Â(Li - ion) ºÎ¹®Àº ³ôÀº ¿¡³ÊÁö ¹Ðµµ, È¿À²¼º ¹× ºñ¿ë ÀúÇÏ·Î °íÁ¤¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå¿¡¼ ±Þ¼ÓÈ÷ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¸®Æ¬ À̿ ¹èÅ͸®´Â ±âÁ¸ÀÇ ³³ ¹èÅ͸®¿¡ ºñÇØ »çÀÌŬ ¼ö¸íÀÌ ¶Ù¾î³ª ÃæÀü ½Ã°£ÀÌ Âª±â ¶§¹®¿¡ Àç»ý °¡´É ¿¡³ÊÁö ÀúÀå, ±×¸®µå ¾ÈÁ¤È, ¹é¾÷ Àü¿ø µîÀÇ ¿ëµµ¿¡ ÃÖÀûÀÔ´Ï´Ù. Żź¼ÒÈÀÇ ÃßÁø°ú Àç»ý °¡´É ¿¡³ÊÁö¿øÀÇ ÅëÇÕÀÌ ¼ö¿ä¸¦ È®´ëÇÏ´Â ÇÑÆí, ÀüÁö ±â¼úÀÇ Áøº¸´Â ¼º´É°ú °¡°ÝÀÇ Çâ»óÀ» °è¼ÓÇϰí ÀÖ½À´Ï´Ù.
±×¸®µå ¼ºñ½º ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ ¿¹»óµÈ´Ù.
°íÁ¤¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀåÀÇ ±×¸®µå ¼ºñ½º ºÐ¾ß´Â ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼º°ú ½Å·Ú¼º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÀÇÇØ Å« ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ ¼ºÀåÀº Á֯ļö Á¶Á¤, Àü¾Ð Á¦¾î, ±×¸®µå ¹ë·±½ÌÀ» Áö¿øÇÒ ¼ö ÀÖ´Â ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ž籤À̳ª dz·Â°ú °°Àº ½ÅÀç»ý¿¡³ÊÁö¿øÀ» ¼ÛÀü¸Á¿¡ ÅëÇÕÇϸé ÷´Ü ¿¡³ÊÁöÀúÀå½Ã½ºÅÛÀÇ Çʿ伺ÀÌ ´õ¿í ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½ÅÀç»ý¿¡³ÊÁöÀÇ µµÀÔ°ú ÃàÀü±â¼ú¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿ø Á¤Ã¥°ú Àμ¾Æ¼ºê°¡ ÀÌ ºÎ¹®ÀÇ È®´ë¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹ÌÀÇ¿¡¼´Â °íÁ¤¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀåÀÌ ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ Å« ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â dz·Â¹ßÀü°ú ž籤¹ßÀü µîÀÇ Àç»ý°¡´É¿¡³ÊÁöÀÇ µµÀÔÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, °£ÇæÀûÀÎ °ø±ÞÀ» °ü¸®Çϱâ À§ÇÑ ¿¡³ÊÁöÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ »ý°Ü³ª°í ÀÖ½À´Ï´Ù. ¼ÛÀü¸ÁÀÇ Çö´ëÈ¿¡ ´ëÇÑ ³ë·Â°ú ¾ÈÁ¤ÀûÀÎ ¹é¾÷ Àü¿ø ½Ã½ºÅÛÀÇ Çʿ伺Àº ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹èÅ͸® ÃàÀü ½Ã½ºÅÛÀÇ ±â¼úÀû Áøº¸´Â Á¤ºÎÀÇ Áö¿ø Á¤Ã¥°ú Àμ¾Æ¼ºê¿Í ÇÔ²² ÅõÀÚ¸¦ À¯Ä¡ÇÏ°í µµÀÔÀ» °¡¼ÓÈÇϴµ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ¸î °¡Áö Áß¿äÇÑ ¿äÀÎÀ¸·Î °íÁ¤¿ë ¿¡³ÊÁö ÀúÀå ½ÃÀå¿¡¼ Å« ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. ž籤À̳ª dz·Â°ú °°Àº ½ÅÀç»ý¿¡³ÊÁö¿øÀÇ ±Þ¼ÓÇÑ È®´ë·Î °£Ç漺À» °ü¸®ÇÏ°í ¼ÛÀü¸ÁÀ» ¾ÈÁ¤½Ã۱â À§ÇÑ ÃàÀü ¼Ö·ç¼ÇÀÇ ¿ä±¸°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹, È£ÁÖ µî ±¹°¡¿¡¼´Â Á¤ºÎ Áö¿ø Á¤Ã¥°ú Àμ¾Æ¼ºê¸¦ ÅëÇØ ÃàÀüÁö ÀÎÇÁ¶ó ÅõÀÚ¿¡ À¯¸®ÇÑ È¯°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ¹èÅ͸® ±â¼úÀÇ ¹ßÀü°ú ºñ¿ë Àý°¨À¸·Î ÀÎÇØ °íÁ¤Çü ÃàÀü ¼Ö·ç¼ÇÀº °æÁ¦ÀûÀ¸·Î ½ÇÇà °¡´ÉÇϸç Àü·Â ȸ»ç¿Í »ê¾÷¿ë ¼ÒºñÀÚ ¸ðµÎ¿¡°Ô ¸Å·ÂÀûÀÔ´Ï´Ù.
According to Stratistics MRC, the Global Stationary Battery Storage Market is accounted for $118.15 billion in 2024 and is expected to reach $544.47 billion by 2030 growing at a CAGR of 29.0% during the forecast period. Stationary Battery Storage refers to the technology used for storing electrical energy in batteries for later use. Unlike portable batteries, stationary systems are fixed installations often used in homes, businesses, and utility grids. They store energy from renewable sources like solar or wind, or from the grid during off-peak times, to provide power during peak demand, outages, or for grid stabilization. These systems enhance energy efficiency; reduce reliance on fossil fuels, and support a more resilient and sustainable energy infrastructure. Popular battery types for stationary storage include lithium-ion, lead-acid, and flow batteries.
According to the International Renewable Energy Agency (IREA), flow batteries, which are currently under development, might have a two-third reduction in total installed cost by 2030, high-temperature batteries by 56%-60%; flywheels by 35%, and compressed air energy storage by 17%. According to IEA data, electricity will make up 50% of all energy consumed by 2050, up from 20% in 2018.
Grid modernization and reliability
Grid modernization and reliability are key drivers in the stationary battery storage market. Modernizing the grid involves integrating advanced technologies like battery storage to enhance stability, efficiency, and resilience against power disruptions. Stationary battery storage systems play a crucial role by providing reliable backup power during outages, thereby ensuring continuous electricity supply and reducing downtime for critical infrastructure and services. These systems also support the integration of renewable energy sources by storing excess power and releasing it during peak demand periods, thus optimizing grid operations and promoting sustainability.
Limited lifecycle and degradation
In the stationary battery storage market, limited lifecycles and degradation restraints are significant factors impacting technology and economic viability. Limited lifecycle refers to the finite number of charge-discharge cycles batteries can undergo before significant capacity loss occurs, necessitating replacement. This constraint influences long-term operational costs and sustainability goals. Degradation restraint pertains to efforts aimed at minimizing or slowing down battery performance decline over time.
Residential storage solutions
Residential storage solutions represent a significant opportunity in the stationary battery storage market due to their ability to integrate renewable energy sources like solar power and provide backup during grid outages. These systems offer homeowners energy independence, reduced electricity bills through peak shaving, and the potential to sell surplus energy back to the grid. Technological advancements, decreasing costs of battery storage, and supportive policies further enhance this market's appeal, fostering innovation and competition among providers to cater to diverse consumer needs.
Technology costs
In the stationary battery storage market, technology costs represent a significant threat due to their impact on project economics and profitability. The high initial costs of battery technologies, including lithium-ion and emerging alternatives, can deter potential investors and increase financial risk. Moreover, rapid advancements and fluctuating prices in battery technology pose challenges in predicting future costs and returns on investment. Variability in raw material prices (e.g., lithium, cobalt) further complicates cost projections.
Supply chain disruptions led to delays in battery manufacturing and delivery. However, the heightened focus on energy resilience and reliability during the pandemic drove increased interest in battery storage solutions for backup power. Despite initial setbacks, the market saw accelerated adoption post-pandemic, with investments surging in renewable energy storage, grid stability, and residential backup systems. Additionally, government stimulus packages and policies aimed at green recovery provided further support, reinforcing the sector's growth and technological advancements.
The lithium-ion segment is expected to be the largest during the forecast period
The lithium-ion (Li-ion) segment is rapidly expanding in the stationary battery storage market due to its high energy density, efficiency, and decreasing costs. Li-ion batteries offer superior cycle life and faster charging times compared to traditional lead-acid batteries, making them ideal for applications in renewable energy storage, grid stabilization, and backup power. The push for decarbonization and integration of renewable energy sources has amplified demand, while advancements in battery technology continue to enhance their performance and affordability.
The grid services segment is expected to have the highest CAGR during the forecast period
The grid services segment within the stationary battery storage market is experiencing significant growth due to the increasing demand for grid stability and reliability. This growth is driven by the need for energy storage solutions that can support frequency regulation, voltage control, and grid balancing. The integration of renewable energy sources, such as solar and wind, into the power grid has further amplified the necessity for advanced energy storage systems. Moreover, supportive government policies and incentives for renewable energy adoption and storage technologies are propelling the expansion of this segment.
In North America, the stationary battery storage market has experienced significant growth, driven by several key factors. The region's increasing adoption of renewable energy sources, such as wind and solar power, has created a demand for energy storage solutions to manage intermittent supply. Grid modernization initiatives and the need for reliable backup power systems have further fuelled market expansion. Technological advancements in battery storage systems, coupled with supportive government policies and incentives, have also played a crucial role in attracting investments and accelerating deployment.
The Asia-Pacific region has experienced significant growth in the stationary battery storage market due to several key factors. The rapid expansion of renewable energy sources like solar and wind has increased the need for storage solutions to manage intermittency and stabilize the grid. Supportive government policies and incentives across countries such as China, Japan, South Korea, and Australia have fostered a favourable environment for investment in battery storage infrastructure. Advancements in battery technology and decreasing costs have made stationary storage solutions more economically viable and attractive to both utilities and industrial consumers.
Key players in the market
Some of the key players in Stationary Battery Storage market include A123 Systems, LLC, BYD Company Ltd., Duracell, Inc., Durapower Group, Exide Technologies, Furukawa Battery Co., Ltd., GS Yuasa International Ltd, Invinity Energy Systems, Johnson Controls, LG Chem Ltd., Lockheed Martin Corporation, Narada Power Source Co. Ltd, Panasonic Corporation, Redflow Limited, Samsung SDI Co., Ltd, SCHMID Group, Siemens, Tesla and Toshiba Corporation.
In June 2024, Johnson Controls announced that it has reached a definitive agreement to sell its Air Distribution Technologies business to Truelink Capital, a middle-market private equity firm based in Los Angeles. The transaction is expected to close the second half of the calendar year 2024, subject to customary closing conditions.
In June 2024, Toshiba JSW Power Systems announced the appointment of Daisuke Murata as its new Managing Director. In his new role, Murata will bolster the Make-in-India program and Export-from-India initiatives by expanding their business presence in overseas markets including Southeast Asia, the Middle East, and Africa.