¼¼°èÀÇ Àü±âÀÚµ¿Â÷ ºÎ½º¹Ù ½ÃÀå
Electric Vehicle Busbar
»óǰÄÚµå : 1786490
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 276 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,150,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,452,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Àü±âÀÚµ¿Â÷ ºÎ½º¹Ù ¼¼°è ½ÃÀåÀº 2030³â±îÁö 20¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 6¾ï 8,640¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â Àü±âÀÚµ¿Â÷ ºÎ½º¹Ù ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 19.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 20¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ±¸¸® Àç·á´Â CAGR 22.0%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 14¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Ë·ç¹Ì´½ Àç·á ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 15.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 8,700¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 27.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Àü±âÀÚµ¿Â÷ ºÎ½º¹Ù ½ÃÀåÀº 2024³â¿¡ 1¾ï 8,700¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 27.1%·Î 2030³â±îÁö 4¾ï 8,650¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, °¢°¢ ºÐ¼® ±â°£ µ¿¾È¿¡ 15.6%¿Í 17.9%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 16.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Àü±âÀÚµ¿Â÷ ºÎ½º¹Ù ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Àü±âÀÚµ¿Â÷ ºÎ½º¹Ù´Â EV ¹èÀüÀ» ¾î¶»°Ô º¯È­½Ãų °ÍÀΰ¡?

Àü±âÀÚµ¿Â÷(EV) ºÎ½º¹Ù´Â Àü±âÀÚµ¿Â÷ÀÇ È¿À²ÀûÀÎ ¹èÀü ½Ã½ºÅÛ¿¡¼­ Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ¹èÅ͸®¿¡¼­ ¸ðÅÍ, HVAC ½Ã½ºÅÛ, Â÷·® ³» ÀüÀÚ±â±â µî ´Ù¾çÇÑ ±¸¼º¿ä¼Ò¿¡ ¾ÈÁ¤ÀûÀÌ°í ¾ÈÀüÇÑ Àü·Â Àü¼ÛÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ºÎ½º¹Ù´Â Àüµµ¼º ±Ý¼Ó ½ºÆ®¸³ ¶Ç´Â ¹Ù¸¦ ¸»Çϸç, ÄÄÆÑÆ®ÇÑ µðÀÚÀÎÀ¸·Î Å« Àü·ù¸¦ ¾ÈÁ¤ÀûÀ¸·Î ºÐ¹èÇÏ¿© Àü·Â ¼Õ½ÇÀ» ÃÖ¼ÒÈ­Çϰí ÃÖÀûÀÇ ±â´ÉÀ» º¸ÀåÇÕ´Ï´Ù. EV ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ´õ ÀÛ°í °¡º±°í °í¼º´ÉÀÇ ºÎ½º¹Ù¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö È¿À² °³¼±ÀÇ Çʿ伺°ú ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ ¹ßÀü°ú ÇÔ²² Àü±âÀÚµ¿Â÷ÀÇ ¼º´É°ú ³»±¸¼ºÀ» À§ÇØ Àü¿ë ºÎ½º¹ÙÀÇ °³¹ßÀº ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ºÎ½º¹Ù¸¦ »ç¿ëÇϸé Â÷·®¿¡ Àü·Â ½Ã½ºÅÛÀ» ½±°Ô ÅëÇÕÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó Àüü ¹«°Ô¸¦ ÁÙ¿© Àü±âÀÚµ¿Â÷ÀÇ ÁÖÇà°Å¸®¿Í È¿À²¼º¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. Á¦Á¶¾÷üµéÀº ±¸¸®, ¾Ë·ç¹Ì´½, ÃÖ±Ù¿¡´Â ´õ ³ªÀº Àüµµ¼º, ³»½Ä¼º, ¹«°Ô ÃÖÀûÈ­¸¦ ½ÇÇöÇÏ´Â »õ·Î¿î ÇÕ±Ý µî ÷´Ü ¼ÒÀç¿¡ ÁÖ¸ñÇϰí ÀÖ½À´Ï´Ù. Àü±â ¹ö½º, Æ®·° µî ½Â¿ëÂ÷ ¹× »ó¿ëÂ÷ ºÎ¹®¿¡¼­ EV ¸ðµ¨ÀÇ ¼ö°¡ Áõ°¡ÇÔ¿¡ µû¶ó EV ºÎ½º¹Ù ½ÃÀåÀº ÇâÈÄ ¸î ³â µ¿¾È Å©°Ô È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

±â¼ú Çõ½ÅÀÌ EV ºÎ½º¹ÙÀÇ È¿À²¼ºÀ» ³ôÀδÙ?

Àü±âÀÚµ¿Â÷ ºÎ½º¹ÙÀÇ ÁøÈ­´Â Àü±âÀû ¼º´É°ú ¹°¸®Àû ¼³°è¸¦ ¸ðµÎ °³¼±Çϱâ À§ÇÑ ±â¼ú Çõ½Å°ú ¹ÐÁ¢ÇÑ °ü·ÃÀÌ ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¼ú Çõ½Å Áß Çϳª´Â °í Àüµµ¼º Àç·áÀÇ »ç¿ë°ú ¿­ ¹æÃâÀ» ÃÖÀûÈ­ÇÏ´Â ´ÙÃþ ºÎ½º¹Ù µðÀÚÀÎÀÇ °³¹ß·Î Àü·Â ¼Õ½ÇÀÇ À§ÇèÀ» ÁÙÀ̰í Â÷·®ÀÇ Àüü Àü±â ½Ã½ºÅÛÀÇ ¼ö¸íÀ» Çâ»ó½Ãŵ´Ï´Ù. EVÀÇ Àü·Â ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ƯÈ÷ ±Þ¼Ó ÃæÀü ±â´ÉÀÌ µµÀԵʿ¡ µû¶ó ºÎ½º¹Ù´Â ¿­ ¾ÈÁ¤¼ºÀ» À¯ÁöÇϸ鼭 Å« Àü·ù¸¦ ó¸®ÇØ¾ß ÇÕ´Ï´Ù. ¾×ü ³Ã°¢ ¹× ¸Å¸³Çü ¹æ¿­ÆÇ°ú °°Àº °í±Þ ³Ã°¢ ±â¼úÀÌ ºÎ½º¹Ù ¼³°è¿¡ ÅëÇÕµÇ¾î ¿­ °ü¸® ¹®Á¦¸¦ ÇØ°áÇÕ´Ï´Ù. ¶ÇÇÑ, ºÎ½º¹Ù ¼³°èÀÇ ¼ÒÇüÈ­·Î EV ¹èÅ͸® ÆÑ°ú µå¶óÀÌºê ½Ã½ºÅÛ ³» °ø°£ Ȱ¿ëµµ°¡ Çâ»óµÇ¾ú½À´Ï´Ù. Ç÷º¼­ºí ºÎ½º¹ÙÀÇ Ã¤ÅÃÀº ƯÈ÷ Àü±â ¹ö½º¿Í ´ëÇü »ó¿ëÂ÷¿¡¼­ ´õ º¹ÀâÇÑ ·¹À̾ƿôÀ» °¡´ÉÇÏ°Ô ÇÏ°í ¹«°Ô¿Í ºÎÇǸ¦ ÁÙÀÏ ¼ö Àֱ⠶§¹®¿¡ ¸¹Àº ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ´Â ¿¡³ÊÁö ÀúÀå ¿ë·®À» Áõ°¡½ÃŰ°í ¼³°èÀÇ À¯¿¬¼ºÀ» ³ôÀÔ´Ï´Ù. ¶ÇÇÑ, EV ³» ¿¡³ÊÁö È帧À» Á¦¾îÇÏ´Â º¸´Ù È¿À²ÀûÀÎ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS)ÀÇ µµÀÔÀ¸·Î ºÎ½º¹Ù´Â °í¼Ó µ¥ÀÌÅÍ Åë½ÅÀ» Áö¿øÇÒ ¼ö ÀÖ¾î¾ß Çϸç, º¸´Ù Áøº¸µÇ°í ÅëÇÕµÈ ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

EV ºÎ½º¹Ù °³¹ß¿¡¼­ ±ÔÁ¦ ±âÁØÀÇ ¿ªÇÒÀº ¹«¾ùÀΰ¡?

Àü ¼¼°è ½ÃÀå¿¡¼­ Àü±âÀÚµ¿Â÷°¡ ´ëÁßÈ­µÊ¿¡ µû¶ó EV ¼³°è¿¡ ´ëÇÑ ºÎ½º¹ÙÀÇ °³¹ß ¹× ÅëÇÕÀº Á¡Á¡ ´õ ¾ö°ÝÇÑ ±ÔÁ¦ Ç¥ÁØ¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ¾÷°è ´Üü´Â ¹èÅ͸® ¾ÈÀü, Àü±â ½Ã½ºÅÛ, Â÷·® ¼º´É¿¡ ÃÊÁ¡À» ¸ÂÃá Á¾ÇÕÀûÀÎ ±ÔÁ¤À» Á¦Á¤ÇÏ¿© ºÎ½º¹ÙÀÇ ¼³°è ¹× Á¦Á¶¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Àü±âÀÚµ¿Â÷ÀÇ Àü±â ¾ÈÀü¿¡ °üÇÑ UN ECE R100 ±ÔÁ¤ ¹× ISO 6469¿Í °°Àº ±¹Á¦ ¾ÈÀü Ç¥ÁØÀ» ÁؼöÇÏ´Â °ÍÀº Á¦Á¶¾÷ü¿¡°Ô ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ Ç¥ÁØÀº ºÎ½º¹Ù¸¦ Æ÷ÇÔÇÑ °íÀü¾Ð ºÎǰ¿¡ ¿ä±¸µÇ´Â Àý¿¬, ¿Âµµ µî±Þ, º¸È£ ¸ÞÄ¿´ÏÁòÀ» ±ÔÁ¤ÇÏ¿© ¾ÈÀüÇÑ ÀÛµ¿À» º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, Áö¼Ó°¡´É¼º Çâ»ó°ú ȯ°æÀû Ã¥ÀÓ¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó Á¦Á¶¾÷üµéÀº ºÎ½º¹Ù »ý»ê¿¡ ÀÖ¾î ģȯ°æ ¼ÒÀç¿Í °øÁ¤À» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ÀÇ ÀçȰ¿ë¼º¿¡ ´ëÇÑ ±ÔÁ¦µµ Àç·á ¼±Åÿ¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, ¾Ë·ç¹Ì´½°ú °°Àº ÀçȰ¿ë °¡´ÉÇÑ ±Ý¼ÓÀÇ »ç¿ëÀÌ °­Á¶µÇ°í ÀÖ½À´Ï´Ù. ¹èÅ͸® ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó À̸¦ Áö¿øÇÏ´Â ºÎ½º¹ÙÀÇ Ç¥Áصµ ¹ßÀüÇϰí ÀÖÀ¸¸ç, ´Ù¾çÇÑ ¼¼°è ½ÃÀå¿¡¼­ ±ÔÁ¤ Áؼö¸¦ ÃæÁ·Çϱâ À§ÇØ OEMÀÇ Áö¼ÓÀûÀÎ ÀûÀÀÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â ¼ÒºñÀÚÀÇ ¾ÈÀüÀ» º¸ÀåÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ºÎ½º¹Ù ¼³°èÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí, EVÀÇ Áõ°¡ÇÏ´Â ¼º´É ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â »õ·Î¿î ±â¼ú ÅëÇÕÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

EV ºÎ½º¹Ù ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

Àü±âÀÚµ¿Â÷ ºÎ½º¹Ù ½ÃÀåÀÇ ¼ºÀåÀº Àü±âÀÚµ¿Â÷ ±â¼úÀÇ ¹ßÀü, º¸±Þ·ü Áõ°¡, º¸´Ù È¿À²ÀûÀÎ ¹èÀü ¼Ö·ç¼ÇÀÇ Çʿ伺°ú °ü·ÃµÈ ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ù°, ¹«°øÇØ ÀÚµ¿Â÷¸¦ ÃßÁøÇÏ´Â Á¤ºÎ Á¤Ã¥¿¡ ÈûÀÔ¾î Àü±âÀÚµ¿Â÷ »ý»êÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ºÎ½º¹Ù¸¦ Æ÷ÇÔÇÑ ½Å·ÚÇÒ ¼ö ÀÖ°í È¿À²ÀûÀÎ Àü±â ½Ã½ºÅÛ¿¡ ´ëÇÑ °­·ÂÇÑ ¼ö¿ä°¡ ¹ß»ýÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ À¯·´, ºÏ¹Ì, Áß±¹ µîÀÇ ½ÃÀå¿¡¼­ EV°¡ ÁÖ·ù·Î ÀÚ¸® ÀâÀ¸¸é¼­ °ß°íÇÏ°í °¡º­¿î ºÎ½º¹ÙÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÁÖÇà°Å¸®, ÃæÀü ½Ã°£, Àü¹ÝÀûÀÎ ¿¡³ÊÁö È¿À² µî EVÀÇ ¼º´É ÁöÇ¥ °³¼±¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó º¸´Ù È¿À²ÀûÀÎ ¹èÀü ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ºÎ½º¹ÙÀÇ Àç·á ¹× µðÀÚÀÎ Çõ½ÅÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. µÑ°, Àü±â¹ö½º, Æ®·°, ¹è¼Û ¹ê µî »ó¿ë Àü±âÀÚµ¿Â÷ ºÐ¾ßÀÇ ¼ºÀåÀ¸·Î ºÎ½º¹Ù, ƯÈ÷ ´ëÀü·ù¿¡ ´ëÀÀÇÏ°í ¿­°ü¸®°¡ ¿ì¼öÇÑ ºÎ½º¹Ù ½ÃÀåÀÌ »õ·Ó°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¼Â°, EV¿ë ±Þ¼Ó ÃæÀü ÀÎÇÁ¶óÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î Â÷·® ¼º´É ÀúÇÏ ¾øÀÌ ³ôÀº Àü·Â ºÎÇϸ¦ ¾ÈÀüÇÏ°Ô °ü¸®ÇÒ ¼ö ÀÖ´Â º¸´Ù Áøº¸µÈ ºÎ½º¹ÙÀÇ Ã¤ÅÃÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, º¸´Ù ÄÄÆÑÆ®ÇÏ°í °ø°£ È¿À²ÀûÀÎ EV ¹èÅ͸® ÆÑÀÇ ÃßÁøÀ¸·Î ÃֽŠÀü±âÀÚµ¿Â÷ÀÇ ÄÄÆÑÆ®ÇÑ µðÀÚÀο¡ ¿øÈ°ÇÏ°Ô ÅëÇÕµÉ ¼ö ÀÖ´Â ´õ ÀÛ°í °¡º±°í À¯¿¬ÇÑ ºÎ½º¹Ù¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇյǾî Àü±âÀÚµ¿Â÷ ºÎ½º¹Ù ½ÃÀåÀº Àü±âÀÚµ¿Â÷¿¡ ´ëÇÑ Àü ¼¼°è ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó Áö¼ÓÀûÀÎ ¼ºÀåÀ» ÀÌ·ê ¼ö ÀÖ´Â À§Ä¡¿¡ ÀÖ½À´Ï´Ù.

ºÎ¹®

¼ÒÀç(±¸¸® ¼ÒÀç, ¾Ë·ç¹Ì´½ ¼ÒÀç), Àü·Â Á¤°Ý(ÀúÀü·Â Á¤°Ý, ÁßÀü·Â Á¤°Ý, °íÀü·Â Á¤°Ý)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Electric Vehicle Busbar Market to Reach US$2.0 Billion by 2030

The global market for Electric Vehicle Busbar estimated at US$686.4 Million in the year 2024, is expected to reach US$2.0 Billion by 2030, growing at a CAGR of 19.9% over the analysis period 2024-2030. Copper Material, one of the segments analyzed in the report, is expected to record a 22.0% CAGR and reach US$1.4 Billion by the end of the analysis period. Growth in the Aluminum Material segment is estimated at 15.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$187.0 Million While China is Forecast to Grow at 27.1% CAGR

The Electric Vehicle Busbar market in the U.S. is estimated at US$187.0 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$486.5 Million by the year 2030 trailing a CAGR of 27.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 15.6% and 17.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 16.7% CAGR.

Global Electric Vehicle Busbar Market - Key Trends & Drivers Summarized

How Are Electric Vehicle Busbars Transforming Power Distribution in EVs?

Electric vehicle (EV) busbars are playing an increasingly critical role in the efficient power distribution systems of electric vehicles, facilitating the reliable and safe transfer of electrical power from the battery to various components like the motor, HVAC systems, and onboard electronics. A busbar is a conductive metal strip or bar that ensures high-current distribution in compact designs, minimizing power loss and ensuring optimal functioning. As EV technology advances, the demand for more compact, lighter, and higher-performing busbars is growing. The need for enhanced energy efficiency, combined with advancements in power electronics, has made the development of specialized busbars essential to the performance and durability of electric vehicles. In addition, the use of busbars enables easier integration of power systems in vehicles while reducing the overall weight, which directly impacts the range and efficiency of electric vehicles. Manufacturers are focusing on advanced materials, such as copper, aluminum, and more recently, new alloys that provide better conductivity, corrosion resistance, and weight optimization. With the growing number of EV models in both the passenger and commercial segments, including electric buses and trucks, the market for EV busbars is set to expand significantly in the coming years.

Are Technological Innovations Driving the Efficiency of EV Busbars?

The evolution of busbars in electric vehicles is closely tied to technological innovations aimed at improving both electrical performance and physical design. One of the key innovations is the use of high-conductivity materials and the development of multi-layered busbar designs that optimize heat dissipation, reducing the risk of power losses and improving the overall lifespan of the vehicle’s electrical systems. As power demand in EVs increases, particularly with the introduction of fast-charging capabilities, busbars need to handle high levels of current while maintaining thermal stability. Advanced cooling technologies such as liquid cooling and embedded heat sinks are being integrated into busbar designs to address thermal management challenges. Additionally, the miniaturization of busbar designs allows for better space utilization within EV battery packs and drive systems. The adoption of flexible busbars is also gaining traction, as they enable more intricate layouts and reduce weight and bulkiness, particularly in electric buses and large commercial vehicles. This allows for increased energy storage capacity and greater design flexibility. Furthermore, with the introduction of more efficient battery management systems (BMS) that control the flow of energy within EVs, busbars must be able to support high-speed data communication, driving the need for more advanced and integrated solutions.

What Role Do Regulatory Standards Play in EV Busbar Development?

As electric vehicles gain traction in markets across the globe, the development and integration of busbars into EV designs are being increasingly guided by stringent regulatory standards. Governments and industry groups have developed comprehensive regulations focused on battery safety, electrical systems, and vehicle performance that directly impact the design and manufacturing of busbars. For example, compliance with international safety standards such as the UN ECE R100 regulation or ISO 6469 for electrical safety in electric vehicles is critical for manufacturers. These standards dictate the required insulation, temperature ratings, and protection mechanisms for high-voltage components, including busbars, to ensure safe operation. In addition, the push for greater sustainability and environmental responsibility is encouraging manufacturers to adopt environmentally friendly materials and processes in the production of busbars. Regulations surrounding vehicle recyclability are also influencing the selection of materials, with an increasing emphasis on the use of recyclable metals like aluminum. As battery technologies evolve, so too do the busbar standards that support them, necessitating continuous adaptation by OEMs to meet compliance across various global markets. This regulatory framework not only ensures consumer safety but also drives innovation in the design of busbars, encouraging companies to integrate new technologies that meet the growing performance demands of EVs.

What Are the Primary Drivers of Growth in the EV Busbar Market?

The growth in the electric vehicle busbar market is driven by several key factors tied to advancements in electric vehicle technology, increased adoption rates, and the need for more efficient power distribution solutions. First, the rise of electric vehicle production, supported by governmental policies promoting zero-emission vehicles, is creating a strong demand for reliable and efficient electrical systems, including busbars. As EVs become more mainstream, especially in markets like Europe, North America, and China, the need for robust and lightweight busbars is increasing. Additionally, the growing focus on improving EV performance metrics such as range, charging time, and overall energy efficiency has led to the demand for more efficient power distribution systems, driving innovations in busbar materials and designs. Second, the growth in the commercial electric vehicle sector, including electric buses, trucks, and delivery vans, is creating a new and expanding market for busbars, particularly those capable of handling higher currents and providing better heat management. Third, the rapid development of fast-charging infrastructure for EVs is necessitating the adoption of more advanced busbars that can safely manage higher power loads without sacrificing vehicle performance. Lastly, the push for more compact and space-efficient EV battery packs is contributing to the need for smaller, lighter, and more flexible busbars that can integrate seamlessly into the compact designs of modern electric vehicles. With these factors combined, the electric vehicle busbar market is positioned for sustained growth as global demand for electric vehicles continues to rise.

SCOPE OF STUDY:

The report analyzes the Electric Vehicle Busbar market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Material (Copper Material, Aluminum Material); Power Rating (Low Power Rating, Medium Power Rating, High Power Rating)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â