¼¼°èÀÇ DNA ÇÕ¼º±â ½ÃÀå
DNA Synthesizer
»óǰÄÚµå : 1786454
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 221 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,150,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,452,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

DNA ÇÕ¼º±â ¼¼°è ½ÃÀåÀº 2030³â±îÁö 7¾ï 8,780¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 3¾ï 2,250¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â DNA ÇÕ¼º±â ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 7¾ï 8,780¸¸ ´Þ·¯¿¡ ´ÞÇϰí, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 16.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ º¥Ä¡Å¾ DNA ÇÕ¼º±â´Â CAGR 17.9%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 5¾ï 4,980¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ´ë±Ô¸ð DNA ÇÕ¼º±â ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 12.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8,480¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 15.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ DNA ÇÕ¼º±â ½ÃÀåÀº 2024³â¿¡ 8,480¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 15.0%·Î ÃßÁ¤µÇ¸ç, 2030³â¿¡´Â 1¾ï 2,110¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 15.0%¿Í 13.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 11.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ DNA ÇÕ¼º±â ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÇÕ¼º DNA´Â ¹ÙÀÌ¿À ±â¼ú Çõ½ÅÀÇ ´ÙÀ½ ¹°°áÀ» µÞ¹ÞħÇÏ´Â ¿¬·áÀΰ¡?

ÇÕ¼º DNA¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â »ý¸í°øÇÐÀÇ ÆÐ·¯´ÙÀÓ º¯È­¸¦ ÃËÁøÇϰí ÀÖÀ¸¸ç, DNA ÇÕ¼º Àåºñ´Â ÀÌ·¯ÇÑ º¯È­ÀÇ Á߽ɿ¡ À§Ä¡Çϰí ÀÖ½À´Ï´Ù. ¸ÂÃãÇü DNA ¼­¿­ÀÇ ÀÚµ¿ Á¶¸³À» °¡´ÉÇÏ°Ô ÇÏ´Â DNA ÇÕ¼º±â´Â ¿¬±¸, Áø´Ü, Ä¡·á ¹× »ê¾÷ »ý¸í°øÇп¡ ÇʼöÀûÀÎ µµ±¸°¡ µÇ¾ú½À´Ï´Ù. ÇÕ¼º»ý¹°ÇÐÀÌ Á¡Á¡ ´õ ¸¹Àº ÃßÁø·ÂÀ» ¾òÀ¸¸é¼­ °úÇÐÀÚµéÀº ÇÕ¼º DNA¸¦ »ç¿ëÇÏ¿© À¯ÀüÀÚ È¸·Î¸¦ ¼³°èÇϰí, »õ·Î¿î »ý¹°À» ¸¸µé°í, Àüü À¯Àüü¸¦ óÀ½ºÎÅÍ ±¸ÃàÇÏ´Â µ¥ »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå¿Í À¯ÀüÀÚ ´ÜÆíÀ» ³ôÀº Á¤¹Ðµµ·Î ºü¸£°Ô »ý»êÇÒ ¼ö ÀÖ´Â ´É·ÂÀº CRISPR À¯ÀüÀÚ ÆíÁý, mRNA Ä¡·áÁ¦, ¹é½Å °³¹ß, ´ë»ç°øÇÐ µîÀÇ ¿¬±¸¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, COVID-19ÀÇ °æ¿ì, ¿¬±¸ÀÚµéÀÌ ÇÕ¼º±â¸¦ Ȱ¿ëÇÏ¿© Ç׿ø»ý¼º¿ë ¹ÙÀÌ·¯½º À¯ÀüÀÚ¸¦ ½Å¼ÓÇÏ°Ô ½ÃÁ¦Ç°À» Á¦ÀÛÇϸ鼭 ¹é½Å °³¹ß¿¡¼­ ÇÕ¼º DNAÀÇ °¡Ä¡°¡ °­Á¶µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, DNA ÇÕ¼º ºñ¿ëÀÌ Áö¼ÓÀûÀ¸·Î °¨¼ÒÇÔ¿¡ µû¶ó ´õ ¸¹Àº ¿¬±¸ ±â°ü°ú »ý¸í°øÇÐ ½ºÅ¸Æ®¾÷ÀÌ ¿ÜÁÖ ºñ¿ëÀ» ÁÙÀ̰í ÇÁ·ÎÁ§Æ® ³³±â¸¦ °³¼±Çϱâ À§ÇØ ½ÇÇè½Ç¿¡ ÇÕ¼º±â¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. Çаè, Á¦¾à»ç, CRO(ÀÓ»ó½ÃÇè¼öʱâ°ü)´Â º¸´Ù À¯¿¬ÇÏ°í ³ôÀº 󸮷®ÀÇ ¿öÅ©Ç÷ο츦 ½ÇÇöÇϱâ À§ÇØ »ç³» ÇÕ¼º ´É·Â¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. DNA ÇÕ¼º±â´Â ÇöÀç ´ÜÀÏ À¯ÀüÀÚ ÇÕ¼º¿¡¼­ À¯Àüü ¾î¼Àºí¸®, À¯ÀüÀÚ ¶óÀ̺귯¸®, DNA ±â¹Ý µ¥ÀÌÅÍ ÀúÀå ½ÇÇèÀ» À§ÇÑ ´ë±Ô¸ð DNA »ý»êÀ¸·Î ÀüȯÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÀÌó·³ »ý¸í°úÇÐÀÇ °ÅÀÇ ¸ðµç ºÐ¾ß¿¡¼­ ÇÕ¼º DNA¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó DNA ÇÕ¼º Àåºñ´Â ¿¬±¸, Çõ½Å, ¹ÙÀÌ¿À Á¦Á¶ÀÇ ¹Ì·¡¸¦ ¼±µµÇÏ´Â Àü·«ÀûÀÎ ±â¼ú·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº DNA ÇÕ¼ºÀÇ ¼Óµµ, Á¤È®µµ, ±Ô¸ð¸¦ ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

DNA ÇÕ¼º±â ±â¼úÀº ¼Óµµ, Á¤È®µµ, ¼öÀ², È®À强 Çâ»óÀ» ¸ñÇ¥·Î ÇÑ ±â¼ú Çõ½ÅÀ¸·Î ÃÖ±Ù ¸î ³â°£ ´«ºÎ½Å ¹ßÀüÀ» °ÅµìÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ Æ÷½ºÆ÷¾Æ¹Ì´ÙÀÌÆ® ±â¹Ý °íü»ó ÇÕ¼ºÀº ¿À·§µ¿¾È ªÀº ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµåÀÇ È²±Ý Ç¥ÁØÀ̾úÁö¸¸, ¼­¿­ ±æÀÌ¿Í ¿À·ù ÃàÀûÀÇ ÇѰ迡 Á÷¸éÇØ ÀÖ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ À庮À» ±Øº¹Çϱâ À§ÇØ È¿¼ÒÀû DNA ÇÕ¼º°ú °°Àº »õ·Î¿î ±â¼úÀÌ ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ ¹æ¹ýÀº Á¶ÀÛµÈ ÁßÇÕÈ¿¼Ò¿Í ÅÛÇø´ÀÌ ¾ø´Â ¹ÝÀÀÀ» »ç¿ëÇÏ¿© ´õ ±æ°í Á¤È®ÇÑ DNA »ç½½À» º¸´Ù ¿ÂÈ­ÇÑ ¼ö¼º Á¶°Ç¿¡¼­ ÇÕ¼ºÇÕ´Ï´Ù. ¶ÇÇÑ, ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ±â¹Ý ÇÕ¼º Ç÷§ÆûÀº ÇöÀç ÇϳªÀÇ Ä¨¿¡¼­ ¼öõ °³ÀÇ DNA ¼­¿­À» º´·Ä·Î »ý»êÇÒ ¼ö ÀÖ¾î ºñ¿ëÀ» Àý°¨Çϰí À¯ÀüÀÚ ¶óÀ̺귯¸® ¹× ½ºÅ©¸®´× ºÐ¼®°ú °°Àº ´ë±Ô¸ð ¾ÖÇø®ÄÉÀ̼ÇÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ·Îº¿ °øÇÐ ¹× ÀÚµ¿È­¿ÍÀÇ ÅëÇÕÀ» ÅëÇØ DNA ÇÕ¼º Àåºñ´Â ´õ¿í »ç¿ëÇϱ⠽¬¿öÁ³À¸¸ç, ÃÖ¼ÒÇÑÀÇ Àη °³ÀÔÀ¸·Î ¿öÅ©¾î¿þÀÌ ÇÕ¼ºÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ½Ç½Ã°£ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ, Áú·®ºÐ¼®±â, ¸ð¼¼°ü Àü±â¿µµ¿°ú °°Àº °í±Þ ǰÁú °ü¸® µµ±¸´Â Á¦Ç°ÀÇ ¼øµµ¿Í ¼öÀ²À» º¸ÀåÇϱâ À§ÇØ Â÷¼¼´ë ÇÕ¼º±â¿¡ ³»ÀåµÇ¾î ÀÖ½À´Ï´Ù. AI¿Í ¸Ó½Å·¯´× ¾Ë°í¸®Áòµµ ½Ç½Ã°£À¸·Î ÇÕ¼º ¿À·ù¸¦ ¿¹ÃøÇϰí ÇÁ·ÎÅäÄÝÀ» ÃÖÀûÈ­Çϱâ À§ÇØ È°¿ëµÇ¾î ÀçÇö¼º°ú Ä¿½ºÅ͸¶ÀÌ¡ °¡´É¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº DNA ÇÕ¼ºÀÇ ¹üÀ§¸¦ Ç¥ÁØ ½ÇÇè½Ç »ç¿ëÀ» ³Ñ¾î ÀÓ»ó ¿¬±¸, Á¤¹Ð ÀÇ·á, »ê¾÷ ±Ô¸ðÀÇ »ý»êÀ¸·Î È®ÀåÇϰí ÀÖ½À´Ï´Ù. ÇÕ¼ºÀûÀ¸·Î Á¶ÀÛÇÒ ¼ö ÀÖ´Â °ÍÀÇ ÇѰ踦 ³ÐÈûÀ¸·Î½á, ÃֽŠDNA ÇÕ¼º±â´Â À¯Àüü °úÇÐÀÇ ¼Óµµ¿Í °¡´É¼ºÀ» À籸¼ºÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

ÃÖÁ¾»ç¿ëÀÚÃþ È®´ë°¡ DNA ÇÕ¼º±â ½ÃÀåÀÇ »ó¾÷Àû Àü·«À» À籸¼º?

DNA ÇÕ¼º±â ½ÃÀåÀº ÃÖÁ¾»ç¿ëÀÚÃþÀÌ ¸Å¿ì ´Ù¾çÈ­µÇ¾î ÀÖÀ¸¸ç, Á¦Á¶¾÷üµéÀº ´Ù¾çÇÑ Àü¹® Áö½Ä ¼öÁØ, ¾ÖÇø®ÄÉÀÌ¼Ç Æ÷Ä¿½º, 󸮷® ¿ä±¸»çÇ׿¡ µû¶ó ±â¼ú°ú ¼­ºñ½º¸¦ ¸ÂÃãÈ­ÇÒ Çʿ䰡 ÀÖ½À´Ï´Ù. Çмú ±â°ü°ú ÇÙ½É ¿¬±¸¼Ò´Â ¿©ÀüÈ÷ ÁÖ¿ä »ç¿ëÀÚÀ̸ç, À¯ÀüÀÚ ¹× ¼¼Æ÷ »ý¹°ÇÐ ±âÃÊ ¿¬±¸¿¡ ½Å½Ã»çÀÌÀú¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÓ»ó½ÃÇè, Ä¡·áÁ¦ °³¹ß, Á¦Ç° Çõ½ÅÀ» À§ÇØ ´ë·® ¹× ¿ëµµ¿¡ ƯȭµÈ DNA ÇÕ¼ºÀ» ÇÊ¿ä·Î ÇÏ´Â Á¦¾à»ç, Áø´Ü¾à»ç, ÇÕ¼º»ý¹°ÇÐ ½ºÅ¸Æ®¾÷¿¡¼­ ä¿ëÀÌ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ³ó¾÷, »ê¾÷¿ë È¿¼Ò, ¹ÙÀÌ¿À¿¬·á ºÐ¾ß¿¡¼­ Ȱµ¿ÇÏ´Â ±â¾÷µéµµ À¯ÀüÀÚ º¯ÇüÀÛ¹°(GMO) ¹× ¹Ì»ý¹° »ý»ê ½Ã½ºÅÛÀ» ÃÖÀûÈ­Çϱâ À§ÇØ DNA ÇÕ¼ºÀåÄ¡¸¦ »ç¿ëÇϰí ÀÖ½À´Ï´Ù. DNA µ¥ÀÌÅÍ ÀúÀå¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ µðÁöÅÐ µ¥ÀÌÅ͸¦ DNA »ç½½¿¡ ÀÎÄÚµùÇϱâ À§ÇØ Á¶Á¤µÈ ´ë¿ë·® ½Å½Ã»çÀÌÀú¶ó´Â Æ´»õ ºÐ¾ß°¡ »ý°Ü³µ½À´Ï´Ù. ¼ö¿ä°¡ ´Ù¾çÇØÁü¿¡ µû¶ó »ó¾÷ Àü·«µµ ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ÇöÀç Á¦Á¶¾÷üµéÀº Àú󸮷® ½ÇÇè½ÇÀ» À§ÇÑ º¥Ä¡Å¾ ÇÕ¼º±â, »ê¾÷ »ç¿ëÀÚ¸¦ À§ÇÑ ´ë¿ë·® Ç÷§Æû, ¹°¸®Àû Àåºñ¸¦ ¼ÒÀ¯ÇÏÁö ¾Ê°í Á¢±ÙÇϰíÀÚ ÇÏ´Â ±â°üÀ» À§ÇÑ Å¬¶ó¿ìµå ±â¹Ý ¼­ºñ½ºÇü ÇÕ¼º ¸ðµ¨À» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼­ºñ½º ¸ðµ¨Àº ´ë±Ô¸ð ÀÚº» ÁöÃâ ¾øÀÌ °íǰÁúÀÇ DNA¿¡ ´ëÇÑ ºñ¿ë È¿À²ÀûÀÎ Á¢±ÙÀ» ¿øÇÏ´Â ½ºÅ¸Æ®¾÷°ú ÇÐ°è ¿¬±¸Àڵ鿡°Ô ƯÈ÷ ÀαⰡ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±³À° ÇÁ·Î±×·¥, ¼ÒÇÁÆ®¿þ¾î ÅëÇÕ, ¿Âµð¸Çµå Áö¿øÀº ¸ðµç ¼öÁØÀÇ »ç¿ëÀÚ°¡ ½Åµð»çÀÌÀú¸¦ È¿°úÀûÀ¸·Î Á¶ÀÛÇϰí À¯Áö °ü¸®ÇÒ ¼ö ÀÖµµ·Ï »ó¾÷Àû Á¦°ø¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ »ç¿ëÀÚ ±×·ìÀÇ ¿ä±¸¿¡ ¸Â°Ô ±â¼úÀ» Á¶Á¤ÇÔÀ¸·Î½á ±â¾÷Àº ½ÃÀå¿¡¼­ÀÇ ÀÔÁö¸¦ °­È­Çϰí, »ý¸í°úÇÐ ºÐ¾ß Àü¹Ý¿¡ °ÉÃÄ DNA ÇÕ¼ºÀÇ »ç³» µµÀÔÀ» È®´ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü ¼¼°èÀûÀ¸·Î DNA ÇÕ¼º ÀåºñÀÇ ¼ö¿ä¸¦ ÃËÁøÇÏ´Â ÁÖ¿ä ½ÃÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

DNA ÇÕ¼º±â ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú Çõ½Å, ¾ÖÇø®ÄÉÀÌ¼Ç È®Àå, »ç¿ëÀÚ ¿ä±¸ÀÇ ÁøÈ­¿¡ »Ñ¸®¸¦ µÐ ¿©·¯ °¡Áö ¿¬µ¿µÈ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â Ä¡·á, ³ó¾÷, ¹ÙÀÌ¿À Á¦Á¶ µîÀÇ ºÐ¾ß¿¡¼­ ÇÕ¼º»ý¹°ÇÐÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÇÕ¼º DNA°¡ »ý¹° ½Ã½ºÅÛ ¹× ¸ÂÃãÇü »ý¹°Ã¼ ¼³°èÀÇ ±âÃʰ¡ µÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ƯÈ÷ mRNA ¹× DNA ±â¹Ý Ç÷§Æû µî ¹é½Å °³¹ß¿¡¼­ ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇÎÀÇ Çʿ伺µµ °í󸮷® DNA ÇÕ¼º Àåºñ¿¡ ´ëÇÑ ÅõÀÚ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, CRISPR ¹× À¯ÀüÀÚ ÆíÁý ¿¬±¸ÀÇ ¼¼°è°¡ È®´ëµÊ¿¡ µû¶ó Á¤¹ÐÇÏ°Ô ¼³°èµÈ °¡À̵å RNA ¹× ±âÁõÀÚ ÅÛÇø´ÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÇÕ¼º ÀåºñÀÇ »ç¿ë·üÀ» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ ¼ºÀå ¿äÀÎÀº ¾Æ¿ô¼Ò½Ì¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̰í ÇÁ·ÎÁ§Æ® ŸÀÓ¶óÀÎÀ» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ´Â ºÐ»êÇü ÀÎÇϿ콺 DNA ÇÕ¼º ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿äÀ̸ç, À̴ ƯÈ÷ ºü¸£°Ô º¯È­ÇÏ´Â »ý¸í°øÇРȯ°æ¿¡¼­ Áß¿äÇÑ ¿ä¼ÒÀÔ´Ï´Ù. ½ÇÇè½Ç ¿öÅ©Ç÷ο쿡 ÀÚµ¿ ÇÕ¼º±â°¡ ÅëÇÕµÇ°í ºñ¿ë È¿À²ÀûÀÎ ¼Ò¸ðǰÀÌ °³¹ßµÊ¿¡ µû¶ó DNA ÇÕ¼ºÀº Áß±Ô¸ð ½ÇÇè½Ç°ú ½Å»ý ±â¾÷¿¡°Ô ´õ¿í Ä£¼÷ÇØÁ³½À´Ï´Ù. ¸ÂÃãÇü ÀÇ·á¿Í Á¤¹Ð Áø´ÜÀ» ÁöÁöÇÏ´Â ±ÔÁ¦ µ¿Çâµµ Ç¥Àû ºÐ¼® °³¹ß ¹× ÀÓ»ó ¿¬±¸¿ë DNA¸¦ »ý»êÇÒ ¼ö ÀÖ´Â ÇÕ¼º±â °³¹ß¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÕ¼º ±â°è Á¦Á¶¾÷ü, Çмú ±â°ü, Á¦¾à»ç °£ÀÇ Àü·«Àû Á¦ÈÞ´Â Á¦Ç°ÀÇ Çõ½Å°ú À¯ÅëÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. È¿¼Ò ¹× Ĩ ±â¹Ý ½Ã½ºÅÛ°ú °°Àº Â÷¼¼´ë ÇÕ¼º ±â¼úÀÇ µîÀåÀº Áö¼Ó°¡´É¼º, Á¤È®¼º, È®À强À» Çâ»ó½ÃŰ°í »õ·Î¿î »ó¾÷Àû ±æÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, »ý¸í°øÇÐ ±³À° ¹× ÀÎÀç À°¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ Çмú¿ë ÇÕ¼º±â ¹× ±³À°¿ë ŰƮ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© Àå±âÀûÀÎ ½ÃÀå È®ÀåÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌó·³ DNA ÇÕ¼º±â´Â À¯Àüü °úÇаú »ý¸í°øÇÐÀÇ ´ÙÀ½ ÇÁ·ÐƼ¾î¸¦ µÞ¹ÞħÇÏ´Â ±â¹Ý±â¼ú·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(º¥Ä¡Å¾ DNA ÇÕ¼º±â, ´ëÇü DNA ÇÕ¼º±â), ¿ëµµ(Drug Discovery¡¤¿¬±¸°³¹ß ¿ëµµ, À¯ÀüÀÚ °øÇÐ ¿ëµµ, ÀÓ»ó Áø´Ü ¿ëµµ), ÃÖÁ¾ ¿ëµµ(Çмú¡¤¿¬±¸±â°ü ÃÖÁ¾ ¿ëµµ, Á¦¾à¡¤¹ÙÀÌ¿À ±â¾÷ ÃÖÁ¾ ¿ëµµ, ÀÓ»ó ¿¬±¸¼Ò ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global DNA Synthesizer Market to Reach US$787.8 Million by 2030

The global market for DNA Synthesizer estimated at US$322.5 Million in the year 2024, is expected to reach US$787.8 Million by 2030, growing at a CAGR of 16.1% over the analysis period 2024-2030. Benchtop DNA Synthesizers, one of the segments analyzed in the report, is expected to record a 17.9% CAGR and reach US$549.8 Million by the end of the analysis period. Growth in the Large-scale DNA Synthesizers segment is estimated at 12.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$84.8 Million While China is Forecast to Grow at 15.0% CAGR

The DNA Synthesizer market in the U.S. is estimated at US$84.8 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$121.1 Million by the year 2030 trailing a CAGR of 15.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 15.0% and 13.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 11.6% CAGR.

Global DNA Synthesizer Market - Key Trends & Drivers Summarized

Is Synthetic DNA the Fuel Behind the Next Wave of Biotech Innovation?

The rising demand for synthetic DNA is driving a paradigm shift across the biotechnology landscape, with DNA synthesizers positioned at the heart of this transformation. DNA synthesizers, which enable the automated assembly of custom DNA sequences, have become indispensable tools for research, diagnostics, therapeutics, and industrial biotechnology. As synthetic biology gains momentum, scientists are using synthesized DNA to design gene circuits, create novel organisms, and build entire genomes from scratch. The ability to rapidly produce oligonucleotides and gene fragments with high accuracy is accelerating research in CRISPR gene editing, mRNA therapeutics, vaccine development, and metabolic engineering. COVID-19, for example, underscored the value of synthetic DNA in vaccine development, as researchers leveraged synthesizers to quickly prototype viral genes for antigen production. Furthermore, as the cost of DNA synthesis continues to decline, more institutions and biotech startups are integrating synthesizers into their labs to reduce outsourcing costs and enhance project turnaround times. Academic institutions, pharmaceutical companies, and contract research organizations (CROs) are increasingly relying on in-house synthesis capabilities for more flexible and high-throughput workflows. DNA synthesizers are now enabling a shift from single-gene synthesis to large-scale DNA manufacturing for genome assembly, gene libraries, and DNA-based data storage experiments. This growing demand for synthetic DNA in nearly every domain of life sciences positions DNA synthesizers as a strategic technology driving the future of research, innovation, and biomanufacturing.

How Are Technological Advancements Enhancing DNA Synthesis Speed, Accuracy, and Scale?

DNA synthesizer technologies have advanced significantly in recent years, with innovations aimed at improving speed, accuracy, yield, and scalability. Traditional phosphoramidite-based solid-phase synthesis has long been the gold standard for short oligonucleotides, but it faces limitations in sequence length and error accumulation. To overcome these barriers, emerging techniques such as enzymatic DNA synthesis are gaining attention. These methods use engineered polymerases and template-free reactions to synthesize longer and more accurate DNA strands under milder, aqueous conditions-offering potential breakthroughs in both sustainability and efficiency. Additionally, microarray-based synthesis platforms now allow parallel production of thousands of DNA sequences on a single chip, reducing costs and supporting large-scale applications like gene libraries and screening assays. Integration with robotics and automation has made DNA synthesizers more user-friendly, enabling walkaway synthesis with minimal human intervention. Real-time monitoring systems and advanced quality control tools-such as mass spectrometry and capillary electrophoresis-are being incorporated into next-generation synthesizers to ensure product purity and yield. AI and machine learning algorithms are also being utilized to predict synthesis errors and optimize protocols in real time, increasing reproducibility and customization. These innovations are expanding the reach of DNA synthesis beyond standard laboratory use to clinical research, precision medicine, and industrial-scale production. By pushing the boundaries of what can be synthetically engineered, modern DNA synthesizers are playing a crucial role in reshaping the pace and potential of genomic science.

Is the Broadening End-User Base Reshaping Commercial Strategies in the DNA Synthesizer Market?

The DNA synthesizer market is experiencing significant diversification in its end-user base, which is prompting manufacturers to tailor their technologies and services to suit varying levels of expertise, application focus, and throughput needs. Academic institutions and core research labs remain key users, utilizing synthesizers for fundamental genetic and cellular biology research. However, the market is witnessing a sharp rise in adoption among pharmaceutical companies, diagnostics firms, and synthetic biology startups that require high-volume, application-specific DNA synthesis for clinical trials, therapeutic development, and product innovation. Companies working in the fields of agriculture, industrial enzymes, and biofuels are also using DNA synthesizers to optimize genetically modified organisms (GMOs) and microbial production systems. The growing interest in DNA data storage is creating a niche segment of high-capacity synthesizers tailored for encoding digital data into DNA strands. As demand diversifies, commercial strategies are evolving: manufacturers now offer benchtop synthesizers for low-throughput labs, high-capacity platforms for industrial users, and cloud-based synthesis-as-a-service models for institutions seeking access without owning physical equipment. These service models are particularly popular among startups and academic researchers looking for cost-effective access to high-quality DNA without large capital expenditure. Additionally, training programs, software integrations, and on-demand support are becoming integral to commercial offerings, ensuring that users of all levels can effectively operate and maintain synthesizers. By aligning technology with the needs of diverse user groups, companies are strengthening their market position and fostering broader adoption of in-house DNA synthesis capabilities across the life sciences spectrum.

What Are the Key Market Drivers Fueling Demand for DNA Synthesizers Globally?

The growth in the DNA synthesizer market is driven by several interlinked factors rooted in technological innovation, expanding applications, and evolving user demands. One of the primary drivers is the rising adoption of synthetic biology in fields such as therapeutics, agriculture, and bio-manufacturing, where synthetic DNA is foundational to designing biological systems and custom organisms. The need for rapid prototyping in vaccine development, especially mRNA and DNA-based platforms, is also fueling investment in high-throughput DNA synthesis equipment. Additionally, the global expansion of CRISPR and gene editing research is driving the need for precision-engineered guide RNAs and donor templates, further boosting synthesizer usage. Another growth factor is the demand for decentralized, in-house DNA synthesis solutions that reduce dependency on outsourcing and accelerate project timelines-especially important in fast-paced biotech environments. The increasing integration of automated synthesizers into lab workflows, coupled with the development of cost-effective consumables, is making DNA synthesis more accessible to mid-sized labs and startups. Regulatory trends favoring personalized medicine and precision diagnostics are also stimulating the development of synthesizers that can produce DNA for targeted assay development and clinical research. Furthermore, strategic collaborations between synthesizer manufacturers, academic institutions, and pharmaceutical companies are accelerating product innovation and distribution. The advent of next-generation synthesis technologies, such as enzymatic and chip-based systems, is opening new commercial avenues with improved sustainability, accuracy, and scalability. Lastly, the growing focus on biotechnology education and workforce development is creating demand for academic synthesizers and training kits, ensuring long-term market expansion. Together, these diverse yet converging drivers are positioning DNA synthesizers as a cornerstone technology powering the next frontier of genomic science and bioengineering.

SCOPE OF STUDY:

The report analyzes the DNA Synthesizer market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Benchtop DNA Synthesizers, Large-scale DNA Synthesizers); Application (Drug Discovery & Development Application, Genetic Engineering Application, Clinical Diagnostics Application); End-Use (Academic & Research Institutes End-Use, Pharma & Biotech Companies End-Use, Clinical Laboratories End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â