¼¼°èÀÇ º¹ÇÕ¾ÖÀÚ ½ÃÀå
Composite Insulators
»óǰÄÚµå : 1786061
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 286 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,150,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,452,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ º¹ÇÕ¾ÖÀÚ ½ÃÀåÀº 2030³â±îÁö 35¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 25¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ º¹ÇÕ¾ÖÀÚ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 5.7%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 35¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ÄÉÀÌºí¡¤¼ÛÀü¼± ¾ÖÇø®ÄÉÀ̼ÇÀº CAGR 6.7%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 13¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½ºÀ§Ä¡±â¾î ¾ÖÇø®ÄÉÀÌ¼Ç ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 5.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 6¾ï 7,310¸¸ ´Þ·¯, Áß±¹Àº CAGR 9.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ º¹ÇÕ¾ÖÀÚ ½ÃÀåÀº 2024³â¿¡ 6¾ï 7,310¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 7¾ï 470¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 9.2%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 2.8%¿Í 5.6%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ º¹ÇÕ¾ÖÀÚ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

º¹ÇÕ Àý¿¬Ã¼°¡ Àü·Â Àü¼Û¿¡¼­ ÁöÁö¸¦ ¹Þ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

¼Û¹èÀü ³×Æ®¿öÅ©¿¡¼­ º¹ÇÕ Àý¿¬Ã¼ÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÏ´Â ÀÌÀ¯´Â ±âÁ¸ÀÇ µµÀڱ⳪ À¯¸® Àý¿¬Ã¼¿¡ ºñÇØ ±â°èÀû, Àü±âÀû Ư¼ºÀÌ ¿ì¼öÇϱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Àý¿¬Ã¼´Â ÀϹÝÀûÀ¸·Î À¯¸®¼¶À¯ ÄÚ¾î·Î °­È­µÈ Æú¸®¸Ó ¼ÒÀç·Î ¸¸µé¾îÁ® ±â°èÀû ½ºÆ®·¹½º, ¿À¿° ¹× °¡È¤ÇÑ ±â»ó Á¶°Ç¿¡ ´ëÇÑ ¿ì¼öÇÑ ³»¼ºÀ» ¹ßÈÖÇÕ´Ï´Ù. °¡º±°í ³ôÀº Àý¿¬ ³»·ÂÀ¸·Î ÃֽŠÀü·Â ÀÎÇÁ¶ó, ƯÈ÷ °íÀü¾Ð ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. º¹ÇÕ Àý¿¬Ã¼ ¼ö¿ä¸¦ ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â ƯÈ÷ ½ÅÈï °æÁ¦±Ç¿¡¼­ ¼¼°è Àü·Â¸ÁÀÇ ±Þ¼ÓÇÑ È®ÀåÀÔ´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, ¾ÆÇÁ¸®Ä« ±¹°¡µéÀº Áõ°¡ÇÏ´Â Àü·Â ¼ö¿ä¿¡ ´ëÀÀÇϱâ À§ÇØ ¼ÛÀü¸Á¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. º¹ÇÕ Àý¿¬Ã¼´Â ´©¼³ Àü·ù¸¦ ÁÙÀÌ°í ±ØÇÑÀÇ È¯°æ Á¶°ÇÀ» °ßµ®³»¾î ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼ºÀ» º¸ÀåÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϰí ÀÖ½À´Ï´Ù. ÇØ¾È Áö¿ª, »ê¾÷ Áö¿ª, ¿À¿°ÀÌ ½ÉÇÑ Áö¿ª¿¡¼­ È¿À²ÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ½ÃÀå¿¡¼­ÀÇ Ã¤ÅÃÀ» ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº ÀÌ»ó±âÈÄ¿¡ Á÷¸éÇßÀ» ¶§ Àü·Â¸ÁÀÇ ½Å·Ú¼º°ú º¹¿ø·Â¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ±âÈÄ º¯È­·Î ÀÎÇØ ÅÂdz, »êºÒ, ±â¿Âº¯È­°¡ ´õ ÀÚÁÖ ¹ß»ýÇÔ¿¡ µû¶ó Àü·Âȸ»ç´Â ½À±â, Àڿܼ±, ±â°èÀû ºÎÇÏ¿¡ ´ëÇÑ ÀúÇ×·ÂÀÌ ³ôÀº º¹ÇÕ Àý¿¬Ã¼·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ±úÁö±â ½¬¿î ¼¼¶ó¹Í Àý¿¬Ã¼¿Í ´Þ¸®, º¹ÇÕ Àý¿¬Ã¼´Â À¯¿¬ÇÑ ±¸Á¶¸¦ °¡Áö°í ÀÖÀ¸¸ç, ±â°èÀû °íÀåÀÇ À§ÇèÀ» ÃÖ¼ÒÈ­ÇÕ´Ï´Ù. µû¶ó¼­ °í¾Ð ¼ÛÀü¼±·Î ¹× º¯Àü¼Ò¿¡¼­ »ç¿ëÇϱ⿡ ÀûÇÕÇÕ´Ï´Ù.

º¹ÇÕ Àý¿¬Ã¼ÀÇ ¼º´ÉÀº Àç·á ±â¼ú Çõ½ÅÀ» ÅëÇØ ¾î¶»°Ô Çâ»óµÇ°í Àִ°¡?

°íºÐÀÚ ±â¼úÀÇ ¹ßÀüÀ¸·Î º¹ÇÕ Àý¿¬Ã¼ÀÇ ³»±¸¼º°ú ¼º´ÉÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. °í¼º´É ½Ç¸®ÄÜ °í¹« ÄÚÆÃÀº ¼Ò¼ö¼ºÀ» ³ôÀÌ°í ¹°¹æ¿ïÀÌ Ç÷¡½Ã ¿À¹ö·Î À̾îÁö´Â ¿¬¼ÓÀûÀÎ Àüµµ¼º °æ·Î¸¦ Çü¼ºÇÏÁö ¾Êµµ·Ï Çϱâ À§ÇØ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ±â´ÉÀº ±âÁ¸ÀÇ Àý¿¬Ã¼°¡ ÀÚÁÖ °íÀ峪´Â °í½Àµµ, »ê¾÷ ¿À¿°, ¿°ºÐÀ» ÇÔÀ¯ÇÑ È¯°æ¿¡¼­ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ÷´Ü À¯¸®¼¶À¯ °­È­ ÄÚ¾îÀÇ °³¹ßµµ ±â°èÀû °­µµ¸¦ Çâ»ó½Ã۰í Ã뼺ÆÄ±« °¡´É¼ºÀ» ÁÙ¿© ½ÃÀå °³¹ß¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ ÄÚ¾î´Â ÀÎÀå °­µµ¿Í ³»Ãæ°Ý¼ºÀÌ ¿ì¼öÇϸç, º¹ÇÕ Àý¿¬Ã¼´Â Àü±â Àý¿¬ Ư¼ºÀ» ¼Õ»ó½ÃŰÁö ¾Ê°í ³ôÀº ±â°èÀû ÇÏÁßÀ» °ßµô ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¦Á¶¾÷ü´Â ³ª³ë ±â¼úÀ» µµÀÔÇÏ¿© ¿À¿° ¹°Áú ¹× È­ÇÐÀû ¿­È­¿¡ ´ëÇÑ Ç¥¸é ³»¼ºÀ» °­È­ÇÏ¿© Àý¿¬Ã¼ÀÇ ¼ö¸íÀ» ´õ¿í ¿¬ÀåÇϰí ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Å« Çõ½ÅÀº º¹ÇÕ Àý¿¬Ã¼¿¡ ÅëÇÕµÈ ½º¸¶Æ® ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ» »ç¿ëÇÏ´Â °ÍÀÔ´Ï´Ù. µðÁöÅÐ ±×¸®µå °ü¸®ÀÇ ºÎ»óÀ¸·Î Àü·Âȸ»ç´Â ½Ç½Ã°£À¸·Î ¼º´ÉÀ» ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ´Â ¼¾¼­°¡ ³»ÀåµÈ Àý¿¬Ã¼¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÀáÀçÀûÀÎ °íÀåÀ» Á¶±â¿¡ °æ°íÇϰí, À¯Æ¿¸®Æ¼ ±â¾÷ÀÌ ¿¹¹æÀû À¯Áöº¸¼ö¸¦ ¼öÇàÇÏ¿© ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ´Ù¿îŸÀÓÀ» ¹æÁöÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ±×¸®µå ¸ð´ÏÅ͸µ¿¡¼­ »ç¹°ÀÎÅͳÝ(IoT)°ú ÀΰøÁö´ÉÀÇ ÅëÇÕÀº Àü·Â ÀÎÇÁ¶ó¿¡¼­ Áö´ÉÇü º¹ÇÕ Àý¿¬Ã¼ÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

º¹ÇÕ Àý¿¬Ã¼ äÅÃÀ» ÃËÁøÇÏ´Â ½ÃÀå µ¿ÇâÀº?

Àç»ý¿¡³ÊÁö·ÎÀÇ ÀüȯÀº º¹ÇÕ Àý¿¬Ã¼ ½ÃÀåÀ» Çü¼ºÇÏ´Â °¡Àå Áß¿äÇÑ µ¿Çâ Áß ÇϳªÀÔ´Ï´Ù. ž籤¹ßÀü¼Ò, dz·Â¿¡³ÊÁö ÇÁ·ÎÁ§Æ®, ÇØ»ó ¼ÛÀü¼±·Î ¹èÄ¡°¡ Áõ°¡ÇÔ¿¡ µû¶ó °¡È¤ÇÑ È¯°æ Á¶°ÇÀ» °ßµô ¼ö ÀÖ´Â ³»±¸¼º°ú °í¼º´É Àý¿¬Ã¼¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. º¹ÇÕ Àý¿¬Ã¼´Â ³»½Ä¼º, °æ·® ±¸Á¶, ¼³Ä¡ ¿ëÀ̼ºÀ¸·Î ÀÎÇØ ÀÌ·¯ÇÑ ¿ëµµ¿¡ ÀûÇÕÇϸç, Àç»ý¿¡³ÊÁö ºÐ¾ß¿¡¼­ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. µµ½ÃÈ­¿Í »ê¾÷È­ÀÇ ¹ßÀüµµ ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. µµ½Ã°¡ ¼ºÀåÇÏ°í ¿¡³ÊÁö ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Àü·Âȸ»ç´Â Àü·Â¸Á ¾÷±×·¹À̵å¿Í È®Àå¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. º¹ÇÕ Àý¿¬Ã¼´Â °ø°£ÀÇ Á¦¾à°ú ȯ°æÀû ¿äÀÎÀ¸·Î ÀÎÇØ °æ·® ¹× °í°­µµ Àý¿¬Ã¼ÀÇ »ç¿ëÀÌ ¿ä±¸µÇ´Â ¼ÒÇü, °íÀü¾Ð µµ½Ã ¼ÛÀü¼±·Î¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨ÇÏ°í ¼ÛÀü¸ÁÀÇ ½Å·Ú¼ºÀ» ³ôÀÏ ¼ö ÀÖÀ¸¸ç, Çö´ë µµ½Ã ¿¡³ÊÁö ÀÎÇÁ¶óÀÇ ±ÍÁßÇÑ ÀÚ»êÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±ÔÁ¦ Á¤Ã¥°ú ¼ÛÀü¸Á Çö´ëÈ­ °èȹÀº ½ÃÀå ¼ö¿ä¸¦ ²ø¾î¿Ã¸®´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è Á¤ºÎ¿Í ±ÔÁ¦±â°üÀº Àü·Â¸ÁÀÇ È¿À²¼º, ¾ÈÀü¼º, ȯ°æÀû Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±âÁØÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ Àý¿¬Ã¼º¸´Ù À¯Áöº¸¼ö°¡ °£ÆíÇϰí ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀÌ ÀûÀº º¹ÇÕ Àý¿¬Ã¼´Â ÀÌ·¯ÇÑ ±ÔÁ¦ ¸ñÇ¥¿¡ ºÎÇÕÇÕ´Ï´Ù. ¶ÇÇÑ Ã·´Ü Àý¿¬ ¼Ö·ç¼ÇÀ» ÇÊ¿ä·Î ÇÏ´Â °í¾ÐÁ÷·ù¼ÛÀü(HVDC) ¼ÛÀü ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϸ鼭 º¹ÇÕ Àý¿¬Ã¼¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

½ÃÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¼ºÀå ¿äÀÎÀº ¹«¾ùÀΰ¡?

º¹ÇÕ Àý¿¬Ã¼ ½ÃÀåÀÇ ¼ºÀåÀº °íºÐÀÚ Àç·áÀÇ ¹ßÀü, Àü·Â¸Á È®Àå ÇÁ·ÎÁ§Æ® Áõ°¡, Àç»ý¿¡³ÊÁö äÅà Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ÀÎÇÁ¶ó ±¸ÃàÀÌ ¿ì¼±½ÃµÇ´Â °³¹ßµµ»ó±¹¿¡¼­´Â °í¾Ð ¼ÛÀüÀ¸·ÎÀÇ ÀüȯÀÌ ÁÖ¿ä ÃËÁø¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. Á¤ºÎ¿Í Àü·Âȸ»ç°¡ Àü·Â Á¢±Ù¼º È®´ë¿¡ ÅõÀÚÇÔ¿¡ µû¶ó ½Å·ÚÇÒ ¼ö ÀÖ°í ºñ¿ë È¿À²ÀûÀÎ Àý¿¬Ã¼¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¶Ç ´Ù¸¥ Å« ¿äÀÎÀº Àü·Â¸ÁÀÇ µðÁöÅÐ ÀüȯÀÌ ÁøÇàµÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ½º¸¶Æ® ±×¸®µå ±â¼ú, ¿ø°Ý ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç, ¿¹Áöº¸Àü ÅøÀÇ ÅëÇÕÀº Áö´ÉÇü º¹ÇÕ Àý¿¬Ã¼ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ» ÅëÇØ Àü·Âȸ»ç´Â Àü·Â¸Á È¿À²À» ³ôÀ̰í, ¿î¿µ ºñ¿ëÀ» Àý°¨Çϰí, Á¤Àü °ü¸®¸¦ °³¼±ÇÒ ¼ö ÀÖÀ¸¸ç, º¹ÇÕ Àý¿¬Ã¼´Â ÃֽŠÀü·Â¸Á¿¡ ÇʼöÀûÀÎ ±¸¼º ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ȯ°æ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö´Â °Íµµ ½ÃÀå ¿ªÇÐÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö È¿À²°ú ÀÌ»êȭź¼Ò ¹èÃâ¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö¸é¼­ Àü·Âȸ»çµéÀº ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϸ鼭 Àå±âÀûÀÎ ½Å·Ú¼ºÀ» Á¦°øÇÏ´Â º¹ÇÕ Àý¿¬Ã¼¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. Æú¸®¸Ó ¼ÒÀç´Â ÀçȰ¿ëÀÌ °¡´ÉÇϰí, ¼¼¶ó¹ÍÀ̳ª À¯¸® Àý¿¬Ã¼¿¡ ºñÇØ Á¦Á¶½Ã ¿¡³ÊÁö ¼Òºñ°¡ Àû±â ¶§¹®¿¡ Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ Àû¿ëµÉ ¼ö ÀÖ´Â ÀåÁ¡ÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü±â ³×Æ®¿öÅ©ÀÇ ¾ÈÀü¼º°ú ½Å·Ú¼º Çâ»ó¿¡ ´ëÇÑ ¼ö¿ä´Â º¹ÇÕ Àý¿¬Ã¼ ±â¼úÀÇ ¿¬±¸°³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ³»Èļº, ³»¿À¿°¼º, ±â°èÀû ½ºÆ®·¹½º¿¡ °­ÇÑ Â÷¼¼´ë ¼ÒÀç¿Í ÄÚÆÃ¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ¸·Î Á¦Ç°ÀÇ ¼º´ÉÀÌ Áö¼ÓÀûÀ¸·Î Çâ»óµÊ¿¡ µû¶ó Àü ¼¼°è Àü·Â ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡¼­ º¹ÇÕ Àý¿¬Ã¼ÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

º¹ÇÕ Àý¿¬Ã¼ ½ÃÀåÀÇ ¹Ì·¡¸¦ Á¿ìÇÏ´Â ÀÌ·¯ÇÑ ¿äÀÎÀÇ ÃÑü·Î¼­, ÀÌ »ê¾÷Àº ±â¼ú ¹ßÀü, ±ÔÁ¦ ´ç±¹ÀÇ Áö¿ø, °í¼º´É ¼ÛÀü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ Áö¼Ó°¡´ÉÇÑ ¼ºÀåÀ» ÀÌ·ê Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

ºÎ¹®

¿ëµµ(ÄÉÀÌºí ¹× ¼ÛÀü¼± ¿ëµµ, °³Æó±â ¿ëµµ, º¯¾Ð±â ¿ëµµ, ºÎ½º¹Ù ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(À¯Æ¿¸®Æ¼ ÃÖÁ¾ ¿ëµµ, »ó¾÷¡¤»ê¾÷ ÃÖÁ¾ ¿ëµµ, ÁÖÅà ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Composite Insulators Market to Reach US$3.5 Billion by 2030

The global market for Composite Insulators estimated at US$2.5 Billion in the year 2024, is expected to reach US$3.5 Billion by 2030, growing at a CAGR of 5.7% over the analysis period 2024-2030. Cables & Transmission Lines Application, one of the segments analyzed in the report, is expected to record a 6.7% CAGR and reach US$1.3 Billion by the end of the analysis period. Growth in the Switchgears Application segment is estimated at 5.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$673.1 Million While China is Forecast to Grow at 9.2% CAGR

The Composite Insulators market in the U.S. is estimated at US$673.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$704.7 Million by the year 2030 trailing a CAGR of 9.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.8% and 5.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.8% CAGR.

Global Composite Insulators Market - Key Trends & Drivers Summarized

Why Are Composite Insulators Gaining Traction in Power Transmission?

The increasing adoption of composite insulators in power transmission and distribution networks is driven by their superior mechanical and electrical properties compared to traditional porcelain and glass insulators. These insulators, typically made from polymer materials reinforced with fiberglass cores, offer excellent resistance to mechanical stress, contamination, and harsh weather conditions. Their lightweight nature and high dielectric strength make them ideal for modern power infrastructure, particularly in high-voltage applications. One of the key factors driving demand for composite insulators is the rapid expansion of global electricity grids, particularly in emerging economies. Countries in Asia-Pacific, Latin America, and Africa are investing heavily in power transmission networks to meet the growing demand for electricity. Composite insulators play a critical role in ensuring grid stability by reducing leakage currents and withstanding extreme environmental conditions. Their ability to perform efficiently in coastal, industrial, and high-pollution areas has further strengthened their market adoption. Another crucial driver is the increasing need for grid reliability and resilience in the face of extreme weather events. With climate change causing more frequent storms, wildfires, and temperature fluctuations, utilities are shifting toward composite insulators that offer higher resistance to moisture, ultraviolet radiation, and mechanical loads. Unlike traditional ceramic insulators, which are prone to breakage, composite insulators have a flexible structure that minimizes the risk of mechanical failure. This makes them a preferred choice for high-voltage power lines and substations.

How Are Material Innovations Enhancing the Performance of Composite Insulators?

Advancements in polymer technology have significantly improved the durability and performance of composite insulators. High-performance silicone rubber coatings are being increasingly used to enhance hydrophobicity, ensuring that water droplets do not form continuous conductive paths that could lead to flashovers. This feature is particularly beneficial in areas with high humidity, industrial pollution, and salt-laden environments where conventional insulators often fail. The development of advanced fiberglass-reinforced cores has also contributed to market growth by improving mechanical strength and reducing the likelihood of brittle fractures. These cores provide better tensile strength and impact resistance, allowing composite insulators to withstand high mechanical loads without compromising electrical insulation properties. Additionally, manufacturers are incorporating nanotechnology to enhance surface resistance against pollutants and chemical degradation, further extending the lifespan of these insulators. Another major innovation is the use of smart monitoring systems integrated into composite insulators. With the rise of digital grid management, utilities are adopting sensor-embedded insulators capable of real-time performance monitoring. These systems provide early warnings for potential failures, helping utilities conduct preventive maintenance and avoid costly downtime. The integration of Internet of Things (IoT) and artificial intelligence in grid monitoring is expected to further drive the adoption of intelligent composite insulators in power infrastructure.

What Market Trends Are Driving the Adoption of Composite Insulators?

The transition toward renewable energy is one of the most significant trends shaping the composite insulators market. The increasing deployment of solar farms, wind energy projects, and offshore power transmission lines is driving the need for durable and high-performance insulators that can withstand harsh environmental conditions. Composite insulators are well-suited for these applications due to their corrosion resistance, lightweight structure, and ease of installation, making them a preferred choice in the renewable energy sector. The rise in urbanization and industrialization is also contributing to market expansion. As cities grow and energy demand rises, power utilities are focusing on upgrading and expanding transmission networks. Composite insulators are being widely used in compact and high-voltage urban transmission lines, where space constraints and environmental factors necessitate the use of lightweight and high-strength insulators. Their ability to reduce maintenance costs and enhance grid reliability makes them a valuable asset for modern urban energy infrastructure. Regulatory policies and grid modernization initiatives are playing a crucial role in boosting market demand. Governments and regulatory bodies worldwide are implementing stringent standards for power grid efficiency, safety, and environmental sustainability. Composite insulators, which require less maintenance and have a lower environmental impact than traditional insulators, align with these regulatory objectives. Additionally, increased investments in high-voltage direct current (HVDC) transmission systems, which require advanced insulation solutions, are further driving demand for composite insulators.

What Are the Key Growth Drivers Fueling the Market?

The growth in the composite insulators market is driven by several factors, including advancements in polymer materials, increasing grid expansion projects, and the rising adoption of renewable energy. One of the primary drivers is the shift toward high-voltage power transmission, particularly in developing regions where infrastructure development is a priority. As governments and utilities invest in expanding electricity access, the need for reliable and cost-effective insulators is growing. Another significant factor fueling market growth is the ongoing digital transformation of power grids. The integration of smart grid technologies, remote monitoring solutions, and predictive maintenance tools is encouraging the adoption of intelligent composite insulators. These innovations help utilities enhance grid efficiency, reduce operational costs, and improve outage management, making composite insulators an essential component of modern transmission networks. The increasing focus on environmental sustainability is also shaping market dynamics. With growing concerns over energy efficiency and carbon emissions, utilities are adopting composite insulators that offer long-term reliability with minimal environmental impact. The recyclability of polymer materials and the reduced energy consumption in their manufacturing compared to ceramic and glass insulators further support their adoption in sustainable energy projects. Additionally, the demand for enhanced safety and reliability in electrical networks is driving research and development in composite insulator technology. Manufacturers are investing in next-generation materials and coatings that offer superior resistance to weathering, pollution, and mechanical stress. As these innovations continue to improve product performance, the adoption of composite insulators is expected to accelerate across global power infrastructure projects.

With these factors collectively influencing the future of the composite insulators market, the industry is poised for sustained growth, driven by technological advancements, regulatory support, and the increasing demand for high-performance power transmission solutions.

SCOPE OF STUDY:

The report analyzes the Composite Insulators market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Application (Cables and Transmission Lines Application, Switchgears Application, Transformer Application, Bus Bars Application, Other Applications); End-Use (Utilities End-Use, Commercial and Industrial End-Use, Residential End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 43 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â