¼¼°èÀÇ BEV Àü±â ±¸µ¿ÀåÄ¡ ½ÃÀå
BEV Electric Drive Units
»óǰÄÚµå : 1785833
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 198 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,701,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ BEV Àü±â ±¸µ¿ÀåÄ¡ ½ÃÀåÀº 2030³â±îÁö 311¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 101¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â BEV Àü±â ±¸µ¿ÀåÄ¡ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 20.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 311¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Water Glycol Coolant´Â CAGR 24.1%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 215¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯¼º Äð¶õÆ® ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR14.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 28¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 28.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ BEV Àü±â ±¸µ¿ÀåÄ¡ ½ÃÀåÀº 2024³â¿¡ 28¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 76¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 28.2%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 16.0%¿Í 18.6%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 17.2%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ BEV Àü±â ±¸µ¿ÀåÄ¡ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

BEV Àü±â ±¸µ¿ÀåÄ¡°¡ ¸ðºô¸®Æ¼ÀÇ ¹Ì·¡¸¦ ÀçÁ¤ÀÇÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

¹èÅ͸® Àü±âÀÚµ¿Â÷(BEV)ÀÇ µîÀåÀº ÀÚµ¿Â÷ÀÇ Àü¸ÁÀ» Å©°Ô ¹Ù²Ù°í ÀÖÀ¸¸ç, Àü±â ±¸µ¿ÀåÄ¡(EDU)´Â Áö¼Ó °¡´ÉÇÑ ±³Åë¼ö´ÜÀ¸·ÎÀÇ Àüȯ¿¡ ÀÖ¾î Áß¿äÇÑ ±¸¼º ¿ä¼Ò·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ³»¿¬±â°üÂ÷(ICE) ÆÄ¿öÆ®·¹Àΰú ´Þ¸®, BEV Àü±â ±¸µ¿ÀåÄ¡´Â ¸ðÅÍ, ÀιöÅÍ, º¯¼Ó±â¸¦ ÄÄÆÑÆ®ÇÑ ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ¿© Â÷·® ¼º´É, È¿À²¼º, ÆÐŰ¡À» ÃÖÀûÈ­ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀ» ÅëÇØ Àü±â ¿¡³ÊÁö¸¦ ¿øÈ°Çϰí Á÷Á¢ÀûÀ¸·Î ¹ÙÄû¿¡ Àü´ÞÇÒ ¼ö ÀÖ¾î ±âÁ¸ ±¸µ¿°è¿Í °°Àº ±â°èÀû º¹À⼺À» Á¦°ÅÇϸ鼭 °¡¼ÓÀ» Çâ»ó½ÃŰ°í ¿¡³ÊÁö ¼Õ½ÇÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. Àü ¼¼°è ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ¹èÅ͸®ÀÇ ÁÖÇà°Å¸®¸¦ ´Ã¸®°í Àüü Â÷·® ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ ´õ ³ôÀº Àü·Â ¹Ðµµ, ´õ ³ªÀº ¿­ °ü¸®, È¿À²¼º Çâ»óÀ» À§ÇÑ Ã·´Ü EDU °³¹ß¿¡ ÁýÁßÇϰí ÀÖ½À´Ï´Ù.

¼¼°è ½ÃÀå¿¡¼­ BEVÀÇ Ã¤ÅÃÀÌ È®´ëµÊ¿¡ µû¶ó ¼ÒÇü µµ½ÉÇü Àü±âÂ÷ºÎÅÍ °í¼º´É Àü±â SUV ¹× Æ®·°¿¡ À̸£±â±îÁö ´Ù¾çÇÑ Â÷·® ¿ëµµ¸¦ Áö¿øÇÒ ¼ö ÀÖ´Â °íÈ¿À² Àü±â ±¸µ¿ÀåÄ¡¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Á¤ºÎ ¹× ±ÔÁ¦±â°üÀº º¸´Ù ¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦¸¦ ½ÃÇàÇϰí EV µµÀÔÀ» Àå·ÁÇϰí ÀÖ¾î Â÷¼¼´ë EDUÀÇ °³¹ß ¹× µµÀÔÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¹× ÁúÈ­°¥·ý(GaN) ¼ÒÀçÀÇ »ç¿ëÀ» Æ÷ÇÔÇÑ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼ ±â¼úÀÇ ¹ßÀüÀº Àü·Â ¼Õ½ÇÀ» ÁÙÀÌ°í ¿­ ¾ÈÁ¤¼ºÀ» °³¼±ÇÏ¿© ±¸µ¿ÀåÄ¡ÀÇ È¿À²À» ´õ¿í Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷ÀÌ Àüµ¿È­·Î ÀüȯÇÔ¿¡ µû¶ó Á¦Á¶¾÷üµéÀº ´Ù¾çÇÑ Â÷·® ¾ÆÅ°ÅØÃ³¿¡ Àû¿ëÇÒ ¼ö ÀÖ´Â ¸ðµâ½Ä ¹× È®Àå °¡´ÉÇÑ µå¶óÀ̺ê À¯´Ö ¼³°è¿¡ ÁßÁ¡À» µÎ¾î ºñ¿ë È¿À²ÀûÀÎ »ý»ê°ú º¸±ÞÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº BEV Àü±â ±¸µ¿ÀåÄ¡ÀÇ °³¹ßÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

Àü±â ÃßÁø ½Ã½ºÅÛÀÇ ±â¼ú ¹ßÀüÀº BEV Àü±â ±¸µ¿ÀåÄ¡ÀÇ ±Þ¼ÓÇÑ °³¼±À» ÃËÁøÇÏ¿© ´õ ³ôÀº È¿À², ´õ ³ôÀº Ãâ·Â ¹× ³»±¸¼º Çâ»óÀ¸·Î À̾îÁý´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼­ °¡Àå Áß¿äÇÑ Çõ½Å Áß Çϳª´Â Àü±â¸ðÅÍ, ÆÄ¿öÀÏ·ºÆ®·Î´Ð½º, º¯¼Ó±â¸¦ ÇϳªÀÇ ÄÄÆÑÆ®ÇÑ ¸ðµâ·Î ÅëÇÕÇÑ ÅëÇÕÇü EDUÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ ¼³°è´Â ¹«°Ô¿Í º¹À⼺À» ÁÙÀÏ »Ó¸¸ ¾Æ´Ï¶ó Àü·Â º¯È¯ ¼Õ½ÇÀ» ÃÖ¼ÒÈ­ÇÏ¿© ¿¡³ÊÁö È¿À²À» Çâ»ó½Ãŵ´Ï´Ù. ¶ÇÇÑ, Á¦Á¶¾÷ü´Â ¿­ °ü¸®¸¦ °­È­ÇÏ°í °íºÎÇÏ Á¶°Ç¿¡¼­ ¼º´É ÀúÇϸ¦ ¹æÁöÇϱâ À§ÇØ À¯³Ã½Ä ¸ðÅÍ ¹× Á÷Á¢ Á¢ÃË½Ä ¼ö³Ã½Ä ½Ã½ºÅÛ°ú °°Àº °í±Þ ³Ã°¢ ¼Ö·ç¼ÇÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ±â¼ú µ¿ÇâÀº °íÀü¾Ð ¾ÆÅ°ÅØÃ³·ÎÀÇ ÀüȯÀ¸·Î, ¸¹Àº ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ 400V¿¡¼­ 800V ½Ã½ºÅÛÀ¸·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °íÀü¾Ð EDU´Â ÃæÀü ½Ã°£ ´ÜÃà, Àü·Â È¿À² Çâ»ó, ¹ß¿­ °¨¼Ò¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© Â÷¼¼´ë Àü±âÂ÷¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ÆÄ¿ö ¹ÝµµÃ¼ÀÇ ÅëÇÕÀº ½ºÀ§Äª ¼Õ½Ç °¨¼Ò, Àü·Â ¹Ðµµ Çâ»ó, Àüü ½Ã½ºÅÛ È¿À² Çâ»óÀ¸·Î µå¶óÀ̺ê À¯´ÖÀÇ ¼º´É¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. ¶ÇÇÑ, ¸ðÅÍ Á¦¾î ¾Ë°í¸®Áò°ú AI ±â¹Ý ¿¹Áöº¸Àü ½Ã½ºÅÛÀÇ ¼ÒÇÁÆ®¿þ¾îÀÇ ¹ßÀüÀ¸·Î µå¶óÀ̺ê À¯´ÖÀÇ ¼º´ÉÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÏ¿© ¿¹¹æÀû °íÀå °¨Áö ¹× Àü·Â °ø±Þ ÃÖÀûÈ­°¡ °¡´ÉÇØÁ³½À´Ï´Ù. °í¼º´É Àü±âÂ÷¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Àü±â ±¸µ¿ÀåÄ¡ÀÇ Áö¼ÓÀûÀÎ ÁøÈ­´Â Àü±âÂ÷ÀÇ ÁÖÇà°Å¸®, ÁÖÇ༺, Áö¼Ó°¡´É¼ºÀ» ³ôÀÌ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

BEV Àü±â ±¸µ¿ÀåÄ¡ ½ÃÀåÀÇ ¼ºÀåÀ» ÁÖµµÇÏ´Â ¾÷°è µ¿ÇâÀº?

¸î °¡Áö ¾÷°è µ¿ÇâÀÌ BEV Àü±â ±¸µ¿ÀåÄ¡ ½ÃÀåÀÇ ¼ºÀå ±Ëµµ¸¦ Çü¼ºÇϰí ÀÖÀ¸¸ç, ÀÌ´Â Àü±âÈ­ ¹× Áö¼Ó °¡´ÉÇÑ ¸ðºô¸®Æ¼·ÎÀÇ ±¤¹üÀ§ÇÑ Àüȯ°ú ÀÏÄ¡ÇÕ´Ï´Ù. °¡Àå µÎµå·¯Áø Æ®·»µå Áß Çϳª´Â EVÀÇ Ç׼ӰŸ®¿Í ¿¡³ÊÁö È¿À²À» ±Ø´ëÈ­Çϱâ À§ÇØ °æ·®È­ ¹× °íÈ¿À² ÆÄ¿öÆ®·¹Àο¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº °í°­µµ ¾Ë·ç¹Ì´½ ÇÕ±Ý, º¹ÇÕ ±¸Á¶ µî ÷´Ü ¼ÒÀç¿¡ ÅõÀÚÇÏ¿© ±¸Á¶Àû ¹«°á¼º°ú ³»±¸¼ºÀ» À¯ÁöÇϸ鼭 ±¸µ¿ À¯´ÖÀÇ ¹«°Ô¸¦ ÁÙÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±âÁ¸ ¹æ»çÇü ÀÚ¼Ó ¸ðÅÍ¿¡ ºñÇØ Ãâ·Â ¹Ðµµ¿Í È¿À²ÀÌ ³ôÀº Ãà·ù ¸ðÅÍÀÇ °³¹ßÀÌ Â÷·® ¼º´É Çâ»óÀ» ¸ñÇ¥·Î ÇÏ´Â EV Á¦Á¶¾÷üµé »çÀÌ¿¡¼­ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù.

½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¶Ç ´Ù¸¥ ÁÖ¿ä Æ®·»µå´Â Àü±âÀÚµ¿Â÷ÀÇ Àü·û±¸µ¿(AWD)°ú µà¾ó ¸ðÅÍ ±¸¼ºÀÇ ºÎ»óÀÔ´Ï´Ù. °í¼º´É EV¿Í Àü±â SUV¿¡¼­´Â °ßÀηÂ, °¡¼Ó·Â, ÁÖÇà ¿ªµ¿¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ¸ÖƼ ¸ðÅÍ µå¶óÀ̺ê À¯´ÖÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ¹ÙÄû »çÀÌÀÇ µ¿·Â ¹èºÐÀ» ÃÖÀûÈ­ÇÏ°í ¾ÈÁ¤¼º°ú Çڵ鸵À» Çâ»ó½ÃŰ´Â Áö´ÉÇü ÅäÅ© º¤Å͸µ ½Ã½ºÅÛÀÇ °³¹ß·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, V2G(Vehicle-to-Grid) ¹× V2H(Vehicle-to-Home) ±â¼úÀÇ Ã¤ÅÃÀÌ È®´ëµÊ¿¡ µû¶ó Á¦Á¶¾÷ü´Â ¿¡³ÊÁö ȸ»ý ¹× ½º¸¶Æ® ±×¸®µå¿ÍÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» Áö¿øÇÏ´Â ¾ç¹æÇâ µå¶óÀ̺ê À¯´Ö ¼³°è°¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. Àü±âÂ÷ ½ÃÀåÀÌ Áö¼ÓÀûÀ¸·Î È®´ëµÊ¿¡ µû¶ó ´Ù¾çÇÑ Â÷·® ºÎ¹®¿¡ ¸Â´Â ¸ÂÃãÇü °í¼º´É µå¶óÀ̺ê À¯´Ö¿¡ ´ëÇÑ ¼ö¿ä°¡ ±â¼ú Çõ½Å°ú ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈ­ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

BEV Àü±â ±¸µ¿ÀåÄ¡ ½ÃÀåÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

BEV Àü±â ±¸µ¿ÀåÄ¡ ½ÃÀåÀÇ ¼ºÀåÀº ÆÄ¿öÆ®·¹ÀÎ ±â¼ú ¹ßÀü, EV äÅà Áõ°¡, ¹«°øÇØ ¿î¼ÛÀ» ÃËÁøÇÏ´Â ±ÔÁ¦ Á¤Ã¥ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁú °ÍÀÔ´Ï´Ù. °¡Àå Å« ¿øµ¿·Â Áß Çϳª´Â ź¼ÒÁ߸³À» ÇâÇÑ Àü ¼¼°èÀûÀÎ ¿òÁ÷ÀÓÀ¸·Î, °¢±¹ Á¤ºÎ´Â ¾ö°ÝÇÑ ¹èÃâ·® ¸ñÇ¥¸¦ ¼³Á¤Çϰí Àü±âÂ÷ º¸±ÞÀ» ÃËÁøÇϱâ À§ÇÑ Àμ¾Æ¼ºê¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦ º¯È­·Î ÀÎÇØ ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº Àü±â ±¸µ¿ÀåÄ¡ °³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇØ¾ß Çß°í, È¿À²¼º Çâ»ó, ºñ¿ë Àý°¨, Â÷·® ¼º´É Çâ»ó¿¡ ÁýÁßÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °í¿¡³ÊÁö ¹Ðµµ ¼¿ ¹× ¼Ö¸®µå ½ºÅ×ÀÌÆ® ¹èÅ͸®¿Í °°Àº ¹èÅ͸® ±â¼úÀÇ ¹ßÀüÀº ÁÖÇà°Å¸® ¿¬Àå ¹× ÃæÀü ±â´ÉÀÇ °í¼ÓÈ­¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© µå¶óÀ̺ê À¯´ÖÀÇ ÁøÈ­¸¦ º¸¿ÏÇϰí ÀÖ½À´Ï´Ù.

¶Ù¾î³­ °¡¼Ó°ú ÁÖÇà ¿ªµ¿¼ºÀ» ±¸ÇöÇϱâ À§ÇØ °íÃâ·Â, °íÈ¿À²ÀÇ Àü±â ±¸µ¿ À¯´ÖÀÌ ÇÊ¿äÇϸç, ¼º´É Áß½ÉÀÇ Àü±âÂ÷¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Â °Íµµ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. Å×½½¶óÀÇ Plaid µå¶óÀÌºêÆ®·¹ÀÎÀ̳ª Æø½º¹Ù°ÕÀÇ MEB ¾ÆÅ°ÅØÃ³¿Í °°Àº Àü±âÂ÷ Àü¿ë Ç÷§ÆûÀÇ µîÀåÀº µå¶óÀ̺ê À¯´Ö ¼³°èÀÇ Çõ½ÅÀ» ´õ¿í ÃËÁøÇÏ°í ¿©·¯ Â÷Á¾¿¡ Àû¿ëÇÒ ¼ö ÀÖ´Â ¸ðµâ½Ä ¹× È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °ø±Þ¸Á °³¼±°ú µå¶óÀ̺ê À¯´Ö »ý»êÀÇ ÇöÁöÈ­¸¦ ÅëÇØ ºñ¿ëÀÌ Àý°¨µÇ°í ½ÃÀå Á¢±Ù¼ºÀÌ Çâ»óµÊ¿¡ µû¶ó BEV´Â ´õ ¸¹Àº ¼ÒºñÀÚÃþ¿¡°Ô ÇÕ¸®ÀûÀÎ °¡°ÝÀ¸·Î Á¦°øµÉ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ Àü±â ±¸µ¿ ±â¼úÀ» Áö¼ÓÀûÀ¸·Î °³¼±Çϰí ÀÖ´Â °¡¿îµ¥, ´õ ³ôÀº È¿À², ´õ ³ªÀº ³Ã°¢ ¼º´É, °í±Þ Á¦¾î ½Ã½ºÅÛÀ» Á¦°øÇÏ´Â Â÷¼¼´ë EDU¿¡ ´ëÇÑ ¼ö¿ä´Â ¼¼°è BEV Àü±â ±¸µ¿ÀåÄ¡ ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

³Ã°¢Á¦(¿öÅÍ ±Û¸®ÄÝ ³Ã°¢Á¦, À¯¼º ³Ã°¢Á¦);ÆÇ¸Åä³Î(OEM ÆÇ¸Åä³Î, ¾ÖÇÁÅ͸¶ÄÏ ÆÇ¸Åä³Î)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global BEV Electric Drive Units Market to Reach US$31.1 Billion by 2030

The global market for BEV Electric Drive Units estimated at US$10.1 Billion in the year 2024, is expected to reach US$31.1 Billion by 2030, growing at a CAGR of 20.5% over the analysis period 2024-2030. Water Glycol Coolant, one of the segments analyzed in the report, is expected to record a 24.1% CAGR and reach US$21.5 Billion by the end of the analysis period. Growth in the Oil-Based Coolant segment is estimated at 14.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.8 Billion While China is Forecast to Grow at 28.2% CAGR

The BEV Electric Drive Units market in the U.S. is estimated at US$2.8 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$7.6 Billion by the year 2030 trailing a CAGR of 28.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 16.0% and 18.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 17.2% CAGR.

Global BEV Electric Drive Units Market - Key Trends & Drivers Summarized

Why Are BEV Electric Drive Units Redefining the Future of Mobility?

The rise of battery electric vehicles (BEVs) has significantly transformed the automotive landscape, with electric drive units (EDUs) emerging as a critical component in the shift toward sustainable transportation. Unlike internal combustion engine (ICE) powertrains, BEV electric drive units integrate the motor, inverter, and transmission into a compact system, optimizing vehicle performance, efficiency, and packaging. This integration allows for a seamless and direct transfer of electrical energy to the wheels, eliminating the mechanical complexities of traditional drivetrains while improving acceleration and reducing energy losses. Automakers worldwide are focusing on developing advanced EDUs that offer higher power density, better thermal management, and increased efficiency to extend battery range and enhance overall vehicle performance.

The growing adoption of BEVs across global markets has intensified the demand for highly efficient electric drive units that can support a diverse range of vehicle applications, from compact urban EVs to high-performance electric SUVs and trucks. Governments and regulatory bodies are enforcing stricter emission standards and incentivizing EV adoption, accelerating the development and deployment of next-generation EDUs. Additionally, advancements in power electronics and semiconductor technologies, including the use of silicon carbide (SiC) and gallium nitride (GaN) materials, are further enhancing the efficiency of drive units by reducing power losses and improving thermal stability. With the automotive industry transitioning toward electrification, manufacturers are focusing on modular and scalable drive unit designs that can be adapted to different vehicle architectures, ensuring cost-effective production and widespread adoption.

How Are Technological Innovations Shaping the Development of BEV Electric Drive Units?

Technological advancements in electric propulsion systems are driving rapid improvements in BEV electric drive units, leading to greater efficiency, higher power output, and enhanced durability. One of the most significant innovations in this space is the development of integrated EDUs, which combine the electric motor, power electronics, and transmission into a single, compact module. This design not only reduces weight and complexity but also improves energy efficiency by minimizing power conversion losses. Additionally, manufacturers are adopting advanced cooling solutions, such as oil-cooled motors and direct-contact liquid cooling systems, to enhance thermal management and prevent performance degradation under high-load conditions.

Another key technological trend is the shift toward higher voltage architectures, with many automakers transitioning from 400V to 800V systems. These higher voltage EDUs enable faster charging times, improved power efficiency, and reduced heat generation, making them ideal for next-generation EVs. The integration of silicon carbide (SiC) power semiconductors is also revolutionizing drive unit performance by reducing switching losses, increasing power density, and enhancing overall system efficiency. Furthermore, software advancements in motor control algorithms and AI-driven predictive maintenance systems are enabling real-time monitoring of drive unit performance, allowing for proactive fault detection and optimization of power delivery. As the demand for high-performance electric vehicles grows, the continuous evolution of electric drive units is expected to play a crucial role in enhancing EV range, drivability, and sustainability.

Which Industry Trends Are Driving Growth in the BEV Electric Drive Unit Market?

Several industry trends are shaping the growth trajectory of the BEV electric drive unit market, aligning with the broader shift toward electrification and sustainable mobility. One of the most prominent trends is the increasing focus on lightweight and high-efficiency powertrains to maximize EV range and energy efficiency. Automakers are investing in advanced materials, such as high-strength aluminum alloys and composite structures, to reduce the weight of drive units while maintaining structural integrity and durability. Additionally, the development of axial flux motors, which offer higher power density and efficiency compared to traditional radial flux motors, is gaining traction among EV manufacturers aiming to enhance vehicle performance.

Another key trend influencing the market is the rise of all-wheel-drive (AWD) and dual-motor configurations in electric vehicles. High-performance EVs and electric SUVs are increasingly adopting multi-motor drive units to improve traction, acceleration, and driving dynamics. This trend has led to the development of intelligent torque vectoring systems that optimize power distribution between wheels, enhancing stability and handling. Moreover, the growing adoption of vehicle-to-grid (V2G) and vehicle-to-home (V2H) technologies is pushing manufacturers to design bidirectional drive units that support energy regeneration and seamless integration with smart grids. As the EV market continues to expand, the demand for customizable, high-performance drive units tailored to different vehicle segments is expected to accelerate innovation and market growth.

What Are the Key Growth Drivers Shaping the Future of the BEV Electric Drive Unit Market?

The growth in the BEV electric drive unit market is driven by several factors, including advancements in powertrain technology, increasing EV adoption, and regulatory policies promoting zero-emission transportation. One of the most significant drivers is the global push toward carbon neutrality, with governments implementing stringent emissions targets and offering incentives to accelerate EV adoption. This regulatory shift has compelled automakers to invest heavily in electric drive unit development, focusing on improving efficiency, reducing costs, and enhancing vehicle performance. Additionally, advancements in battery technology, including higher energy density cells and solid-state batteries, are complementing the evolution of drive units by enabling longer range and faster charging capabilities.

Another key driver is the increasing demand for performance-oriented EVs, which require high-power, high-efficiency electric drive units to deliver superior acceleration and driving dynamics. The rise of dedicated EV platforms, such as Tesla’s Plaid drivetrain and Volkswagen’s MEB architecture, has further fueled innovation in drive unit design, leading to modular and scalable solutions that can be adapted across multiple vehicle models. Furthermore, supply chain improvements and the localization of drive unit production are reducing costs and enhancing market accessibility, making BEVs more affordable to a broader consumer base. As automakers continue to refine electric drive technologies, the demand for next-generation EDUs that offer higher efficiency, better cooling performance, and advanced control systems is expected to drive sustained growth in the global BEV electric drive unit market.

SCOPE OF STUDY:

The report analyzes the BEV Electric Drive Units market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Coolant (Water Glycol Coolant, Oil-Based Coolant); Sales Channel (OEM Sales Channel, Aftermarkets Sales Channel)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â