¼¼°èÀÇ V2X »çÀ̹ö º¸¾È ½ÃÀå
V2X Cybersecurity
»óǰÄÚµå : 1784815
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 229 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,150,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,452,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ V2X »çÀ̹ö º¸¾È ½ÃÀåÀº 2030³â±îÁö 87¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 31¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â V2X »çÀ̹ö º¸¾È ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 18.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 87¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¿Âº¸µå ÀåÄ¡´Â CAGR 17.1%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 51¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µµ·Îº¯ ÀåÄ¡ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 21.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8¾ï 1,050¸¸ ´Þ·¯, Áß±¹Àº CAGR18.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ V2X »çÀ̹ö º¸¾È ½ÃÀåÀº 2024³â¿¡ 8¾ï 1,050¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 13¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 18.0%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 17.2%¿Í 16.6%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 14.1%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ V2X »çÀ̹ö º¸¾È ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

»óÈ£ ¿¬°áµÈ ÀÚµ¿Â÷´Â µµ·ÎÀÇ º¸¾È ¿ì¼±¼øÀ§¸¦ ¾î¶»°Ô ¹Ù²Ù°í Àִ°¡?

V2X(Vehicle-to-Everything) »çÀ̹ö º¸¾È ½ÃÀåÀº Àü ¼¼°è ±³Åë ½Ã½ºÅÛÀÌ Ä¿³ØÆ¼µå ¸ðºô¸®Æ¼ ¹× ÀÚÀ²ÁÖÇà ¸ðºô¸®Æ¼ »ýŰè·Î Á¡Á¡ ´õ ¸¹ÀÌ À̵¿ÇÔ¿¡ µû¶ó ºü¸£°Ô ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. Â÷·® ´ë Â÷·®(V2V), Â÷·® ´ë ÀÎÇÁ¶ó(V2I), Â÷·® ´ë ³×Æ®¿öÅ©(V2N), Â÷·® ´ë º¸ÇàÀÚ(V2P) Åë½Å ÇÁ·ÎÅäÄÝÀ» Æ÷°ýÇÏ´Â V2X ±â¼úÀº ±³Åë È¿À²¼º, ¾ÈÀü¼º, À̵¿¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ¾öû³­ ±âȸ¸¦ °¡Á®´ÙÁÖ¾ú½À´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ »óÈ£ ¿¬°áµÈ ÇÁ·¹ÀÓ¿öÅ©´Â »çÀ̹ö À§Çù¿¡ ´ëÇÑ Ãë¾à¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. Áß°£ÀÚ °ø°Ý, ½ºÇªÇÎ, µ¥ÀÌÅÍ º¯Á¶, ¼­ºñ½º °ÅºÎ(DoS) °ø°Ý µîÀÇ °ø°Ý º¤ÅÍ´Â ½É°¢ÇÑ ¹®Á¦·Î ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À§ÇùÀº ¿îÀüÀÚÀÇ ¾ÈÀü, ±³Åë ½Ã½ºÅÛ, ³ª¾Æ°¡ ±¹°¡ ¾Èº¸¸¦ À§ÇùÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó °­·ÂÇÑ ¿£µåÅõ¿£µå »çÀ̹ö º¸¾È ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇöÀç º¸¾È ´ëÃ¥Àº ÀÎÁõ ÇÁ·ÎÅäÄÝ, ¾ÈÀüÇÑ ¼ÒÇÁÆ®¿þ¾î ¾÷µ¥ÀÌÆ®, ħÀÔ°¨Áö½Ã½ºÅÛ(IDS), °ø°³Å°±â¹Ý(PKI) ÇÁ·¹ÀÓ¿öÅ©¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃ°ú AI ±â¹Ý À§Çù ÀÎÅÚ¸®Àü½ºÀÇ µµÀÔÀº ½Ç½Ã°£ À§Çè °¨¼Ò¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á V2X ¹æ¾î¸¦ ´õ¿í °­È­ÇÕ´Ï´Ù. À¯·´ ¿¬ÇÕ »çÀ̹ö º¸¾È ±â°ü(ENISA)°ú ¹Ì±¹ °í¼Óµµ·Î ±³Åë ¾ÈÀü±¹(NHTSA) µî ±â°üÀÇ ±ÔÁ¦´Â º¸¾È ÇÁ·¹ÀÓ¿öÅ©¸¦ Çü¼ºÇϰí OEMÀÌ º¸¾È ¹ÙÀÌ µðÀÚÀÎ ¿øÄ¢À» äÅÃÇϵµ·Ï Àå·ÁÇϰí ÀÖ½À´Ï´Ù. V2X ½Ã½ºÅÛÀÌ Á¡Á¡ ´õ º¹ÀâÇØÁö°í ¹Ì¼Ç Å©¸®Æ¼ÄÃÇØÁü¿¡ µû¶ó Â÷·® Åë½ÅÀÇ °¢ °èÃþ¿¡ »çÀ̹ö º¸¾ÈÀ» ÅëÇÕÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù.

¾ö°ÝÇÑ ±ÔÁ¦°¡ V2X »çÀ̹ö º¸¾È ÁøÈ­ÀÇ ±Ù°£ÀÌ µÇ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

¾ö°ÝÇÑ ±ÔÁ¦ ȯ°æÀº V2X »çÀ̹ö º¸¾È »óȲÀ» ÃßÁøÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. À¯·´°ú °°Àº Áö¿ª¿¡¼­´Â À¯¿£ ±ÔÁ¤ 155È£¿¡ µû¶ó ÀÚµ¿Â÷ Çü½Ä½ÂÀÎÀÇ ÀüÁ¦Á¶°ÇÀ¸·Î »çÀ̹ö º¸¾È °ü¸® ½Ã½ºÅÛ(CSMS)À» Àǹ«È­Çϰí ÀÖ½À´Ï´Ù. UNECE WP.29 ÇÁ·¹ÀÓ¿öÅ©´Â ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿¡ »çÀ̹ö º¸¾È ¶óÀÌÇÁ»çÀÌŬ °ü¸® ¹× ¹«¼± ¾÷µ¥ÀÌÆ® ½Ã½ºÅÛ Áؼö¸¦ ÀÔÁõÇÒ °ÍÀ» ¿ä±¸Çϰí ÀÖÀ¸¸ç, ÀÌ´Â Á¦Á¶¾÷üÀÇ ±âÁØÀ» Å©°Ô ³ôÀ̰í ÀÖ½À´Ï´Ù. ¹Ì±¹¿¡¼­´Â ±³ÅëºÎ(DoT)¿Í NHTSA°¡ Çù·ÂÇÏ¿© ¾ÈÀüÇÑ Åë½Å ÇÁ·ÎÅäÄݰú µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¸¦ ¿ì¼±½ÃÇÏ´Â V2X Åë½Å °¡À̵å¶óÀÎÀ» ¼ö¸³Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·¹ÀÓ¿öÅ©¿¡ µû¶ó ¾÷°è ÀÌÇØ°ü°èÀÚµéÀº »çÀ̹ö º¸¾È ¼Ö·ç¼Ç Á¦°ø¾÷ü ¹× IEEE, ETSI, 5GAA¿Í °°Àº Ç¥ÁØÈ­ ´Üü¿Í Çù·ÂÇÒ Çʿ䰡 ÀÖ½À´Ï´Ù. ¶ÇÇÑ, 5G ³×Æ®¿öÅ©ÀÇ ±Þ¼ÓÇÑ È®»ê°ú ¿§Áö ¹× Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê V2X Ç÷§ÆûÀÇ µîÀåÀ¸·Î ÀÎÇØ ÄÄÇöóÀ̾𽺿¡ ¶Ç ÇϳªÀÇ º¹ÀâÇÑ ·¹À̾ Ãß°¡µÇ¾ú½À´Ï´Ù. ±ÔÁ¦°¡ ¸íÈ®ÇØÁü¿¡ µû¶ó »çÀ̹ö ³»¼º Å×½ºÆ®¸¦ À§ÇÑ µðÁöÅÐ Æ®À© ±â¹Ý ½Ã¹Ä·¹ÀÌ¼Ç °³¹ßµµ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ç¥ÁØÀº °ø±Þ¸Á Àü¹Ý¿¡ °ÉÃÄ ÀϰüµÈ º¸È£¸¦ º¸ÀåÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ±â¾÷ÀÌ ÄÄÇöóÀ̾𽺠´ëÀÀ°ú Àû±ØÀûÀÎ ¸®½ºÅ© °ü¸®¸¦ ÅëÇØ Â÷º°È­¸¦ ²ÒÇÒ ¼ö ÀÖ´Â °æÀï ȯ°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Â÷·®ÀÌ ¼ÒÇÁÆ®¿þ¾î·Î Á¤ÀÇµÇ°í ½º¸¶Æ® ½ÃƼ¸¦ Æ÷ÇÔÇÑ ´õ ±¤¹üÀ§ÇÑ »ýŰ迡 ¿¬°áµÊ¿¡ µû¶ó ±ÔÁ¦ ´ç±¹Àº Â÷·® ÁÖº¯À» ³Ñ¾î µµ½Ã ÀüüÀÇ IoT ÀÎÇÁ¶ó »çÀ̹ö º¸¾ÈÀ» ÅëÇÕÇÏ´Â Áö¼ÓÀûÀÎ À§Çù ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

Â÷¼¼´ë ±â¼úÀº V2X º¸¾È ¾ÆÅ°ÅØÃ³ÀÇ Çö »óŸ¦ ÆÄ±«ÇÒ ¼ö ÀÖÀ»±î?

ÃÖ÷´Ü ±â¼úÀº º¸´Ù Áö´ÉÀûÀ̰í ÀûÀÀ·ÂÀÌ ¶Ù¾î³ª¸ç ºÐ»êµÈ ¼Ö·ç¼ÇÀ¸·Î V2X »çÀ̹ö º¸¾ÈÀÇ ÆÐ·¯´ÙÀÓÀ» ¹Ù²Ù°í ÀÖ½À´Ï´Ù. ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)À» ÅëÇØ µ¥ÀÌÅÍ ÆÐÅÏÀ¸·ÎºÎÅÍ ÇнÀÇÏ¿© °ø°ÝÀ» ¿¹ÃøÇÏ°í ¿¹¹æÇÒ ¼ö ÀÖ´Â °íµµÈ­µÈ À§Çù °¨Áö ½Ã½ºÅÛÀÌ ½ÇÇöµÇ°í ÀÖ½À´Ï´Ù. ºí·ÏüÀÎÀº V2X »ýŰ迡¼­ µ¥ÀÌÅÍ ±³È¯ÀÇ ¾ÈÀü¼ºÀ» º¸ÀåÇϰí, µð¹ÙÀ̽ºÀÇ ID¸¦ °ü¸®Çϱâ À§ÇÑ º¯Á¶ ¹æÁö ±â¹ýÀ¸·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. Á¦·Î Æ®·¯½ºÆ® ¾ÆÅ°ÅØÃ³(ZTA)´Â Â÷·® ³×Æ®¿öÅ© ³» ¾Ï¹¬Àû ½Å·Ú ¿µ¿ªÀ» ÃÖ¼ÒÈ­ÇÏ°í ¸ðµç µ¥ÀÌÅÍ Æ®·£Àè¼ÇÀÌ ÀÎÁõµÇ°í ¾ÏȣȭµÇµµ·Ï º¸ÀåÇϱâ À§ÇØ Ã¤Åõǰí ÀÖ½À´Ï´Ù. SMPC(Secure Multi-Party Computing)¿Í È£¸ð¸ðÇÈ ¾ÏȣȭÀÇ ÅëÇÕÀº ¿ø½Ã µ¥ÀÌÅ͸¦ °ø°³ÇÏÁö ¾Ê°íµµ µ¥ÀÌÅÍ Ã³¸®¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ÇÁ¶óÀ̹ö½Ã ¹®Á¦¸¦ ÇØ°áÇϰí ÀÖ½À´Ï´Ù. SDN(Software-Defined Networking)°ú NFV(Network Function Virtualization)´Â µ¿Àû Æ®·¡ÇÈ »óȲ°ú À§Çè ÇÁ·ÎÆÄÀÏ¿¡ ÀûÀÀÇÏ´Â º¸´Ù È®Àå °¡´ÉÇϰí ÇÁ·Î±×·¡¹Ö °¡´ÉÇÑ º¸¾È ÇÁ·¹ÀÓ¿öÅ©¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, ¾çÀÚÄÄÇ»ÆÃÀÌ °¡Á®¿Ã ÀÓ¹ÚÇÑ À§ÇùÀ¸·ÎºÎÅÍ V2X ½Ã½ºÅÛÀ» º¸È£Çϱâ À§ÇØ ³»¾çÀÚ¾ÏÈ£ ±â¼úÀÌ ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ OEM ¹× Tier 1 °ø±Þ¾÷üµéÀº »çÀ̹ö º¸¾È ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, »çÀ̹ö À¶ÇÕ ¼¾ÅÍ¿Í Â÷¼¼´ë º¸¾È Ç÷§Æû °³¹ßÀ» À§ÇÑ Å×½ºÆ® ·¦À» ¼³¸³Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷°¡ ´õ Å« ±Ô¸ðÀÇ MaaS(Mobility-as-a-Service) »ýŰèÀÇ ÀϺΰ¡ µÇ¸é¼­ ¿§Áö µð¹ÙÀ̽º, ÅÚ·¹¸Åƽ½º Á¦¾î À¯´Ö(TCU), ¼¾¼­ ³×Æ®¿öÅ©ÀÇ º¸¾È È®º¸°¡ ¸Å¿ì Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº Ä¿³ØÆ¼µåÄ«ÀÇ µðÁöÅÐ DNA¿¡ º¸¾ÈÀ» ÅëÇÕÇÏ´Â ¹æ¹ýÀ» ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù.

Àü ¼¼°è V2X »çÀ̹ö º¸¾È ½ÃÀåÀÇ ¼ºÀå¼¼¸¦ °¡¼ÓÈ­ÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¼¼°è V2X »çÀ̹ö º¸¾È ½ÃÀåÀÇ ¼ºÀåÀº ÁøÈ­ÇÏ´Â ±â¼ú ÇÁ·¹ÀÓ¿öÅ©, ¿ªµ¿ÀûÀÎ ÃÖÁ¾ ¿ëµµ, ¼ÒºñÀÚ ÇൿÀÇ º¯È­¿Í Á÷°áµÇ´Â ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎÀº ÀÚÀ²ÁÖÇàÂ÷ ¹× ¹ÝÀÚÀ²ÁÖÇàÂ÷ µµÀÔÀÌ ±ÞÁõÇϸ鼭 V2X Åë½ÅÀÇ ²÷±èÀÌ ¾ø´Â °Í¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ¾î »çÀ̹ö º¸¾È ÀÎÇÁ¶óÀÇ °­È­°¡ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù. 5G ³×Æ®¿öÅ©ÀÇ ±¤¹üÀ§ÇÑ º¸±ÞÀº µ¥ÀÌÅÍ ±³È¯ ´É·ÂÀ» ÁõÆø½ÃÄÑ °ø°Ý ´ë»ó ¿µ¿ªÀ» È®´ëÇÏ°í °­·ÂÇÑ º¸¾È ¸ÞÄ¿´ÏÁòÀÇ Çʿ伺À» Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷(EV), ƯÈ÷ Ŭ¶ó¿ìµå¿¡ ¿¬°áµÈ ¿¡ÄڽýºÅÛ°ú ÅëÇÕµÈ EVÀÇ ±ÞÁõÀº »çÀ̹ö º¸¾ÈÀÇ ¿ì¼±¼øÀ§¸¦ ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ÁøÈ­ÇÏ´Â »çÀ̹ö ±ÔÁ¦¿¡ ´ëÀÀÇϱâ À§ÇØ ¼³°èºÎÅÍ ±¸Ãà±îÁö ÀÓº£µðµå º¸¾È ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Å« ¼ºÀå ¿äÀÎÀº Â÷·® µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× µðÁöÅÐ ¾ÈÀü¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ Åõ¸í¼º°ú ½Ç½Ã°£ º¸È£¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. »ó¿ëÂ÷ ¹× ½º¸¶Æ® ±³Åë¸Á¿¡¼­ V2X ½Ã½ºÅÛÀÇ ÅëÇÕÀº ƯÈ÷ ¹°·ù, µµ½Ã À̵¿¼º, ±ä±Þ ´ëÀÀ ¼­ºñ½º¿¡¼­ ¾ÈÀüÇÑ Åë½Å Ç÷§ÆûÀÇ ´ë±Ô¸ð ¹èÆ÷¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àü ¼¼°èÀûÀ¸·Î ½º¸¶Æ®½ÃƼ °³³äÀÌ È®´ëµÇ¸é¼­ µµ½Ã ÀÎÇÁ¶ó¸¦ Â÷·® ³×Æ®¿öÅ©¿Í ¿¬°èÇϰí, µµ½Ã Â÷¿øÀÇ »çÀ̹ö º¸¾È ÇÁ·¹ÀÓ¿öÅ©ÀÇ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿Â÷ Á¦Á¶¾÷ü, Åë½Å»ç, »çÀ̹ö º¸¾È ±â¾÷ °£ÀÇ Çù¾÷Àº ÅëÇÕÀûÀ̰í È®Àå °¡´ÉÇϸç ÀûÀÀ·ÂÀÌ ¶Ù¾î³­ º¸¾È ¼Ö·ç¼ÇÀÇ °³¹ßÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå º¯È­´Â °ø°Ý ±â¹ýÀÇ ÁøÈ­, Â÷·® »çÀ̹ö °ø°ÝÀ¸·Î ÀÎÇÑ ±ÝÀüÀû ¼Õ½Ç Áõ°¡¿Í ÇÔ²² »çÀ̹ö º¸¾ÈÀ» ¼¼°è V2X »ýŰèÀÇ Áß¿äÇÑ ÃàÀ¸·Î È®°íÈ÷ ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

ÀåÄ¡ À¯Çü(¿Âº¸µå ÀåÄ¡, µµ·Îº¯ ÀåÄ¡), ¿¬°á¼º(Àü¿ë ´Ü°Å¸® Åë½Å, ¼¿·ê·¯), Åë½Å(Â÷·® ´ë Â÷·®, Â÷·® ´ë ÀÎÇÁ¶ó, Â÷·® ´ë ±×¸®µå, Â÷·® ´ë º¸ÇàÀÚ, Â÷·® ´ë Ŭ¶ó¿ìµå), ÃßÁø·Â(ICE, Àü±â ¹× ÇÏÀ̺긮µå), ÃÖÁ¾ ¿ëµµ(½Â¿ëÂ÷, »ó¿ëÂ÷)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global V2X Cybersecurity Market to Reach US$8.7 Billion by 2030

The global market for V2X Cybersecurity estimated at US$3.1 Billion in the year 2024, is expected to reach US$8.7 Billion by 2030, growing at a CAGR of 18.9% over the analysis period 2024-2030. On-board Units, one of the segments analyzed in the report, is expected to record a 17.1% CAGR and reach US$5.1 Billion by the end of the analysis period. Growth in the Roadside Units segment is estimated at 21.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$810.5 Million While China is Forecast to Grow at 18.0% CAGR

The V2X Cybersecurity market in the U.S. is estimated at US$810.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.3 Billion by the year 2030 trailing a CAGR of 18.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 17.2% and 16.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.1% CAGR.

Global V2X Cybersecurity Market - Key Trends & Drivers Summarized

How Are Interconnected Vehicles Reshaping Security Priorities on the Roads?

The Vehicle-to-Everything (V2X) cybersecurity market is rapidly evolving as global transportation systems increasingly transition towards connected and autonomous mobility ecosystems. V2X technologies, encompassing Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), Vehicle-to-Network (V2N), and Vehicle-to-Pedestrian (V2P) communication protocols, have introduced immense opportunities to enhance traffic efficiency, safety, and mobility. However, this interconnected framework also introduces heightened vulnerabilities to cyber threats. Attack vectors such as man-in-the-middle attacks, spoofing, data tampering, and denial-of-service (DoS) attacks are becoming critical concerns. These threats can compromise driver safety, traffic systems, and even national security. Consequently, the demand for robust, end-to-end cybersecurity solutions has intensified. Security measures now focus on authentication protocols, secure software updates, intrusion detection systems (IDS), and Public Key Infrastructure (PKI) frameworks. The deployment of edge computing and AI-driven threat intelligence is further strengthening V2X defenses by enabling real-time risk mitigation. Regulations by bodies such as the European Union Agency for Cybersecurity (ENISA) and the U.S. National Highway Traffic Safety Administration (NHTSA) are shaping security frameworks and pushing OEMs to adopt secure-by-design principles. The integration of cybersecurity at every layer of vehicular communication has become essential as V2X systems become more complex and mission-critical.

Why Is Regulatory Rigor Becoming the Backbone of V2X Cybersecurity Evolution?

Stringent regulatory environments are playing a pivotal role in driving the V2X cybersecurity landscape. In regions like Europe, the UN Regulation No. 155 mandates cybersecurity management systems (CSMS) as a prerequisite for type approval of vehicles. The UNECE WP.29 framework, requiring automakers to demonstrate compliance with cybersecurity lifecycle management and over-the-air update systems, has significantly raised the bar for manufacturers. In the U.S., the Department of Transportation (DoT) and the NHTSA are collaborating to establish V2X communication guidelines that prioritize secure communication protocols and data privacy. These frameworks are compelling industry stakeholders to collaborate with cybersecurity solution providers and standardization bodies like the IEEE, ETSI, and 5GAA. Furthermore, the rapid deployment of 5G networks and the advent of edge and cloud-native V2X platforms have added layers of complexity to compliance. Regulatory clarity is also pushing the development of digital twin-based simulations for cyber resilience testing. These standards are not only ensuring consistent protection across supply chains but are also fostering a competitive landscape where companies are differentiating themselves through compliance-readiness and proactive risk management. Additionally, as vehicles become more software-defined and connected to broader ecosystems including smart cities, regulators are pushing for continuous threat monitoring systems that go beyond the vehicle perimeter, integrating citywide IoT infrastructure cybersecurity.

Can Next-Gen Technologies Disrupt the Status Quo in V2X Security Architectures?

Cutting-edge technologies are transforming the V2X cybersecurity paradigm with solutions that are more intelligent, adaptive, and decentralized. Artificial Intelligence (AI) and Machine Learning (ML) are enabling advanced threat detection systems that can learn from data patterns to predict and prevent attacks. Blockchain is gaining traction as a tamper-proof method for securing data exchanges and managing device identities in V2X ecosystems. Zero Trust Architecture (ZTA) is being increasingly adopted to minimize implicit trust zones within vehicular networks, ensuring that every data transaction is authenticated and encrypted. The integration of Secure Multi-party Computation (SMPC) and Homomorphic Encryption is addressing privacy challenges by enabling data processing without exposing raw data. Software-Defined Networking (SDN) and Network Function Virtualization (NFV) are enabling more scalable and programmable security frameworks that adjust to dynamic traffic conditions and risk profiles. Furthermore, quantum-resistant cryptographic techniques are being explored to future-proof V2X systems against the impending threats posed by quantum computing. Automotive OEMs and Tier 1 suppliers are investing heavily in cybersecurity R&D, establishing cyber fusion centers and testing labs to develop next-generation security platforms. As vehicles become part of a larger Mobility-as-a-Service (MaaS) ecosystem, securing edge devices, telematics control units (TCUs), and sensor networks is becoming crucial. These innovations are collectively redefining how security is embedded into the digital DNA of connected vehicles.

What Forces Are Accelerating the Global Momentum in the V2X Cybersecurity Market?

The growth in the global V2X cybersecurity market is driven by several factors directly linked to evolving technology frameworks, dynamic end-use applications, and shifting consumer behavior. A key driver is the escalating adoption of autonomous and semi-autonomous vehicles that rely heavily on uninterrupted V2X communication, necessitating fortified cybersecurity infrastructure. The widespread rollout of 5G networks is amplifying data exchange capabilities, thereby expanding the attack surface and increasing the need for robust security mechanisms. The surge in electric vehicles (EVs), especially those integrated with cloud-connected ecosystems, is further elevating cybersecurity priorities. Automakers are under pressure to comply with evolving cyber regulations, leading to increased investment in embedded security systems from design to deployment. Another significant growth catalyst is the rise in consumer awareness regarding vehicle data privacy and digital safety, driving demand for transparency and real-time protection. The integration of V2X systems in commercial vehicle fleets and smart transportation grids is prompting large-scale deployments of secure communication platforms, especially in logistics, urban mobility, and emergency response services. Moreover, the expansion of smart city initiatives globally is aligning urban infrastructure with vehicular networks, creating a need for city-level cybersecurity frameworks. Collaborations between automotive manufacturers, telecom providers, and cybersecurity firms are also accelerating the development of unified, scalable, and adaptive security solutions. These market shifts, coupled with the evolution of attack methodologies and increasing financial losses from vehicular cyberattacks, are cementing cybersecurity as a critical pillar in the global V2X ecosystem.

SCOPE OF STUDY:

The report analyzes the V2X Cybersecurity market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Unit Type (On-board Units, Roadside Units); Connectivity (Dedicated Short Range Communications, Cellular); Communication (Vehicle-to-Vehicle, Vehicle-to-Infrastructure, Vehicle-to-Grid, Vehicle-to-Pedestrian, Vehicle-to-Cloud); Propulsion (ICE, Electric & Hybrid); End-Use (Passenger Cars, Commercial Vehicles)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 37 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â